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Abstract: Exhaustive and comprehensive analysis of pathological traits is essential to understanding
genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particu-
larly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be
compared and contrasted. However, many disease cohorts contain patients that have been ascribed
low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer,
a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give
a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing
us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In
addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic
profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties.
We found that cohorts with the most specific and complete phenotypic characterization give more
potential insights into the disease than those that were less deeply characterised by forming more
informative clusters. For two of the cohorts, we also analysed genomic data related to the patients,
and linked the genomic data to the patient-subgroups by mapping shared variants to genes and
functions. The work highlights the need for improved phenotyping in this era of personalized
medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this
work to be applied to other datasets.

Keywords: genetic diseases; cohort analyzer; human phenotype ontology; cluster analysis; pheno-
type quality assessment

1. Introduction

Advances in genome sequencing and bioinformatics analysis have led to their widespread
usage in genetic disease diagnosis [1–3]. These technologies can be used to better under-
stand functional genomic elements and how variants can lead to disease [4,5]. They have
been applied to multiple diseases, including cardiovascular diseases [6] and cancer [7],
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and used to identify risk factors for severe COVID-19 [8]. They can also be used to improve
our knowledge of rare diseases.

However, to extract meaning, genome sequencing must be accompanied by the com-
plete and accurate clinical characterization of patients. Multiple resources are available to
ascribe phenotypes using clinical terminology [9], such as the Human Phenotype Ontology
(HPO) [10], a standardized vocabulary of hierarchically organized terms. It is widely used
by tools for clinical diagnosis, such as ClinPhen [11], Phenomizer [12] and Phenotips [13]. It
is also used to annotate the pathological traits of patients and describe diseases in resources
such as DECIPHER [14], Orphanet [15] and Monarch [16].

Despite the range of tools available to aid patient characterization, in many cases,
this information is incomplete. This may be due to reasons such as the complexity of a
patient phenotypic profile or insufficient consultation time to obtain full diagnosis. This is
a problem, as whilst a cohort of patients diagnosed with the same disease often share com-
mon pathological phenotypes, other phenotypes may be specific to individuals. As such,
treatments may work for one patient but not for another, potentially even aggravating their
symptoms. Cohorts can also contain subgroups of similar patients. Identifying them is key
to improving diagnosis [17].

Another problem is the level of precision used when characterizing patients. For accu-
rate diagnosis and to better understand disease, patients should be described in the most
specific terms possible. Precision medicine should also be applied to the clinics, not just to
molecular and genetic medicine. This is especially important when investigating cohorts,
as it allows patients to be compared accurately.

In previous work from our group, we applied various network-based techniques
to cohorts of phenotyped patients [18–21]. However, despite finding interesting results,
the phenotypic data corresponding to many of the patients did not contribute to the
analysis, due to low specificity, showing that highly specific and precise phenotyping is
crucial to make sense of large-scale cohort data [18,22,23].

Despite the importance of patient phenotyping to better understand and diagnose
genetic diseases, there are currently no publicly available resources to evaluate pheno-
type information in a patient cohort. Motivated by this, we developed Cohort Analyzer,
a software tool to analyse a cohort of patients annotated with HPO terms. For this, it
calculates multiple summary statistics for the entire dataset, produces plots of the term
frequency distribution across the levels of the HPO, measures information content (IC) for
each patient profile and more. Patients can be compared and clustered based on phenotypic
similarity. If available, it can also assess genetic variant data in terms of coverage analy-
sis. It produces HTML reports, allowing a researcher to assess the information available
within a given cohort. Code is available as part of the Patient Exploration Tools Suite
(https://github.com/ElenaRojano/pets) [23].

Here, we apply Cohort Analyzer to three datasets: the DECIPHER database encom-
passing many thousands of patients, obtained from many different centres and countries
with complex and heterogeneous genetic diseases [14], data from a national initiative that
includes patients with a specific disease that is loosely defined as including intellectual dis-
ability/developmental delay (ID/DD) and/or multiple congenital anomalies (MCA) [24],
and a relatively small cohort of patients with a monogenic disease, PMM2-CDG (MIM#
212065), characterized by a group of specialized experts. These analyses provide multiple
insights into the information available from each dataset and help guide further analysis,
such as whether to filter low-information patients, obtain subgroups of phenotypically
similar patients, and connect phenotype information with genotype, genes and functions.

2. Materials and Methods
2.1. Cohort Analyzer

Cohort Analyzer has been designed to analyse the phenotypic information available
within a patient disease cohort. Phenotypes are defined using the HPO, a hierarchical
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classification of standardized human pathological traits [25]. It can also analyse genomic
data for the same cohort if available.

To evaluate the phenotypic status of a cohort, Cohort Analyzer calculates summary
statistics related to HPO term frequency and diversity, analyses where the terms lie among
the different levels of the HPO to determine how deeply the patients have been phenotyped,
and uses information content (IC) to assess whether the terms tend to be informative or
not. In addition, it performs two different cluster analyses: (1) Naïve clustering, to assess
whether the dataset contains groups of patients for which little phenotypic information is
available; and (2) Semantic clustering, to detect groups of phenotypically similar patients,
using a clustering method that incorporates semantic similarity measures. To evaluate
genomic data quality, Cohort Analyzer calculates additional summary statistics related to
the properties of the variants and performs genome coverage analysis.

Cohort Analyzer produces HTML reports, a Main Report and Clustering Reports,
including multiple tables and graphics to aid results interpretation. It forms part of the
Patient Exploration Tool Suite (PETS) [23], developed in Ruby and available from https:
//github.com/ElenaRojano/pets. To facilitate the use of Cohort Analyzer, and recreate the
analyses as applied to the cohorts presented here, we have developed a workflow, available
from https://github.com/JoseCorCab/cohortAnalyzer_wf. This workflow provides full
instructions to allow the interested user to apply Cohort Analyzer to their own dataset.

2.1.1. General Statistics Calculation

Cohort Analyzer calculates multiple summary statistics to give an overview of the
cohort in terms of phenotyping breadth and depth as described in Table 1. Summary
statistics are also calculated for the genomic data if available.

Table 1. Cohort Analyzer general summary statistics.

Name Description

Unique HPO terms Number of distinct HPO terms that are used
to describe the patients in the cohort

Cohort size Number of patients in the cohort.
HPO terms per patient (average) Mean number of HPO terms per patient in

the cohort.
HPO terms per patient: percentile 90 Sorting patients from the highest to the lowest

phenotype profile length, the number of HPO
terms of the patient positioned at percentile 90
in the list. This gives an idea about the amount
of phenotypic information available for the
least well phenotyped members of the cohort.

Percentage of HPO terms with more
specific child terms

The percentage of phenotypes assigned to pa-
tients in the cohort for which more specific
terms are available within the HPO to charac-
terize the patient.

Average variant size Average length in base pairs of all variants
belonging to patients within the cohort.

Nucleotides affected by mutations Total number of base pairs covered by variants
belonging to patients within the cohort.

Number of genome windows Distinct contiguous genomic regions corre-
sponding to segments of variants within the
cohort, segmented such that each region be-
longs to a distinct combination of patients.

https://github.com/ElenaRojano/pets
https://github.com/ElenaRojano/pets
https://github.com/JoseCorCab/cohortAnalyzer_wf
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Table 1. Cont.

Name Description

Number of genome window shared
by ≥2 patients

The number of affected genome windows
shared by at least two patients, also referred
to as short overlapping regions.

Mean patients per genome window Average number of patients that correspond
to the genomic regions within the cohort.

2.1.2. Human Phenotype Terms Frequency and Distribution Analysis

The frequency of each HPO term in the cohort, defined as the number of patients
suffering a given phenotype, divided by the total number of patients, is calculated and
shown in the Main Report in the searchable table “HPO stats”.

To further investigate phenotyping specificity, the depths of these terms within the
hierarchical structure of the HPO are also analyzed. For each term, depth is calculated
as the shortest path from the HPO root node. Values can range from 1 (root node—the
most general term in the HPO) to 16 (the deepest and thus most specific node). Depth can
be calculated taking into account how often the term occurs within a cohort (“weighted
cohort”), or using the unique set of terms (“unique terms cohort”).

By comparing the depth of the terms in the cohort to the depth of all terms within the
HPO, we can assess whether the patients in the cohort tend to be phenotyped using more
or less specific terms. The relative and absolute distributions of the HPO terms levels in the
cohort are shown in the Main Report, in the section called “HPO annotations distribution”,
alongside the distribution of levels for all HPO terms within the HPO.

2.1.3. Dataset Specificity Index

To assess HPO term specificity within a cohort with respect to the HPO hierarchy, we
calculate the Dataset specificity Index (DsI). First, we divide the HPO into two sections, Low
section : the ontology levels from root to the level with the highest number of terms (Lmax),
High section the ontology levels from Lmax to the deepest term in the ontology (Figure 1).

As such, given a set of HPO terms from a cohort, we penalise terms at shallower
levels of the hierarchy, and reward terms at deeper levels. Moreover, we can increase the
penalty/reward in relation to how many HPO levels a given term is from Lmax, the most
popular level in the ontology, under the rationale that HPO terms that are close to the root
in the ontology will be reached easily and have multiple child terms, defined as terms
within the ontology that are descendants of a given term and thus represent more specific
phenotypes. Conversely, the very deep terms are more difficult to reach and give much
more specific information.

More formally, we can compute scores for both sections in the following manner:
Firstly, for each level within the hierarchy, a difference score, dL, is calculated

(Equation (1)):
dL = PobsL − PontL (1)

This represents the difference between the proportion of terms observed in the cohort
(PobsL) and the proportion of terms in the ontology (PontL) for a given level L.

The different scores are then used to calculate overall scores for the two sections. Only
dL scores greater than 0 will contribute to a section score.

The overall Low section Score, (LsS, Equation (2)) is calculated using the following:

LsS =

Lmax

∑
L=1

dL ∗ (Lmax − L + 1), if dL > 0

LS
(2)



J. Pers. Med. 2021, 11, 730 5 of 25

Figure 1. Term level distribution for the HPO (black line) and for a hypothetical patient cohort (blue
line). The levels in the ontology are divided in two sections, the Low section and the High section.
The reason for the division is based on the probability of a level being used, which is related to
the number of levels that separate it from the root node in the ontology, and the number of terms
contained at the level. Lmax is the level with largest number of terms in the ontology and it is the
last level for which deeper phenotyping leads to a greater number of possible terms. The following
levels have decreasing term counts, thus they have smaller probabilities to appear in a patient profile.
By dividing the ontology into sections, we can see how a real patient cohort uses the ontology by
measuring the distribution differences at each level (dL). These differences are weighted taking into
account the sections and how many terms belong to each level, and are used to calculate the DsI to
measure the phenotype information of a patient cohort.

This shows that the dL scores for the Low section of the ontology are weighted, where
the weights are assigned inversely to the level of the ontology. Lmax is the level with the
highest number of terms in the ontology. The weights serve to penalize very unspecific
terms in the cohort dataset. LS is the number of levels present in the ontology section.

The overall High section Score (HsS, Equation (3)) is calculated using the following:

HsS =

Lo

∑
L=Lmax+1

(dL ∗ (Lo − L)), if dL > 0

LS
(3)

This shows that the dL scores for the High section of the ontology are weighted, where
each level is weighted in proportion to its depth with respect to Lmax. The weights serve
to reward very specific terms in the cohort dataset. Lo is the deepest possible level in
the ontology.

Finally, the Dataset specificity Index is the ratio between both section scores
(Equation (4)):

DsI = HsS/LsS (4)

The DsI will be 0 if the HsS is 0 and infinite if the LsS is 0. A value of 1 means that
the contribution of both sections are the same; however, in practice, DsI values tend to be
below 1 because of the difficulty of reaching the High section levels.
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2.1.4. Cluster Analysis and Information Content Distribution

Cohort Analyzer uses the phenotype profiles of each patient to perform cluster anal-
ysis. Initially, Naïve clustering is performed, in which patient HPO term profiles are
represented as binary vectors, without taking into account the relationship between terms.
Euclidean distance between the vectors is calculated and clustering is performed using
Ward’s method [26]. To visualize the clustering results, boxplots are shown for the largest
clusters, with the number of patients in each cluster also indicated in Main Report section
“Clustering patients by HPO profile”. The boxplots show the average information content
(IC) for the HPO terms assigned to the patients in each cluster, where IC is defined as
−log10 of the HPO term frequency [25]. Furthermore, the IC distribution per cluster is
complemented with the patient profile size distribution. This procedure can be used to
assess whether the cohort contains large groups of uninformative patients.

In addition, Cohort Analyzer provides plots comparing the IC of the HPO terms in
the cohort in relation to the ontology (“HPO ICs distribution”). In this approach, we used
IC to indicate terms specificity [10]: IC values <1 represent unspecific HPO terms. It is also
performed at the patient level, by calculating the average IC for all HPO terms assigned to
each patient, for both the cohort-inferred IC and ontology-inferred IC values.

A second clustering is performed to compare the patients based on the similarity of
their profiles, using semantic similarity measures that take into account HPO hierarchical
structure. Cohort Analyzer can use three such measures, Resnik, Lin and Jiang-Conrath [27].
For the analysis of the datasets presented here, we use Lin method, which produces
similarity scores normalized between 0 and 1. The scores are used to produce a dissimilarity
matrix, which is hierarchically clustered. The groups of patients are then obtained using
the cutreeDynamic function from the R package dynamicTreeCut (Version 1.63-1) [28],
with the parameter minClusterSize set to one hundredth of the total number of patients in
the cohort (or two if this is higher).

Clustering results are provided as heatmaps in the Main Report, that represent the
profile similarity between patients and the clustering partitioning. Then, for each semantic
measure method, a Clustering Report is created, including a table (Patient HPO profiles by
cluster) with information on the patients in each cluster, including the HPO codes with
links to the HPO website (https://hpo.jax.org, accessed on 14 April 2021) and the full
phenotype names.

2.2. Case Studies: Assessing the Phenotypic and Functional Space within the Top Patient Clusters

Average similarity was calculated between the patients for each cluster produced
by the semantic clustering method. The top clusters in terms of similarity were further
studied to investigate the diversity of phenotypes for the DECIPHER and ID/MCA datasets.
For each of these clusters, the phenotypic spectra were obtained, aggregating all the HPO
terms within the cluster and removing the parental terms. The phenotype profile of each
patient was compared to this spectra, taking into account semantic similarity. For each
patient, an individual semantic similarity is computed for each combination of HPO term
in the patient profile and HPO term in the phenotypic spectra. For each term in the patient
profile, its highest match with the phenotypic profile is selected. These results are displayed
in the form of a heatmap. Patients are shown on the x-axis, sorted by decreasing semantic
similarity with the phenotypic spectra. Phenotypes are shown on the y-axis, ordered by
the average similarity values across all patients. The cells of the heatmap represent the
semantic similarity between a patient term and a phenotypic spectra term. Up to 20 HPO
terms and 40 patients are shown.

In addition, functional enrichment analysis was performed for the genes mapping
to the patient variants. For the ID/MCA dataset, genes corresponding to variants shared
by at least two patients were used; for DECIPHER dataset the genes were shared by at
least four patients, motivated by the differing cluster sizes. Enrichment was performed
using clusterProfiler [29] for Gene Ontology (GO) terms [30]. Results are shown as Enrich-
ment Maps.

https://hpo.jax.org
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2.3. Cohort Descriptions

We used three different cohorts of patients to conduct this study, all of which had been
phenotypically annotated using HPO terms. The latest version of this ontology (April 2021
release) includes more than 13,000 different terms. General characteristics of each dataset
are given in Table 2.

Table 2. General characteristics related to the three datasets used in this study. For the DECIPHER
dataset, gender information was not available for the subset of patients used in this analysis, however
this information can be viewed for specific patients on the DECIPHER website.

PMM2-CDG ID/MCA DECIPHER

Total Patients 27 with HPO
annotation and
genotype data

4183 with HPO
annotation;
1027 with HPO and
genotype data

22,018 with HPO
annotation; X with
HPO and genotype
data

Age (median; IQR) 12 (9–17) 7 (3–17) NA

Gender:(% female) 44.4% 41.9% NA

Diseases covered PMM2-congenital
disorder of
glycosylation

Multiple congenital
anomalies-
intellectual
disability

Range of
heterogeneous
complex diseases

2.3.1. DECIPHER Cohort

The information for this cohort was downloaded from the DECIPHER database
(version 2021-04-28, mapped to the GRCh38/hg38 human genome assembly), under the
DECIPHER consortium Data Access Agreement [14]. This version includes 30,436 patient
records, of which we selected 22,018 with annotated pathological phenotypes. This cohort
also includes copy-number variant (CNV) coordinates from microarray-based Comparative
Genomic Hybridization (aCGH).

2.3.2. ID/MCA Cohort

This cohort is derived from a study evaluating the contribution of de novo and inher-
ited CNVs to phenotypes related to intellectual disability/developmental delay (ID/DD)
occurring alongside multiple congenital anomalies (MCA) [24]. From this study, we ob-
tained phenotype information for 4183 patients and genotype information for 1027 included
in the study, available in the Supplementary Material (Table S7. Phenotype data of patients
included in this study) from [24]. Genome coordinates are under the NCBI36/hg18 human
genome assembly.

2.3.3. PMM2-CDG Cohort

This cohort contains HPO annotated pathological phenotype and genotypic infor-
mation for 27 patients suffering from phosphomannomutase 2 congenital disorder of
glycosylation (PMM2-CDG), including terms related to their neurological, multisystem
and dysmorphologic features [31–33]. All patients had variants in the locus (chr16:8891670-
8943194), corresponding to the PMM2 gene coordinates in the GRCh37/hg19 human
genome assembly. The study was approved by the Ethics Committee of the Universidad
Autónoma de Madrid (CEI-105-2052) and conducted according to the principles of the
Declaration of Helsinki. All participants gave informed consent.

3. Results
3.1. Revealing Differences between Cohorts in Terms of Phenotype Information

We applied Cohort Analyzer to the three different patient cohorts to show how it can
be used to investigate phenotype information in datasets of very different designs.
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As shown in Table 3, the DECIPHER dataset shows a much larger number of unique
HPO terms and patients than the others, as expected given the resource was designed
to collect data for a wide range of phenotypically heterogeneous patients as part of an
international initiative [14]. The ID/MCA and PMM2-CDG datasets show much closer
numbers of unique HPO terms; however, they differ greatly in terms of the number of
patients. The average numbers of HPO terms per patient differ greatly between groups,
being several times higher for the PMM2-CDG dataset. Even more striking is the differ-
ence in terms of the number of phenotypes at the 90th percentile, indicating that 10% of
DECIPHER and ID/MCA patients have only one HPO term to define their clinical profile
in contrast to PMM2-CDG cohort, for which 90th percentile patients have 15 HPO terms.

In terms of phenotype depth, for most of the HPO terms used to describe the patients
in the ID/MCA dataset, more specific child terms were available. This also occurred with
the DECIPHER and PMM2-CDG datasets but to a much lesser extent, in fact almost half
of the HPO terms used in the PMM2-CDG dataset were the most specific terms available.
Furthermore, the patient profile length in PMM2-CDG dataset is very large, ~5 times and
~10 times the size of DECIPHER and ID/MCA datasets, respectively. Of particular note
was that the ID/MCA cohort patients were assigned less than three phenotypes on average,
and that almost all of the phenotypes had more specific ancestors.

These summary statistics provide a clear overview of the properties of the different
datasets in terms of how thoroughly the patients have been phenotyped in terms of both
breadth and depth; moreover, they give an idea of how consistent the phenotyping is
across patients.

Table 3. Cohort Analyzer general summary statistics. Results for the datasets following filtering to remove patients with less than
three assigned HPO terms are indicated with >2.

Name DECIPHER ID/MCA PMM2-CDG DECIPHER > 2 ID/MCA > 2

Unique HPO terms 3670 24 62 3481 24
Cohort size 22,018 3971 27 12,044 1932
HPO terms per patient (average) 5.36 2.71 25.25 8.59 4.03
HPO terms per patient: percentile 90 1 1 15 3 3
Percentage of HPO terms with more specific child terms 63.36 81.71 52.78 61.36 78.65

Cohort Analyzer can be used to assess the most frequent HPO terms among patients
within a dataset. It was applied to the three datasets used in this study (Table 4). Figure 2
shows the position of these phenotypes within the HPO hierarchical structure. The term
HP: “Intellectual disability” and its degrees were highly frequent among patients in the
DECIPHER and ID/MCA datasets, with 34.98% of patients in DECIPHER dataset being
ascribed this term, and 17.67% of patients in the ID/MCA cohort ascribed its child term, HP:
“Intellectual disability, mild”. Whilst the high prevalence of such a term in these datasets
might be expected, and it may be a useful phenotype in conjunction with a highly detailed
phenotypic profile, by itself it is less useful; moreover, it is found at level 5 of the HPO and
its child terms only describe different severity grades; as such, it represents somewhat of a
phenotyping dead end within the HPO. This pathological trait is complex and encompasses
multiple cognitive deficits expressed to several degrees, with multiple potential causes.
Therefore, its precise description can be overly diffuse [34]. Similar problems occur with
other frequent, general terms, such as HP: “Global developmental delay”. This limits
the ability of the practitioner to provide a more specific diagnosis in this branch of the
HPO. For other phenotype, such as HP: “Cognitive impairment”, ascribed to 80.96%
of the ID/MCA cohort members, there are myriad child terms available, including HP:
“Mental deterioration” and HP: “Memory impairment”, suggesting unexplored phenotypic
space within the cohort. This is also the case for HP: “Delayed speech and language
development”, which is at the sixth HPO level but has several child levels.
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Table 4. Top five most frequent HP0 terms in DECIPHER, ID/MCA and PMM2-CDG datasets.

DECIPHER % ID/MCA % PMM2-CDG %

1 Intellectual
disability

34.98 Cognitive
impairment

80.96 Cerebellar
atrophy

100.00

2 Global
developmental
delay

14.20 Intellectual
disability, mild

17.67 Upslanted
palpebral
fissure

88.88

3 Delayed speech
and language
development

12.87 Short stature 17.32 High, narrow
palate

85.18

4 Microcephaly 9.20 Autistic
behavior

16.87 Strabismus 81.48

5 Hypotonia 8.48 Hypotonia 15.36 Anteverted
nares

74.07

Phenotypic abnormality

Intellectual
disability

Intellectual
disability,

mild

Global
developmental

delay

Delayed speech and
language development

Microcephaly

Hypotonia

Cognitive
impairment

Short
stature

Autistic
behavior

Cerebellar atrophy

Upslanted palpebral fissure

High, narrow palate

Strabismus

Anteverted
nares

Figure 2. Schematic representation of top five most frequent HPO terms for each cohort in relation
to the “Phenotypic abnormality” node. Coloured squares represent terms for each cohort. Red:
DECIPHER. Gray: ID/MCA. Blue: PMM2-CDG.

For the PMM2-CDG cohort, we found significant differences between the top terms
of this dataset in comparison with the DECIPHER and ID/MCA datasets. We found that
all patients were described with HP: “Cerebellar atrophy” and most of them with HP:
“Upslanted palpebral fissure” (88.88%), two very specific terms (ninth and eleventh HPO
levels, respectively). In fact, the frequency of these pathological terms within the cohort is
very high, revealing a high level of phenotypic homogeneity in the cohort.

This characteristic could be expected for a monogenic disease dataset. However, it
is interesting that the specific HPO terms describing precise attributes of PMM2-CDG
dataset are the most prevalent, whereas for the other cohorts the most common terms are
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far more general. This makes sense given the findings in Table 3, showing that many of
the phenotypes ascribed to these patients are the most specific possible within the HPO,
i.e., have no child terms.

To provide a more detailed overview of phenotype specificity, Cohort Analyzer com-
pares the distribution of HPO term levels used within a given cohort to the distribution of
HPO term levels for all terms within the ontology (Figure 3). This is performed taking into
account term frequency (blue curves, “weighted cohort”) or counting each unique term
only once (green curves, “unique terms cohort”). This distinction is important as a single,
highly phenotyped patient could strongly affect the unique terms cohort, but its effect on
the weighted cohort curve would be diluted. The distribution of terms within the HPO is
represented as a pink curve.

In the case of DECIPHER dataset (Figure 3A), the HPO terms used in the dataset
(green curve) show a similar distribution to the HPO (pink curve), with two peaks at level 7
and 8. When considering the frequency of each term (blue curve), the distribution is shifted
slightly towards the initial levels of the HPO, although there is a small increase compared
to the HPO at level 12.

In contrast, the distribution shown by the ID/MCA cohort data (Figure 3B) are skewed
far more to the left, towards the initial levels of the HPO (green curve), with peaks at level
3 and 5. There are no terms described from level 8 onwards, showing that the deepest half
the HPO has not been used to describe the patients, suggesting unexplored phenotypic
space for this dataset.

For the PMM2-CDG dataset, the distribution of unique HPO terms (green curve) has
a small increase at level 6 and a high peak at level 7, followed by a smaller peak at level 12.
When the HPO term frequency is considered (blue curve), this shifts in favour of deeper
levels of the HPO, reducing the high peak at level 7 and increasing the peaks at 10 to 12.
This pattern is suggestive of a common phenotype at level 7, but additional, more specific
phenotypes at deeper levels. The shift to the right when taking term frequency into account
suggests that many of the patients have been phenotyped deeply.

To quantify the extent to which a cohort has been phenotyped in terms of HPO depth,
we used the Dataset specificity Index (DsI), applying it to all cohort datasets, both for
unique terms and considering term frequency (Table 5).

In the case of DECIPHER dataset, the DsI value is 0.13 for the unique HPO terms
used to describe the cohort, in accordance to the distribution shift to the shallower levels
of the HPO observed in Figure 3A. When DsI is computed taking the frequency of each
term within the cohort into account, the value slightly increases to 0.195, due to the peak at
level 12. This suggests that DECIPHER patients are described using a wide range of HPO
terms, representative of the HPO itself, in line with the nature of the resource. However,
when we consider term frequency, the reduction in DsI suggests that many patients are
actually phenotyped using much less specific terms.

In the case of ID/MCA cohort, DsI values for both unique HPO terms and the fre-
quency of each term within the cohort is zero because this dataset has zero phenotypes in
the High section of the HPO, in line with Figure 3B.

Higher DsI values where found for the PMM2-CDG dataset. Considering the unique
HPO terms used to describe the cohort, the DsI value was 0.27; however, when calculating
the frequency of each term within the cohort, this increased to 1.06. This increase in score
suggests that many of the patients have been deeply phenotyped, in line with the change
in distributions seen in Figure 3B—peaks at levels 10, 11 and 12 explain this increment.
Again, this suggests that not only are highly informative phenotypes used for this dataset,
they have been used to described a relatively large number of patients.
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Figure 3. HPO term percentage distribution plots for (A) DECIPHER, (B) ID/MCA and (C) PMM2-
CDG datasets. Green curves represent the percentage of unique HPO terms used to describe the
cohort, blue curves take into account the frequency of each term and pink curves show the percentage
of terms included in the HPO at each level.

Table 5. Dataset specificity Index for each cohort. Results for the datasets following filtering to
remove patients with less than three assigned HPO terms are indicated with >2.

Frequency DECIPHER ID/MCA PMM2-CDG DECIPHER > 2 ID/MCA > 2

Unique 0.13 0.00 0.27 0.19 0.00
Weighted 0.19 0.00 1.06 0.31 0.00
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The information content (IC) values for individual HPO terms and phenotypic profiles,
in terms of their frequency within the HPO and the cohorts, are shown in Figure 4. We see
that the DECIPHER dataset uses HPO terms with relatively high IC according to both the
ontology and the dataset calculations. However, when we look at the IC averaged across
patient profiles, the dataset-frequency IC drops dramatically. This suggests that, whilst
there are many informative HPO terms used in DECIPHER, the majority of the patients
have combinations of less specific ones, in line with the reduction in DsI shown in Table 5
between unique and weighted values. For the ID/MCA dataset, the individual ICs are less
informative, as is also the case for the patient profile ICs, also in line with Table 5. However,
in the case of the PMM2-CDG dataset, although the individual ICs are quite low, when IC
is calculated for the patient profiles, it improves, leading to higher values than for the other
datasets. This also fits with the DsI values, and fits with the idea that the patients within
this dataset have been consistently phenotyped to a deep level.

3.2. Identifying Patient Subgroups with Low Information Profiles

Cohort Analyzer also performs clustering analysis to assess the phenotypic informa-
tion in a cohort and identify patients with less informative phenotypic profiles. This initial
procedure ignores the ontological attributes of the HPO terms; as such, we have named it
Naïve clustering. We assume that if patients within a cohort are well-phenotyped, their
profiles will include multiple, specific HPO terms. Conversely, the profiles of uninformative
patients will include smaller profiles with more general HPO terms. As such, the profiles of
these patients are more likely to be similar across a cohort and, therefore, to cluster together.

This is shown for the the DECIPHER cohort (Figure 5), for which the first four clusters
include more than 2500 patients with profile IC values between 0 and 1. These clusters
contain patients with profiles describing only one or two HPO terms and frequently contain
the same combination of HPO terms repeated for all patients, or possibly including only
one different HPO term as shown in Supplementary Table S1. Notably, cluster 10 has an
average IC greater than 3.5. The patients within this cluster do often have high IC profiles;
however, this is because they have only been phenotyped with a single HPO term, and this
HPO term has not been ascribed to any other patients within the database. In fact, this
cluster includes 148 different HPO terms described for 148 patients.

In the case of the ID/MCA cohort, clusters include lower number of phenotypes
in comparison to the DECIPHER dataset and all members in each cluster have identical
phenotypes, except for clusters 6, 17, 22 and 24. These clusters contain patients with profiles
containing only one or two HPO terms assigned to all patients within cluster, as shown
in Supplementary Table S2. For the PMM2-CDG dataset, the Naïve clustering produces
almost as many clusters as patients (data not shown). This is to be expected, given that the
patients have been ascribed a large number of phenotypes, with no two patients having
the same phenotypic profile.

We conclude that Naïve clustering can identify large groups of patients with very
small phenotype profiles (one or two terms per patient) that also have low IC values.
These patients do not provide enough information to be used in downstream analysis
such as clustering-based semantic similarity to find subgroups of phenotypically similar
patients. Consequently, we should consider removing these patients. Patient removal must
be performed carefully, since the total number of unique phenotypes used to characterize
the cohort can also be affected and some specific phenotypes can be removed. As such,
the effects of filtering on the dataset should be examined.
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Figure 4. Information content (IC) distribution for (A) DECIPHER, (B) ID/MCA and (C) PMM2-
CDG datasets. Left figures correspond to HPO terms and right figures to patient phenotype profiles.
The ”Frequency based IC” values were computed using all patients from the three cohorts to make a
coherent comparison.
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Figure 5. Information content (IC) distribution for the top 30 clusters obtained using Naïve clustering.
Upper panels: HPO profile size for each cluster. Lower panels: IC distribution. (A) DECIPHER and
(B) ID/MCA

3.3. Removing Patients with Limited Phenotypic Information from the Cohort and Its Effect on the
Dataset Properties

Given that DECIPHER and ID/MCA datasets contain large numbers of patient with
very small phenotype profiles, we investigated the consequences of removing these patients
on the summary statistics and other cohort properties.

We see in the rightmost columns of Table 3 that for both datasets, this filter barely
reduces the total number of unique HPO terms; however, it reduces the total number of
patients in the dataset by almost half. This shows the phenotypes ascribed to the filtered
patients were also found among the remaining patients. As expected, the mean HPO
terms per patient and HPO terms for percentile 90 both increased. The percentage of HPO
terms with more specific child terms only reduces slightly, in line with the low-information
patients representing a subset of the terms held by the high-information patients. This
shows that removing these patients has little effect on the phenotypic diversity of the
dataset. Interestingly, the most common phenotypes actually became more frequent within
the DECIPHER and ID/MCA datasets after filtering, suggesting that these phenotypes
were more frequently found within longer phenotypic profiles (Supplementary Table S3).

As can be seen in Table 5, for the DECIPHER dataset, the DsI calculated for the unique
terms increases very slightly after the filter, showing that the few unique HPO terms that
were removed were of lower-information content, this is also reflected by the slight shift to
the right in Supplementary Figure S1 compared to Figure 3. However, for weighted terms,
the increase was slightly more marked, with the DsI increasing by a larger amount and an
appreciable shift towards deeper levels in Supplementary Figure S1. This suggests that the
filtered patients not only had few ascribed phenotypes, but that the phenotypes tended to be
unspecific. For the ID/MCA dataset, there was no change in DsI—this remained as 0, due
to this cohort having HPO terms corresponding to the High section levels, something that
cannot be improved by anything other than more thorough phenotyping of the patients.

In terms of the IC values (Supplementary Figure S2), we see that for all cohorts,
removing the low-information patients has little effect on the distributions of IC values for
individual HPO terms, in line with the small reduction in total unique terms across the
cohorts (Table 3). However, when the IC values calculated using the phenotypic profiles of
each patient are considered, we see a clear smoothing of the distributions, particular for the
cohort-frequency calculated values, for both DECIPHER and ID/MCA cohorts. For these
datasets, large peaks corresponding to groups of low IC patients are removed, in line with
the idea that many of the patients with few phenotypes have also been assigned unspecific
ones. For the DECIPHER dataset, there is also a clear peak of high profile IC values for
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HPO ontology-based values before filtering; this may be due to the patients with single
but unique phenotypes found in cluster 10 in Figure 5, the patient IC is the same as the
phenotype IC for these patients because their profiles only contain single terms.

This suggests that some of the filtered patients had specific phenotypic profiles ac-
cording to the ontology, but that were less specific within the cohort itself. No appreciable
change is apparent for the PMM2-CDG cohort, unsurprising given that no patients were
removed, although the cohort-frequency of the HPO terms changed very slightly.

In terms of the Naïve clustering, for the unfiltered DECIPHER dataset (Figure 5) there
were many clusters containing hundreds of patients with identical low IC phenotypes
alongside a handful of outlier patients with slightly higher ICs. Removing the very small
phenotype patients and repeating the Naïve clustering led to much smaller clusters with a
higher range of ICs (Supplementary Figure S3), as would be expected.

This was less clear for the ID/MCA dataset—although several very large clusters
were removed, the remaining ones also showed a small range of ICs. This may be due
to the patients having fewer phenotypes, most of which had more specific child terms,
even after filtering (Table 3), in line with the DsI values of 0 and lower patient level IC
values (Supplementary Figure S2), all indicative of these patients having, in general, small
phenotypic profiles consisting of unspecific HPO terms.

3.4. Comparing Phenotype Profiles to Cluster Patients into Phenotypically-Related Subgroups

After removing poorly-phenotyped patients, it was possible to analyze the cohorts
to identify groups of phenotypically related patients. Cohort Analyzer calculates pair-
wise semantic similarity values between the phenotypic profiles of patients to generate a
similarity matrix. Although three distinct similarity measures can be used (Resnik, Lin
and Jiang–Conrath), here, we present results for the Lin similarity measure. It normalizes
values between 0 (no similarity) and 1 (maximum similarity), allowing the easy calculation
of distance matrices for hierarchical clustering.

Figure 6 shows the semantic similarity matrices for the different cohorts, revealing
the cohort structure and patient clustering for each. There is clearly much less similarity
between most patients within the DECIPHER cohort than the others, in line with the
distributions of similarity values for each cohort (Figure 6D, salmon boxes). Notably, both
DECIPHER and ID/MCA cohorts show a wide range of similarity values, whilst PMM2-
CDG dataset shows a much smaller range, which is unsurprising given the first two are
aimed at a wider range of patients, whilst the latter only contains patients diagnosed with
the same monogenic disease. It should also be noted that the ID/MCA and PMM2-CDG
cohorts have remarkably similar median similarity values (0.63 and 0.69, respectively),
despite being very different in most other ways. This highlights the importance of looking
at the full distribution of similarity values, and taking into account other cohort-related
statistics, rather than simply comparing medians. Returning to the heatmaps, we see clear
clusters of similar patients for the different datasets, although it is difficult to compare the
datasets directly given the differences in total numbers of patients for each.

Finally, we checked the clustering homogeneity for each cohort calculating the average
similarity measure for the members of each patient cluster as shown in Figure 6D, blue
boxes. The DECIPHER dataset showed an increase in average similarity to 0.43, suggesting
a large number of phenotypically diverse patients per cluster. However, ID/MCA cohort
showed the greatest increase average similarity, increasing from a similarity of 0.63 to 0.85.
Conversely, PMM2-CDG cohort showed the smallest increment, from 0.69 to 0.81. These
results suggest that ID/MCA cohort forms close clusters easily due to the very narrow
phenotype spectrum and the small patient profiles, contrary to PMM2-CDG cohort.
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Figure 6. Heatmaps with patient similarity calculated with Lin similarity measure for each pair of
profiles. The coloured column shows the patient groups identified by the clustering algorithm. Only
patients with three or more HPO terms were used to build the similarity matrix. (A) DECIPHER,
(B) ID/MCA, (C) PMM2-CDG. (D) Semantic similarity distribution for each cohort along the whole
dataset (salmon boxes) or averaged for each cluster (blue boxes)

3.5. Genomic Variant Data Analysis

Cohort Analyzer can also perform analysis of genomic variant data. Firstly, it com-
putes various summary statistics, as shown in Table 6, applied to the three datasets included
in this study. We see that variant sizes are much greater for the DECIPHER and ID/MCA
datasets; this is because they contain CNV data, whilst the PMM2-CDG dataset contains
a range of variants affecting a single gene, as such the variant size refers to the PMM2
gene coordinates (GRCh37/hg19 human genome assembly). Despite similar variant sizes,
the DECIPHER dataset covers a larger proportion of the genome than ID/MCA dataset,
in line with it containing a higher number of patients that are more phenotypically distinct.

Cohort Analyzer also includes metrics to analyse the overlap between patient variants.
For this, it determines genome windows named Short Overlapping Regions (SOR), which
consist of genomic regions shared by at least two patients in a given cohort. In the case of
DECIPHER dataset, there are 39,136 genome distinct genomic windows, which are reduced
to 39,109 when Cohort Analyzer establishes SORs, i.e., only including regions that overlap
between patients. In the case of ID/MCA dataset, there are 1597 genomic windows, of
which 1097 can be considered SORs.

With respect to the PMM2-CDG dataset, all metrics present the characteristics of a
monogenic disease. Variant size and affected genome nucleotides agree with the PMM2
gene coordinates and there is only one genome window for all patients.

Furthermore, Cohort Analyzer generates a genome coverage graph showing patient
variant distribution throughout the genome. We show the coverage for the DECIPHER and
ID/MCA cohorts in Figure 7. The human genome assembly versions were GRCh38/hg38
and NCBI36/hg18, respectively. Analysis was not performed on the PMM2-CDG dataset
as only a single gene locus is implicated in these patients.
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Table 6. Cohort Analyzer general summary statistics. The information listed in this table refers to the
patients phenotyped with at least three HPO terms and with characterized genomic variants.

Name DECIPHER ID/MCA PMM2-CDG

Average variant size 5,053,537.45 3,498,347.16 51,524.00
Nucleotides affected by
mutations

2,917,478,733 1,266,576,677 51,524

Number of genome windows 21,578 860 1
Number of genome window
shared by ≥2 patients

21,522 466 1

Mean patients per genome
window

48.59 2.49 27.00

The DECIPHER dataset contains patients with variants affecting virtually all of the
genome, albeit at low coverage is most places, whilst the ID/MCA dataset shows more
defined islands of coverage surrounded by uncovered regions.

Interestingly, there are a number of clear peaks common to both datasets. We ana-
lyzed a number of these regions to confirm if they were related to known diseases, using
the OMIM [35] and Orphanet [36] databases. Microdeletions in many of these genomic
regions are associated with neurological diseases, such as intellectual disability, autism
and schizophrenia [37]. Specifically, microdeletions in the 15q11.2 and 16p13.11 regions
have been associated with idiopathic generalized epilepsy [37]. Peaks in chromosome 15
are in a genomic region containing variants that have also been associated with Prader–
Willi syndrome (15q11-q13 duplication) [38]. Deletions in the 22q11.21-q11.23 region that
corresponds to the peak shown in chromosome 22 have been associated with DiGeorge
syndrome [39]. This is not as marked in the ID/MCA dataset, consistent with DECIPHER
cohort containing more phenotypically diverse patients. In relation to peaks observed for
ID/MCA dataset on chromosome X, a large number of diseases involving this chromosome
have been described with pathological phenotypes including intellectual disability [40],
dystrophinopathies [41] and cardiopathies [42] among others [43].

There are also regions with no coverage in either cohort, for example, the initial base
pairs in chromosomes 13, 14, 15, 21 and 22. This may be due to these genomic regions not
allowing variation for the viability of the organism, because no patients characterised with
mutations in these regions or other limitations. However, more studies are required.

3.6. Using Variant Data to Analyse Patient Clusters

The variant information allows us to infer which genes are affected in the patients.
We can use this information combined with the patient subgroups generated by semantic
clustering to identify functional systems potentially related to the phenotypes for each. As
a case study, we selected the patient subgroups from the DECIPHER and ID/MCA datasets
with highest average similarity to show how the patient phenotypes relate to the functional
systems that the affected genes are involved in. For this, we first obtained a phenotypic
spectrum for the cluster itself, and then we calculated the semantic similarity between
each HPO term in each of the patient profiles with those of the phenotypic spectrum.
This allowed us to see which phenotypes are representative of each cluster, as they will
show high similarity for most of the patients (Figure 8, upper panels). These representative
phenotypes can then be related with the functional analysis results (Figure 8, bottom panels).
For DECIPHER dataset (Figure 8A), the phenotypes are rather heterogeneous and similarity
is not regularly distributed across all patients. On the contrary, for the ID/MCA dataset
cluster (Figure 8B) the phenotypic spectra is shared by all the patients, although one of them
(HP: “Intellectual disability”) is split into grades. This phenotypic spectra is very general
compared to the DECIPHER dataset spectra, in agreement with the functional analysis
results; the ID/MCA dataset cluster only shows protein translation-related categories
(Figure 8D) whereas the DECIPHER dataset cluster shows a range of categories related
to immune system including phagocytosis, complement activation and humoral immune
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response mediated by circulating immunoglobulin (Figure 8C). Previous studies have
suggested a genetic link between the immune system and several top phenotypes for this
cluster including intellectual disability [44], obesity [45] and autism [46].

Figure 7. Genome coverage distribution for (A) DECIPHER (GRCh38/hg38 human genome assem-
bly) and (B) ID/MCA (NCBI36/hg18 human genome assembly). Black vertical bars represent the
end coordinate for each chromosome.
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Figure 8. Columns represents DECIPHER and ID/MCA cohorts top semantic similarity cluster
examples, respectively. (A,B) show heatmaps with the semantic similarity between the patients from
the cluster and the phenotypic spectra of the cluster itself. The patient axis (x) is sorted according to
decreasing semantic similarity with the phenotypic spectra. The HPO axis (y) shows the phenotypic
spectra for the cluster, sorted by average semantic similarity with the patient profiles. The top 20
HPO terms and 40 patients are illustrated. (C,D) show functional enrichment for the genes mapping
to the variants shared by patients in the clusters, performed using Gene Ontology, Biological Process
terms. Nodes represent GO terms, sized according to the number of patient genes annotated with
the given term. The numbers of shared genes between GOs are represented by grey links. The
patient identifiers shown in the heatmaps are randomly generated and bear no relation to the original
cohort identifiers.

4. Discussion

Deep phenotyping is essential to understanding and diagnosing genetic diseases [47].
As such, using a standardized vocabulary of terms, such as the HPO [25], is crucial
for consistent phenotyping. Among its multiple applications, the HPO has been used
to develop different tools for guiding diagnosis [12,13,48] and to understand disease
mechanisms [10,49]. However, nothing currently exists to assess the overall quality of a
cohort annotated using the HPO. We have developed Cohort Analyzer to address this
problem. It can be used to analyse any patient cohort for which phenotypic data is available
in the form of HPO terms, and optionally genomic data in the form of genome coordinates.
Here, we have applied it to vastly different patient cohorts.

More specific terms are linked to higher quality phenotyping [50,51]. Based on this
assumption, we have proposed a new measure, the DsI, to assess phenotype specificity for
a cohort. Applying it to the three cohorts allowed us to show that the PMM2-CDG patients
were phenotyped to a greater depth than the other cohorts. This finding was reinforced by
many of the other statistics and plots produced by Cohort Analyser; the patients tended to
have greater numbers of terms and these terms were less likely to have more specific child
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terms. This is strikingly apparent in Figure 2. The DECIPHER cohort led to a higher DsI
than the ID/MCA cohort, this is unsurprising given that none of the patients in the latter
had been ascribed phenotypes deeper than level 8 in the HPO and also fits with the very
high number of HPO terms with more specific child terms for the patients in this cohort.

Whilst the DSI gives a clear indication of phenotyping depth, it should be interpreted
alongside other summary metrics and plots, such as the “Percentage of HPO terms with
more specific child terms”, as well as the nature of the analyzed cohort. This is because some
diseases are underrepresented phenotypically in the HPO, such as respiratory disorders [52]
and phenotypes related to these diseases may not reach deeper levels.

The PMM2-CDG dataset covers a small number of patients with a severe and rare
monogenic disease. These patients have been followed up extensively and this is clear in
the results of applying Cohort Analyzer. Deep phenotyping is crucial to better understand
this disease and distinguish patients from each other to identify subgroups and patterns.
On the other hand, both DECIPHER and ID/MCA cohorts cover a much wider range of
patients in terms of both phenotypes and genetic causes.

We have also shown the importance of a minimum phenotype profile length. Many
patients in the DECIPHER and ID/MCA datasets were described with a single HPO term.
Though these were generally unspecific, there were some exceptions in the DECIPHER
cohort, such as patients ascribed only HP: “Median cleft lip and palate”, at the 13th
HPO level. According to Orphanet, this phenotype has been frequently associated with
different genes and described in many diseases, such as Loeys–Dietz syndrome [53] and
the autosomal dominant Robinow syndrome [54], both of which occur alongside other
phenotypes. As such, this phenotype on its own is insufficient to either aid diagnosis or
help interpret the genetic variants for this patient.

The ID/MCA cohort is described as a group of patients with both intellectual disabil-
ity/developmental delay (ID/DD) and multiple congenital anomalies (MCA) [24]. These
pathologies co-occur alongside multiple additional phenotypes, as such the cohort can be
considered phenotypically heterogeneous, such as DECIPHER. Nevertheless, two thirds
of the ID/MCA patients were described with two or fewer phenotypes. Combined with
the low specificity of phenotypes in this cohort, as shown by its DsI of 0, it suggests that
some of these patients may actually suffer from additional phenotypes that they have not
been assigned. Most of these patients were described with HP: “Cognitive impairment”,
a pathological phenotype that frequently appears related to patients with ID [55,56] and
MCA [57,58]. This term actually has 26 descendant terms within the HPO hierarchy. DECI-
PHER cohort also had a large number of patients ascribed unspecific terms with multiple
descendants, as shown in the Naïve clustering analysis (Figure 5). However, the filtering
of patients with fewer than three phenotypes removed many of these patients, and this
improved the dataset in terms of the DsI and other parameters. This filtering step was
particularly important for the next stages of the analysis, looking for subgroups of pheno-
typically similar patients and relating phenotype information to the genomic variants of
these patients. Interestingly, the semantic similarity clustering to find patient subgroups
led to very similar clusters for the ID/MCA group, however it is likely that this similarity
is due to the patients having small and very general phenotypes, and tempting to speculate
that deeper phenotyping of these patients might reveal difference within the clusters.

In terms of the cohort-wide variant coverage, the ID/MCA and DECIPHER datasets
showed multiple shared peaks, in line with previous studies showing that some of common
phenotypes in the cohorts can be caused by a range of variants [59–61]. This suggests that
the pathologies of these patients may have overlapping genomic causes. A such, we might
expect more similar phenotypic profiles, however, as stated before, the DECIPHER patients
tended to be assigned a greater number of deeper phenotypes. This has an important
impact on the ability to link phenotypes with genes and functions based on shared variants
between phenotypically similar patients, as shown by the stark contrast between the results
in Figure 8.
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There may be other reasons for these overlapping peaks, and it should be made clear
that these peaks, as well as the summary statistics related to the genomic data, should be
interpreted in terms of the technology used and type and size of variant being investigated.
The use of variant data from control groups such as individuals from the 1000 genomes
project [62], or structural data from resources such as the Database of Genomic Variants [63]
could be analyzed alongside the patient cohort, to look for differences. Moreover, tools
such as CNVxplorer could be used to help locate specific regions of interest [64].

One way to improve the phenotyping of patients would be to review each of the
cohorts and apply additional diagnostic tests to find more specific terms. An important
consideration to keep in mind regarding phenotyping of patients is that they evolve with
the patient; a child up to five years can be classified with HP: “Global developmental delay”,
but from this age it will be classified with HP: “Intellectual disability”. This can potentially
lead to a less informative phenotypic profile if not accompanied by additional phenotypes.
Therefore, evaluating the evolution that the phenotypes follow could also be an important
factor when characterizing patients and should be taken into account when assessing
phenotyping quality. This can also happen with certain organs that stabilize over time,
such as some liver disorders [65] and protein-losing enteropathy [66]. These pathologies
can improve over time and disappear. However, their relationship with the genotype
depends on whether or not it was ever in the patient history. Dysmorphic features can also
change over time [33]. For this reason, children are mostly annotated with phenotypes such
as HP: “Retrognathia”, but when they become older are re-annotated with HP: “Mandibular
prognathia”. Interestingly, the most common phenotypes in the PMM2-CDG cohort, aside
from HP: “Cerebellar Atrophy”, are largely related to dysmorphism. These can complement
more classic disease phenotypes such as those related to neurodevelopment. Further work
could investigate the subgroups for this cohort to see how the different dysmorphic features
cluster with other phenotypes. This can give additional insights into the disease and help
orientate future study.

A limitation of the tool is that patients must be phenotyped using HPO terms. How-
ever, as text mining analysis of electronical health records (EHR) improves and becomes
more commonplace, this is likely to become less of a barrier. In fact, our tool could po-
tentially be used to aid the development of these techniques. Nowadays there is a strong
research effort focused on translating EHR to standardized vocabularies, with multiple
potential applications for patient diagnosis and treatment. An important approach in this
area is the use of machine learning and Natural Language Processing (NLP) techniques
to convert EHR into HPO profiles [67]. Our tool could measure the performance of these
techniques and thus allow researchers to optimize their methodology.

To conclude, this work highlights the need for improved phenotyping in this era
of personalized medicine. We have shown that Cohort Analyzer can help in achieving
this goal, by providing a tool for the analysis of the phenotypic quality of patient cohorts,
identifying generalised problems, sets of patients that could be re-examined, subgroups of
phenotypically similar patients, and relating this information to genomic variant data to
suggest affected underlying functions.
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