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Manipulation of insulin signaling phenocopies
evolution of a host-associated polyphenism
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David R. Angelini 1

Plasticity, the capacity of an organism to respond to its environment, is thought to evolve

through changes in development altering the integration of environmental cues. In poly-

phenism, a discontinuous plastic response produces two or more phenotypic morphs. Here

we describe evolutionary change in wing polyphenism and its underlying developmental

regulation in natural populations of the red-shouldered soapberry bug, Jadera haematoloma

(Insecta: Hemiptera: Rhopalidae) that have adapted to a novel host plant. We find differences

in the fecundity of morphs in both sexes and in adult expression of insulin signaling com-

ponents in the gonads. Further, the plastic response of ancestral-state bugs can be shifted to

resemble the reaction norm of derived bugs by the introduction of exogenous insulin or RNA

interference targeting the insulin signaling component encoded by FoxO. These results

suggest that insulin signaling may be one pathway involved in the evolution of this poly-

phenism, allowing adaptation to a novel nutritional environment.
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Phenotypic plasticity is a non-genetic source of biological
variation1–3. Nevertheless, it arises from developmental
systems, which are produced by gene products and subject

to evolution2–6. The average response of individuals in a popu-
lation to a given environmental influence describes their reaction
norm7,8. Despite identification of regulatory mechanisms for
some reaction norms9–16 and documentation of the evolution of
plasticity in many systems17–26, mechanisms underlying reaction
norm evolution in wild populations remain poorly understood. It
remains unclear how genetic pathways that enable phenotypic
sensitivity to the environment might change with evolution to
modify a plastic response.

Wing polyphenism occurs in many insects, including in many
true bugs (Hemiptera). In these species, adults develop with
shortened wings and non-functional flight muscles. In most
species, wing morphs are determined by environmental condi-
tions, such as nutrition, or by a combination of genetic and
environmental influences on development5,11,27. Although several
developmental genetic pathways are associated with body size and
organ growth regulation28, less is known about growth regulation
in the context of polyphenism29,30. Recent studies of wing poly-
phenism in the brown planthopper Nilaparvata lugens31 and
other species32–34 have identified a role for insulin signaling in
the specification of wing morphs in these species.

The soapberry bug Jadera haematoloma (Hemiptera: Rhopa-
lidae) is a promising model for integrative study into the reg-
ulation and evolution of a reaction norm. This insect exhibits a
nutritionally regulated wing polyphenism, which has diverged
among populations only in recent decades. Soapberry bugs are
native to coastal dry hammock forest, along the Caribbean Sea
from the US Gulf of Mexico to South America (Supplementary
Fig. 4). Jadera feed on several plants of the soapberry family,
native to the United States, including Cardiospermum sp. in
Florida35. Since about 1950, a population of J. haematoloma has
adapted to a novel host plant, the introduced goldenrain tree
(Koelreuteria sp.)36–38. Therefore, traits associated with the
introduced host are likely to be recently derived. Cardiospermum
are perennial vines with relatively low but consistent seed pro-
duction. In contrast, Koelreuteria are large trees that produce
abundant seeds during a 3- to 4-month period. Compared with
Cardiospermum, Koelreuteria seeds have a higher proportion of
lipids and lower concentration of protein38. Many adaptations in
morphology and life history have been documented for host-
associated ecotypes of J. haematoloma36–39. The Koelreuteria-
adapted ecotype is now widely distributed and expanding in the
temperate United States, whereas populations resembling the
ancestral state remain associated with native Cardiospermum
vines in the Florida Keys (but see ref. 40).

Adult J. haematoloma of both sexes exhibit distinct wing
morphs. Long-wing morphs have complete wings and functional
flight muscles, whereas short-winged individuals are brachyp-
terous, lack flight muscles, and are incapable of flight. The wings
of each morph differ in their overall size, shape, and venation,
and this variation is determined by environmental influences
rather than genetic factors. Insect polyphenisms are typically
mediated by one or more factors, including juvenile nutrition or
density5,27. Previous work has suggested that J. haematoloma
morphs are determined by juvenile nutrition, with a positive
correlation between food level and frequency of the short-winged
morph41,42. Host plants with different phenology present soap-
berry bugs with distinct nutritional environments38, potentially
selecting for differences in wing morph frequencies or reaction
norms.

Here we present evidence that J. haematoloma wing poly-
phenism is adaptive in females, but maladaptive in males of the
native host ecotype. This sexual conflict is partially resolved in the

derived Koelreuteria ecotype, in which the reaction norm offset
has evolved to make short-winged individuals more common.
The frequency of morphs is determined nutritionally and asso-
ciated with differences in the expression of genes encoding insulin
signaling components. Manipulation of the insulin signaling
pathway alters this reaction norm, phenocopying its evolution in
natural populations.

Results
Wing morphology. The range of wing phenotypes in J. haema-
toloma was characterized using linear and geometric morpho-
metrics (Fig. 1 and Supplementary Figs. 1-3)43. Each sex has a
bimodal distribution of wing lengths (Fig. 1h). Wing morphs are
significantly different in wing length (permutation analysis of
variance (ANOVA) with morph and sex as factors, p < 2.2 ×
10−16). Wing morphs also differ dramatically in their static
allometry1. Compared with head width (a proxy for body size),
wing lengths of the two morphs have significantly different
scaling relationships (Supplementary Fig. 1; analysis of covariance
test for homogeneity of slopes F1,162= 835.3, p= 7.96 × 10−66).
Host-associated ecotype was not a significant factor in this rela-
tionship. Despite distinct differences in adult wing length among
morphs, the size of juveniles or their external wing pads does not
indicate an individual’s future morph (Supplementary Fig. 3).

Morphs differ significantly in wing shape as well as wing size.
Variation in wing shape was characterized using landmark-based
geometric morphometric analysis (Fig. 1a, b)43–45. Morphs differ
significantly in their shape (Fig. 1i; permutation-based Procrustes
ANOVA44 with morph and sex as factors, F1,183= 335.1,
p < 10−4). The wings of each morph differ most obviously in
the shape of the distal wing region known as the membrane.
Therefore, we reasoned that morph-specific cues might vary in
their influence over different regions of the wing, highlighting
anatomical and developmental modules. Several modularity
hypotheses were tested by dividing the wing along proximal–distal
and anterior–posterior axes, and evaluating the covariance ratio
coefficient produced by comparisons within and between the
proposed modules. As expected, the membrane and more
proximal regions of the wing displayed significant modularity
(covariance ratio test45, p < 0.05; Supplementary Note 1), whereas
other groupings of wing landmarks did not (Fig. 1c).

Subjectively, short-wing morphs display a wide range of wing
appearances, whereas long-wing morphs have more consistent
appearance. Procrustes variance44 was significantly greater in
short-wing morphs (difference in Procrustes variance= 0.00867;
randomized residual permutation, p < 10−6). We also compared
the wing shape disparity of each morph between ecotypes. Short-
wing morphs differed slightly in their disparity between ecotypes
(difference= 3.784 × 10−3, p= 0.0419) with greater disparity in
Koelreuteria short-wing shapes. Among long-wing morphs, the
difference in wing shape disparity for ecotypes was much greater
(difference= 1.093 × 10−3, p= 1.69 × 10−3), with lower variation
among Cardiospermum-associated long-wing bugs.

Wing morph frequencies vary in the wild. To explore potential
differences in wing polyphenism, we surveyed the frequency of
each morph at numerous sites across the US range of J. haema-
toloma, including populations living on native and introduced
hosts (Supplementary Fig. 4). The frequency of wing morphs
varied widely, with some sites having only long-wing (11 of 64) or
short-wing bugs (3 of 64), whereas most sites had both morphs.
The geographic location of sites was not a significant factor in
explaining variation in morph frequencies. However, morph
ratios differed significantly among the most heavily sampled host
plants: Cardiospermum corindum, a native host, and two

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04102-1

2 NATURE COMMUNICATIONS |  (2018) 9:1699 | DOI: 10.1038/s41467-018-04102-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


introduced hosts, Koelreuteria elegans and Koelreuteria panicu-
lata (permutation ANOVA, p < 2.2 × 10−16). Short-wing morphs
were significantly more common on K. paniculata compared
with each of the other two host plants (permutation test with
Bonferroni correction; vs. C. corindum, p= 1.33 × 10−3; vs.
K. elegans, p= 8.12 × 10−5).

Mendelian inheritance does not explain morph frequencies. To
test whether J. haematoloma wing morphs are determined
genetically, we made 32 controlled crosses with all morph com-
binations (Supplementary Table 2). For each cross, we tested
whether the resulting adult F1 morph ratio matched any Men-
delian ratio (0:1, 1:3, 1:1, 3:1, or 1:0 short wing to long wing) or
the prediction of a recessive lethal short-wing allele (2:1) using
Fisher’s exact test with Bonferroni correction. These results were
then compared for compatibility with Mendelian dominance of
the long-wing or short-wing phenotypes and with the possibility
of a recessive lethal allele. No Mendelian model consistently fit
the data (Supplementary Table 2), consistent with a past study41

and supporting the conclusion that wing morphs in J. haemato-
loma are not primarily based on genetic factors.

Nutrition-dependent wing polyphenism varies among eco-
types. As wing morph frequencies vary among wild populations
on host plants with different phenology and resource availability
(Supplementary Fig. 4), we wished to test whether ecotypes vary
in their norms of reaction to food availability. Previous work has
suggested that the Cardiospermum ecotype was more responsive
to environmental conditions than soapberry bugs living on
introduced Koelreuteria41. In field surveys, morph ratios are likely
to be affected by environmental cues, genetic background, as well
as selective forces that might bias the adults counted in field
surveys. Therefore, we raised J. haematoloma cohorts in the lab

under a wide range of food and conspecific density conditions,
and surviving adults were scored by morph (Fig. 2a).

Using logistic regression, we compared models with predictive
factors of seed number, the initial hatchling number in the
cohort, and ecotype, alone, in combination, and allowing for
interactions (Supplementary Table 3). We also considered null
models predicting all short-wing or all long-wing morphs. This
dataset included 3490 sampled adults from 133 independent
treatments. An individual’s morph was best predicted by a model
incorporating seed number, cohort size, and their interaction, as
well as the bugs’ host ecotype. Each of these factors was a
significant influence on the model fit (Supplementary Table 4 and
Supplementary Fig. 5). Increasing seed number and lower
conspecific competition (smaller cohorts) were correlated with
increased frequencies of the short-wing morph (Fig. 2; 0.70%
increased odds per seed; 0.95% decreased odds per bug).
Compared with Cardiospermum ecotypes, populations of the
Koelreuteria ecotype were 10–14 times more likely to be short
winged (95% confidence on odds ratio). Models were tested in
logistic regression for each ecotype alone, where seed number and
cohort size were also found to be significant predictors of morph
frequency (Supplementary Tables 5-8). These analyses reveal that
ecotypes differ primarily in the offset of their reaction norms46,
with Koelreuteria ecotypes having a lower nutritional threshold
for short-wing development.

In the previous analysis, bugs were raised on seeds of the host
plant associated with their ecotype. Therefore, we tested for
potential effects that the host plants might have on morph
determination by cross-rearing juveniles on non-natal seeds
(Fig. 3). The resulting offspring were examined using
permutation-based factorial ANOVA, considering the effects of
ecotype and seed species on the frequency of short-wing morphs.
Although the influence of ecotype on morph frequencies was
significant (overall model main effect for ecotype, F1,94= 47.24,
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p < 2 × 10−16), cross-reared bugs of each ecotype did not differ
significantly in morph frequency (main effect of seed species,
F1,94= 0.635, p= 0.38; Fig. 3a, compare left and right panels for
each ecotype). Interestingly, survival to adulthood was reduced
for bugs raised on non-natal seeds (Fig. 3b). This decrease in
survival was significant for Koelreuteria-adapted bugs raised on
Cardiospermum seeds (overall model interaction of ecotype and
seed species, F1,94= 6.85, p= 6.00 × 10−3; two-sample permuta-
tion test for Koelreuteria ecotype, Z=− 2.90, p= 3.72 × 10−3).

The response of F1 hybrids from crosses of Cardiospermum
and Koelreuteria ecotypes suggest that host plants can exert
influence on wing morph frequency. Among F1 hybrids, the host
seed species used for rearing was a significant factor in wing
morph ratios (exact permutation, p= 9.12 × 10−4). However, the
direction of this effect is opposite that seen for host-associated
ecotypes, with more long-wing adults produced when hybrid bugs
are raised on K. paniculata seeds. Survival of hybrids was higher
on both seed species than for cross-reared parental ecotypes,
although this difference is marginal (exact permutation, p=
0.0714). The reduced survival of hatchlings on non-natal seeds
may present an obstacle to the colonization of new host plant
species in the wild. However, the high survival of ecotype hybrids
on both plants suggests that contemporary gene flow may still be
possible among ecotypes40–42.

Sexual conflict in wing polyphenism varies by ecotype. As
J. haematoloma ecotypes vary in their polyphenic reaction norms

(Fig. 2), we sought to test whether the reproductive advantage
predicted for short-winged females might vary among ecotypes.
On average, for each ecotype, wild-caught short-winged females
laid eggs faster than long-winged females, and this difference was
significant among Koelreuteria ecotypes (Fig. 4a; Wilcoxon test
with Bonferroni adjustment, W= 27, p= 0.00429). Among the
Cardiospermum ecotype, the egg-laying rate was higher on
average in short-winged females (Fig. 4a). Increased fecundity for
short-winged females is consistent with the classic models of a
dispersal-fecundity polyphenic trade-off5,47.

We also examined lifetime egg production from females in
laboratory crosses (Fig. 4b, c). Effects on fecundity were tested
using permutation-based factorial ANOVA, considering the
morph and ecotype of each parent and potential interactions
among morphs. Female morph was not a significant factor,
although crosses of Koelreuteria ecotypes involving short-winged
females did produce marginally more eggs (Fig. 4c; Z=−1.55,
p= 0.12). Females raised in the lab have access to energy stores
unavailable to wild females and these lab-reared long-winged
females do not expend energy flying before being able to mate.
For these reasons, polyphenism may still be adaptive in
Cardiospermum ecotype females. Seed resources are typically
much more widely distributed in Cardiospermum habitats36,
suggesting a greater advantage to the dispersal ability conferred
by flight.

It has been unclear whether wing polyphenisms in different
species might be adaptive for males, or if male flightlessness
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represents a sexual conflict produced by pleiotropy29,47. Surpris-
ingly, for the Cardiospermum ecotype, crosses produced sig-
nificantly fewer offspring when males were short winged (Fig. 4b;
permutation with Bonferroni correction, Z= 2.326, p= 0.0400).
However, this effect was not found for the Koelreuteria ecotype,
where short-wing bugs of both sexes are much more common in

the wild. Differences in male fertility were not due to differences
in the size of testes or accessory glands (Supplementary Fig. 6).

These results suggest a sexual conflict in wing polyphenism.
Polyphenism appears to be adaptive for females, allowing faster
egg production in high-nutrient environments. However, for
populations on Cardiospermum, the polyphenism appears to be
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maladaptive for males, which suffer reduced fertility when short
winged. Short-winged bugs are much more common in
populations living on K. paniculata, which appear to have
evolved a resolution to this sexual conflict, allowing more equal
fitness for males of both morphs.

Dominance of the derived reaction norm. In order to explore
the underlying genetic basis for ecotype differences in nutritional
reaction norms, crosses were made with virgin adults from
Tavernier, Florida, which feed on C. corindum and have a reac-
tion norm offset favoring long-wing morphs, and Frederick,
Maryland, which live on K. paniculata and are more frequently
short winged at comparable levels of juvenile food availability.
Reciprocal crosses showed no evidence of maternal effects.
Hybrid cohorts were raised with varying numbers of seeds.

If reaction norms have evolved by changes in mostly additive
genetic variance, then hybrids should display an intermediate
reaction norm compared with the parental ecotypes. Strong
dominance, in which the F1 reaction norm resembles one of the
parents, would be evidence that population differences in
plasticity are produced by genetic differences with strong non-
additive effects. The morph frequencies of F1 cohorts and their
norm of reaction strongly resembled the Koelreuteria ecotype
(Fig. 2, middle). We used a logistic model of morph determina-
tion in hybrid and parental populations to examine the effect of
genetic background on the reaction norm (Supplementary
Table 9). Compared with F1 hybrids, the odds that a bug will
be short winged are four to seven times lower for the
Cardiospermum parental population (95% confidence on odds
ratio). In contrast, bugs from the Koelreuteria parental population
were not significantly different in their predicted morphs from
the F1.

Together, these results suggest that although the frequency of
wing morphs is environmentally determined, the threshold for
that response is determined by the genetic background. Responses
of the ecotype hybrids demonstrate that this genetic difference
may have evolved through changes in relatively few genes with
large effect and strong dominance.

Insulin pathway components in the soapberry bug. Insulin
signaling mediates nutrition-dependent growth in various con-
texts34,48,49, making it a candidate mechanism for the evolution
of nutrition-dependent polyphenism32. Functional tests in the
planthopper N. lugens have also implicated the activities of
paralogous insulin receptors in wing morph development in that
species31. We assembled transcriptome sequences for each J.
haematoloma ecotype. This allowed the identification of one-to-
one orthologs for most insulin pathway components. Two genes
encoding orthologs of the Drosophila insulin receptor were
identified in J. haematoloma (Supplementary Fig. 7), as well as
from the boxelder bug Boisea trivittata (Rhopalidae) and the
milkweed bug Oncopeltus fasciatus (Lygaeidae). One insulin
receptor ortholog (InR1) was also isolated from a species of
monomorphic soapberry bug, J. sanguinolenta.

In order to explore whether insulin signaling components
differ in their expression by morph, we measured transcript
abundance in nascent adults using quantitative PCR (qPCR). At
this stage, bugs are undergoing sexual maturation, making gene
expression relevant to fecundity. The ovaries of nascent adult
females showed differences in the expression of the insulin
receptor genes by ecotype (Supplementary Fig. 8b, c). The relative
expression of FoxO, a transcription factor downstream of the
insulin signaling pathway48, also differed by morph among
females of the Cardiospermum ecotype (Supplementary Fig. 8a).
In the absence of insulin-like peptides, FoxO inhibits expression

of genes related to protein synthesis and cell division50,51, while
promoting its own transcription and that of the insulin
receptor52.

Manipulation of insulin signaling alters the reaction norm. We
tested the influence of insulin signaling on J. haematoloma
development and wing morph specification by treating fourth
instars with exogenous insulin53,54 or via RNA interference
(RNAi) targeting the insulin receptor genes (InR1 and InR2), two
signal transducers, chico and Akt, and FoxO. These experiments
were conducted with juveniles raised under a range of food
regimes, to examine developmental genetic control of wing
morph reaction norms (Fig. 5) and wing shape (Fig. 6). RNAi
knockdown was verified using quantitative reverse transcriptase-
PCR (qRT-PCR) (Supplementary Fig. 9).

Activation of insulin signaling, by introduction of exogenous
insulin or knockdown of FoxO, phenocopied the evolution of
reaction norms from the high-threshold Cardiospermum host
ecotype to resemble the Koelreuteria ecotype, which has a much
lower threshold for short-wing development (Fig. 5a). FoxO
RNAi significantly altered the reaction norm for wing morph
frequencies such that they were 10–38 times more likely to be
short winged than unmanipulated bugs (95% confidence intervals
on odd ratio from logistic regression; Supplementary Table 12).
This increase in the likelihood of the short-wing morph was
significant in comparison with nonspecific green fluorescent
protein (GFP) double-stranded RNA (dsRNA) controls (Wald’s
test, z= 5.69, p= 1.31 × 10−8; Supplementary Table 13). Injec-
tion of roughly 0.5 ng insulin per mg body weight had a similar
effect, increasing the odds of short-wing development by four to
nine times, a significant difference from control injections (z=
3.51, p= 4.46 × 10−4; Supplementary Table 13). Similar effect
sizes for insulin and FoxO RNAi were found within the
Cardiospermum ecotype (Supplementary Table 14), although
these treatments did not significantly influence wing morph
frequencies in Koelreuteria ecotypes, where short-wing bugs are
already common. Conversely, reduction of insulin signaling by
RNAi targeting InR1 and InR2 simultaneously resulted in
marginally lower frequencies of short-wing bugs among Koelreu-
teria ecotypes (z=− 1.818, p= 0.0691). In Drosophila, InR
activation inhibits FoxO which normally acts to suppress target
genes related to growth49,51. Therefore, these results are
consistent with a model in which increased food consumption
activates insulin signaling, potentially in concert with other
pathways, to specify development of the short-wing morph.

Although FoxO RNAi during late juvenile development
increases the frequency of short-wing morphs, FoxO expression
is higher in ovaries and dorsal thorax of nascent adult short-wing
morphs, compared with long-wing bugs (Supplementary Fig. 8).
This apparent paradox likely reveals dynamic expression and
function of FoxO between these different life stages.

Targeting other components of the insulin pathway by RNAi
failed to alter development in obvious ways. Knockdown of chico
and Akt (Supplementary Fig. 11), which encode intracellular
transducers of insulin signaling, extended the fifth instar by five to
ten times its normal duration, greatly extending their normal
lifespans. However, this result precluded a determination of any
influence these genes may have on morph specification.

FoxO RNAi biases the development of wing shape. As FoxO
RNAi significantly increased the frequency of short-wing morphs
in Cardiospermum ecotypes (Fig. 5 and Supplementary Tables 13,
14), we examined whether knockdown of this gene might also
influence the shape of wings. We utilized the same geometric
morphometric analysis applied to unmanipulated bugs (Fig. 1) on
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77 GFP dsRNA-treated control specimens and 64 FoxO RNAi
individuals. Principal component analysis of RNAi wing shapes
(Fig. 6a) placed short- and long-winged bugs in a similar rela-
tionship in morphospace, compared with unmanipulated bugs
(Fig. 1i). However, RNAi treatment had a significant effect on
wing shape overall (Procrustes ANOVA, F1,138= 8.66, p < 10−4)
and among short-wing morphs (p < 2 × 10−4 with Bonferroni

adjustment). FoxO RNAi short-wing shapes occupied a similar
region of morphospace as control wings, but the FoxO-knock-
down group was biased toward extreme short-wing shapes. These
wings were more severely reduced in the distal membrane region
(low PC1 values in Fig. 6a, Fig. 6c, d compared with 6e, Sup-
plementary Fig. 14) and narrower in the anterior–posterior
dimension (high PC2 values). RNAi treatment did not have a
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significant effect on long-wing shapes; however, the power of this
inference is limited by the small number of long-wing FoxO
specimens (n= 3) in the shape analysis.

Other appendages were also examined for allometric effects of
RNAi targeting FoxO and InR1. No significant effects were found
for the relative lengths of antennae, the labrum, labium (beak),
femora of the legs, and wings (Supplementary Note 1). However,
body length and pronotum width were affected by knockdown of
these genes, with InR1 RNAi decreasing relative size and FoxO
RNAi increasing relative size (Supplementary Fig. 12).

Discussion
Genes act in an environmental context to determine phenotypes
and the mechanisms by which environmental conditions exert an
influence on development are subject to evolution3,19,22,23,25,46.
Therefore, reaction norms can evolve over time, vary among
populations, and adapt under the influences of selection. Here we
have examined nutritionally dependent plasticity in the deter-
mination of wing morphs in the soapberry bug J. haematoloma,
characterizing morphology, population-level variation in plasti-
city, and fitness implications, as well as developmental
mechanisms.

Variation in the length and shape of J. haematoloma wings is
discontinuous (Fig. 1), constituting two discrete morphs. Short-
wing morphs display a significantly wider range of wing shapes
than long-winged morphs (Fig. 1i). This difference may be non-
adaptive, resulting from different degrees of canalization in each
developmental trajectory. Alternatively, greater selection on long
wings imposed by the need for flight performance may limit their
range of shapes. A third explanation for greater short wing dis-
parity is that the differing prevalence of the two morphs exposes
them to different selection intensities. This last hypothesis pre-
dicts that ecotypes differing in the frequency of a morph should
also have reduced disparity in the more common morph.
Although short-wing morphs of the two ecotypes differ slightly,
but significantly in disparity, long-wing morphs have a highly
significant difference in the disparity of their wing shapes. Wing-
shape disparity is lowest among Cardiospermum-associated long-
wing bugs, which are the most common morph in that ecotype
and which are used by the bugs for flight. These results suggest
frequency-dependent selection on wing shapes among long-wing
morphs.

There is strong support for an explanation of morph fre-
quencies based on juvenile food availability. Raising juvenile
cohorts of J. haematoloma under different resource conditions
reveals differing reaction norms for two host-associated ecotypes
(Fig. 2). Differences in these reaction norms appear to be
genetically based, as evidenced by the persistence of the response
when bugs are cross-reared on a non-natal host (Fig. 3) and by
dominance of the reaction norm in F1 ecotype hybrids (Fig. 2).

Among ecotype hybrids, a higher frequency of short-wing
morphs was produced when bugs were fed Cardiospermum seeds
compared with rearing on Koelreuteria seeds. Interestingly, the
direction of these hosts’ effect on hybrid wing morph frequencies
is counter to the normal bias in morph frequencies displayed by
the parental ecotypes adapted to those hosts. This suggests that
compared with the F1 genetic background, the reaction norms for
wing morph determination in each parental, host-adapted eco-
type have been modified by selection over the generations since
their divergence.

A maladaptive response to nutritional conditions in hybrids
may present obstacles to gene flow between ecotypes. However, a
recent study of J. haematoloma comparing beak length, egg
weight, and developmental time among ecotypes in 2014 with
studies ca. 1990 found indirect evidence of maladaptive gene flow

from the more numerous Koelreuteria ecotype into Cardios-
permum-associated populations in south Florida40,42. Poor sur-
vival of Koelreuteria ecotypes on Cardiospermum seeds suggests
that secondary colonization of the ancestral native host by
derived ecotypes may be unlikely without hybridization first.

The Koelreuteria ecotype of J. haematoloma has evolved to be
predominantly short winged, which may reflect selection to
allocate resources to increasing fecundity in this environment.
Koelreuteria are larger plants with a higher abundance of seeds
and higher lipid content than Cardiospermum. These factors
make dispersal by flight potentially less advantageous on this
host47, which may explain the differences in ecotype reaction
norms. Short-winged females of the Koelreuteria ecotype produce
eggs faster than long-winged females (Fig. 4a), helping to max-
imize fitness in a relatively stable, high-nutrient environment.

It has been unclear whether male wing polyphenism has any
adaptive value in J. haematoloma or other species. In contrast, we
find that in the Cardiospermum ecotype, where the short-wing
morph is rare, short-winged males suffer reduced fitness, as
crosses with these sires produced fewer offspring on average
(Fig. 4b). Short-winged males are also unable to disperse by flight.
These results suggest a sexual conflict, where males maximize
fitness consistently with development to the long-winged morph,
which provides higher fertility and the opportunity to disperse.
Meanwhile females may produce the most surviving offspring by
determining their morph based on local food availability. The
threshold for short-wing development is lower and short-wing
morphs are more common in both sexes of the Koelreuteria
ecotype. In this ecotype, the male morph does not influence the
fecundity of a cross. Therefore, it is likely that in adapting to
Koelreuteria, soapberry bugs evolved a resolution to this sexual
conflict, allowing wing polyphenism to remain unlimited by sex
without reduced fitness in short-winged males.

Changes in expression (Supplementary Fig. 8) of insulin sig-
naling components in J. haematoloma have accompanied the
evolution of the reaction norm for wing morph determination
among host ecotypes (Fig. 2). Activation of insulin signaling by
exogenous insulin injection or FoxO RNAi can phenocopy this
evolutionary change (Fig. 5). Insulin-like peptides are produced
in the insect brain55,56 in response to feeding55. In fruit flies,
insulin signaling regulates cell proliferation and protein synth-
esis56,57. Therefore, insulin signaling may provide a physiological
mechanism by which individual soapberry bugs could gauge
their nutritional resources in order to coordinate growth. In
other insects, tissue-specific allometries result from the local levels
of expression and activation of insulin pathway compo-
nents33,34,58–60. Differences in insulin signaling have been iden-
tified in sex-specific allometric differences and in sex-limited
plasticity in organ growth33,61.

Insulin signaling appears to regulate wing polyphenism in J.
haematoloma differently than in the brown planthopper N. lugens
(Hemiptera: Delphacidae)31. The cues determining wing morphs
in N. lugens are not known, although nutrition, stress, and
crowding have been suggested as causes62. In the planthopper,
depletion of InR1 and InR2 cause development of almost entirely
short- or long-wing morphs, respectively. Knockdown of N.
lugens FoxO produces predominantly long-winged planthoppers,
the opposite of the effect described here for FoxO RNAi in J.
haematoloma. The reason for these dramatic differences is
unclear and, although wing polyphenism is widespread among
true bugs, rhopalids and delphacids diverged ~ 320 mya63. Fur-
ther investigation of polyphenic regulation in these and other
species will be necessary to identify themes common to
Hemiptera.

The soapberry bug J. haematoloma is a promising model
species for the study of polyphenic development and its evolution.
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Our data suggest that in this species, alternative morphs offer
trade-offs maximizing either dispersal ability through flight or
increased fecundity. Determination of morphs appears to be
based on juvenile food availability and this reaction norm has
diverged with adaptation to a novel host plant. Wing polyphen-
ism in J. haematoloma is not sex limited. In the ancestral ecotype,
short-winged males are rare and appear to suffer reduced fertility.
The derived ecotype appears to have evolved a lower offset to the
reaction norm, increasing the frequency of short-wing adults of
both sexes. Males of this group have similar fitness, regardless of
morph, in an apparent resolution to the sexual conflict. Finally,
our results demonstrate that artificial activation of insulin sig-
naling can phenocopy evolution of the derived reaction norm.
Therefore, we suggest that changes in the insulin signaling
pathway may underlie reaction norm evolution in this wild
population. The involvement of insulin signaling in diverse
developmental contexts, from wing polyphenism in planthop-
pers31 to polyphenism in sexually competitive weapons33,64

supports the hypothesis32 that this pathway is a hotspot for the
evolution of discontinuous organ growth regulated by nutritional
cues.

Methods
Insect culture. Jadera haematoloma were collected from host plants at several
locations, including Tavernier, FL (January 2013 and February 2015), Key Largo,
FL (February 2015), Aurora, CO (August 2015), and Frederick, MD (October
2014). Founding cohorts consisted of 50–100 individuals, and multiple cultures
from each population-of-origin are maintained with similar numbers each gen-
eration. In the lab, soapberry bugs were raised in an incubator at 26 °C in 3.38 L
plastic terrariums (Carolina Biological Supply Company, Burlington, North Car-
olina, USA). A tray of water was placed in the incubator to increase humidity.
Spring water was continuously available in glass flasks with a paper towel wick. A
6-cm Petri dish containing a folded paper towel was wetted every 1–3 days to
maintain high humidity. Bugs were fed either seeds of K. paniculata (F.W. Schu-
macher Co., Inc., Sandwich, Massachusetts, USA) or Cardiospermum halicacabum
(Outsidepride.com, Inc., Independence, Oregon, USA). Due to the prevalence of
cannibalism among hatchlings, eggs were removed and kept in Petri dishes until
hatching, after which juveniles were removed to a separate container. Under these
conditions, the generation time is 6–10 weeks. Ontogenetic allometry was assessed
by raising bugs in isolation in 6-cm Petri dishes containing a folded paper towel,
wetted daily, and exactly three seeds.

For the determination of reaction norms, soapberry bugs were collected from
hatching dishes as second instars. Precise numbers of bugs and seeds of their natal
host plant were combined in a terrarium or other container of known volume, with
the water resources described above. Bugs were incubated at 26 °C until all
juveniles molted to adulthood or died. Water was replaced daily, but no food was
removed or added. Dead bugs were removed periodically. All adults were scored
for sex and morph, and in most treatments individuals were imaged as vouchers
and for morphometric analysis.

Morphometric analysis. The sizes and shapes of J. haematoloma wings were
analyzed using landmark-based geometric morphometric methods43 as imple-
mented in the R package geomorph44. Bugs were anesthetized using CO2 and
imaged on a trinocular stereo microscope (VWR International, Radnor, Pennsyl-
vania, USA) with a Moticam 5 digital camera (Richmond, British Columbia,
Canada). A millimeter-scale ruler was included in images to provide scale. Dorsal
and ventral images of each specimen were recorded. Using ImageJ v1.46r5 linear
pixel measurements were obtained for the lengths of body, labrum, labium,
antennae, and femora of each leg. These values were then converted to metric
distance using measurements of the scale. Twenty-four anatomical landmarks were
placed on dorsal images of the wing (Fig. 1a, described in Supplementary Note 1).
Generalized Procrustes analysis with partial Procrustes superimposition was pre-
formed using minimized bending energy (Fig. 1b). Scaling coefficients of allometry
were calculated from regression of log wing length to log head width relationships
(Supplementary Figs. 1 and 3), as described by Huxley1. Modularity hypotheses
were tested using a covariance ratio coefficient45 (Fig. 1c) in 1000 permutations.
Morphological disparity within each morph was assessed using a permutation test
of pairwise Procrustes distances with one million iterations. Tangent space posi-
tions for Procrustes-aligned specimens were determined along principal compo-
nent axes (Fig. 1i). Procrustes ANOVA with permutation44 was used to assess
hypotheses for patterns of shape variation among the aligned specimens, using
10,000 iterations.

Fecundity assessments. Fecundity was assessed for isolated, wild-caught J. hae-
matoloma females and for individuals paired in crosses. In both cases, bugs were

kept in plastic Petri dishes of 10 cm diameter and 2.5 cm deep. So that food
availability did not limit female egg production, water and at least ten seeds of the
natal host species were provided in uncovered 3.5 cm diameter Petri dishes. Seeds
were replaced if they grew mold. Eggs were counted and removed within 7 days,
before hatching. We could not control the age of wild-caught females. Therefore,
we kept females in isolation and determined their rate of egg-laying after capture,
from the first day eggs were produced until the last day eggs were produced.

Examination of testes and accessory glands. In an attempt to identify the
mechanism for reduced fecundity in short-winged Cardiospermum-ecotype males,
we examined the relative sizes of the testes and accessory glands from males of each
ecotype. These organs were dissected from adult males at least 5 days old. The sizes
of these organs were measured as their photomicrographic area.

Isolation of candidate genes. A reference transcriptome was prepared from 12
nascent adults of the Cardiospermum ecotype from Tavernier, FL, and 12 adults
from K. paniculata in Aurora, CO. RNA was isolated from whole bodies and sent
to Beckman Coulter Genomics (Danvers, Massachusetts) for poly-A selection,
preparation of TruSeq libraries, and sequenced using Illumina HiSeq for 125 bp
paired-end reads. Reads from all samples were trimmed65 and assembled using
Trinity66. The resulting transcriptome contained 258,322 contigs (N50= 1596 bp;
89.8% BUSCO score67). Reciprocal BLAST searching was used to identify
sequences orthologous to candidate genes of interest. Fragments of the candidate
genes, InR1, InR2, chico, Akt, and FoxO were isolated by PCR or constructed by
commercial Gibson assembly (Integrated DNA Technologies, Inc., Coralville,
Iowa). PCR primers are listed in Supplementary Table 7. PCR products were
ligated into the pCR4-Topo vector (ThermoFisher Scientific, Waltham, Massa-
chusetts) and transformed into One Shot TOP10 chemically competent cells
(ThermoFisher Scientific). Plasmids were then isolated using the Purelink Quick
Plasmid Miniprep kit (ThermoFisher Scientific) and sequences were confirmed by
Sanger sequencing (Beckman Coulter Genomics). Sequences for Akt, Chico, and
InR2 were obtained from assembled transcripts identified by BLAST homology and
used for de novo Gibson assembly of linear DNAs (Integrated DNA Technologies,
Inc.).

Orthology assignments. Most candidate genes had single orthologs in J. hae-
matoloma that could be unambiguously identified using BLAST searches. However,
because of the possibility of confusion among members of the insulin receptor
family, we determined orthology for these genes using phylogenetic inference.
Predicted insulin receptor-like protein sequences were obtained from tran-
scriptomes of three additional hemipterans, Jadera sanguinolenta, the box elder bug
B. trivittata, and the milkweed bug O. fasciatus68, and from GenBank accessions for
the fruit fly Drosophila melanogaster (P09208), the red flour beetle Tribolium
castaneum (AHF20214; EFA02828), the pea aphid Acyrthosiphon pisum
(XP_001952079; XP_001942660), and the brown planthopper N. lugens
(AIY24638; AIY24639). Two putative insulin receptors were obtained from most of
these species, except for D. melanogaster and J. sanguinolenta, from which only one
InR was identified by BLAST. Four putative receptor tyrosine kinase sequences
from B. trivittata and J. sanguinolenta were used as out-groups. Predicted amino
acid sequences were aligned using ClustalW in Geneious 7.1.7 (Biomatters Ltd,
Auckland, New Zealand) and manually trimmed to 1268 positions. The consensus
protein tree was inferred using MrBayes v3.2.6. Amino acid substitution rates were
modeled using the BLOSUM matrix, Γ-distributed rate variation across sites and a
proportion of sites being invariable. Markov chain Monte Carlo analysis was run
for 5 million generations with a 10% burn-in on a multi-processor core using 30
CPUs.

The consensus topology (Supplementary Fig. 7) strongly supports two
paralogous groups, designated InR1 and InR2, following Xu et al.31. All insulin
receptors were strongly monophyletic. The single InR protein from D.
melanogaster did not nest with either paralog group. As only one functional insulin
receptor has been identified in the fruit fly, it is possible that its position in this tree
results from a unique history of selection. The single InR sequence from J.
sanguinolenta was strongly supported as orthologous to InR1 from other species.

Gene expression. Gene expression and RNAi validations were determined using
quantitative real-time RT-PCR (qPCR). For each gene, exact primers were designed
using the Primer3 algorithm, avoiding conserved functional domains and dsRNA
regions. Whole nascent adults were frozen in liquid nitrogen and stored at −80 °C
before homogenization and total RNA extraction. If necessary, dissection was
performed after flash freezing in RNAlater. Multiple biological replicates were
included for each sex and morph. Using a poly-dT primer, complementary DNA
was prepared from 1 μg of total RNA using the iScript Select cDNA Synthesis Kit
(BioRad, Hercules, California, USA). Gene expression was measured separately in
the gonads and in the dorsal thorax, including forewings, hindwings, and flight
muscle.

qPCR was performed using two methods: two-step SYBR green assays,
including analysis of dissociation curves, and multiplex assays using dual-labeled
probes. For the SYBR Green method, reactions used iTaq Universal SYBR Green
Supermix (BioRad). Custom dual-labeled probes (Sigma-Aldrich, St. Louis,
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Missouri, USA) were used in reactions with iQ Multiplex Powermix (BioRad). All
reactions were conducted on a CFX96 Touch qPCR System (BioRad). All assays
included three to six DNA standards diluted from known concentrations of cloned
or synthesized gene fragments with the addition of nonspecific salmon sperm DNA
(ThermoFisher Scientific). For all tissues, we measured the expression of InR1,
InR2, and FoxO, as well as the reference gene β-actin. For dorsal thorax samples, we
also measured expression of Distal-less (Dll); vitellogenin (vit) expression was
measured in gonad samples. Assays were normalized using the expression of β-
actin. For validation of RNAi, expression was compared between gene-specific and
nonspecific GFP control dsRNA treatments. All analyses were performed using the
means of technical triplicates and included a minimum of three biological
replicates for each group under comparison.

RNA interference. Gene function was tested during juvenile-to-adult development
in J. haematoloma using RNAi. A DNA template was amplified from gene frag-
ments using primers with a 20-nucleotide T7 viral promoter sequence at the 5ʹ-end.
This linear DNA was used as a template in bidirectional RNA synthesis using the
MegaScript T7 transcription kit (ThermoFisher Scientific). The product was treated
with DNase I to remove template DNA, then annealed by cooling and purified by
precipitation in cold ammonium acetate and ethanol. After resuspension in
nuclease-free water, dsRNA concentrations were determined using a nanoscale
spectrophotometer (GE Life Sciences NanoVue) and diluted to 2 μg/μl. Buffered
dsRNA was injected into fourth instar J. haematoloma. Bugs were anesthetized
using CO2. Approximately 0.2 μl of 2 μg/μl dsRNA was injected into the ventral
abdomen using a pulled-glass capillary needle. Nonspecific GFP sequence was used
as a control for the potential effects of injection wounding and nonspecific dsRNA
toxicity. Knockdown of gene activity was confirmed using qRT-PCR (Supple-
mentary Fig. 9).

Insulin treatment. Exogenous insulin treatments were based on previous experi-
ments from two Lepidoptera, Manduca sexta53 and Bombyx mori54. Bovine pan-
creatic insulin (Sigma-Aldrich) was prepared in saline buffer at 160 ng/μl. Injection
was made into the abdomen of fourth instars, in the same manner used for
introduction of dsRNA. This method delivered roughly 0.5 ng insulin per mg body
weight.

Statistical analysis. All statistical tests were conducted in R (version 3.4.3). Plots
were also generated using R, with some modifications to graphic layout being made
using Illustrator CC 2015 (Adobe Systems, San Jose, California). Details of statistical
analyses are given in the Supplementary Note 1. Supplementary Data File 1 includes
R markdown code to reproduce each statistical test and the original plots.

Code availability. All analysis scripts, including R code used for the production of
the main and supplementary plots, are available in Supplementary Data File 1.

Data availability. Gene sequences are archived under GenBank accession numbers
MF620038 to MF620048. All other data that support the findings of this study are
archived in Supplementary Data File 1.
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