
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20913  | https://doi.org/10.1038/s41598-021-00174-0

www.nature.com/scientificreports

Enhancement of extreme events 
through the Allee effect and its 
mitigation through noise in a three 
species system
Deeptajyoti Sen & Sudeshna Sinha*

We consider the dynamics of a three-species system incorporating the Allee Effect, focussing on its 
influence on the emergence of extreme events in the system. First we find that under Allee effect the 
regular periodic dynamics changes to chaotic. Further, we find that the system exhibits unbounded 
growth in the vegetation population after a critical value of the Allee parameter. The most significant 
finding is the observation of a critical Allee parameter beyond which the probability of obtaining 
extreme events becomes non-zero for all three population densities. Though the emergence 
of extreme events in the predator population is not affected much by the Allee effect, the prey 
population shows a sharp increase in the probability of obtaining extreme events after a threshold 
value of the Allee parameter, and the vegetation population also yields extreme events for sufficiently 
strong Allee effect. Lastly we consider the influence of additive noise on extreme events. First, we find 
that noise tames the unbounded vegetation growth induced by Allee effect. More interestingly, we 
demonstrate that stochasticity drastically diminishes the probability of extreme events in all three 
populations. In fact for sufficiently high noise, we do not observe any more extreme events in the 
system. This suggests that noise can mitigate extreme events, and has potentially important bearing 
on the observability of extreme events in naturally occurring systems.

The emergence of extreme events in the dynamical evolution of systems ranging from weather1 to power grids2,3 
have catastrophic implications. So understanding the underlying mechanisms that may trigger extreme events 
have commanded considerable recent research interest4. An extreme event may be defined as an event where 
one or more variables of a system, arising in nature or in the laboratory, exhibits very large deviations from 
the mean value. So the dynamics of the system is characterized by excursions to values that differ significantly 
from the average. Further, though recurrent, these large deviations are rare vis-a-vis the characteristic time 
scale of the system, and their occurrences are aperiodic and uncorrelated in time. Without loss of generality, an 
event is typically labelled ‘extreme’ if a state variable, in the course of its temporal evolution, takes values that 
are several standard deviations away from the average value, thereby signalling dynamical behaviour beyond 
normal variability. Such extreme events have been observed in natural systems such as rogue ocean waves5, 
laboratory systems such as optical systems6, as well as financial phenomena like market crashes7. Interestingly, 
other definitions of extreme events, more appropriate to the context, have also been employed. Notably, in the 
specific important problem relating climate change to ecological dynamics, a synthetic definition of extreme 
events involving both the driver and response system is proposed8. However in this work we will employ the most 
commonly used marker for extreme events: namely, recurrent and aperiodic deviations larger than a prescribed 
threshold from the mean value, are considered to be extreme events, with the threshold typically taken to be 3-8 
standard deviations from the mean.

A central direction in understanding extreme events is to find generic mechanisms that can give rise such 
large fluctuations. Typical studies of extreme events have involved stochastic models9,10, for instance random 
walk models of transport on networks11. The emergence of extreme events in deterministic dynamical systems, 
manifested as intermittent large amplitude events, have also been investigated recently. Broadly speaking, the 
statistical features of deterministic systems is an active research direction that can lead to understanding extreme 
events that arise in the context of deterministic dynamics12,13. The search for dynamical systems that yield extreme 
events, without the drive of external stochastic influences or intrinsic random fluctuations, is a focus of much 
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ongoing research effort from the point of view of basic understanding of complex systems14–17. Additionally, 
such probabilistic outcomes in dynamical systems are most relevant in the applied context as well, such as in 
engineering sciences where this direction of research leads to better assessment of risks18.

In this broad direction, in this work we explore the dynamics of a vegetation-prey-predator system, coupled 
through interactions of the Lotka-Volterra type. Importantly, our model system also incorporates the biologically 
significant Allee effect, which is one of the classic phenomena of population ecology. The Allee effect reflects the 
beneficial effects on the growth of individuals arising from conspecific interactions19–21, and has bearing on the 
long-term persistence of a population as a consequence of small size. Further we investigate the effect of additive 
noise in the system, focusing on the role of stochasticity in the emergence of extreme events. In a larger context, 
this research direction also has bearing on the important general question of the emergence of extremely large 
events in deterministic dynamical systems, and the effect of noise on their sustained prevalence.

Our central findings in this work are as follows: the system under Allee effect yields chaotic dynamics. Further, 
it leads to unbounded vegetation growth for sufficiently strong Allee effect. Most significantly, Allee effect aids 
the emergence of extreme events in this three-species chain. Interestingly, we also observe that noise suppresses 
the unbounded blow-up of vegetation induced by Allee effect. Lastly, sufficiently strong noise also subdues the 
extreme events in vegetation, prey and predator populations, thus suggesting a significant natural mechanism 
to mitigate extreme events in population chains.

In second section we present results arising in the model of three interacting species, incorporating the Allee 
effect. In third section we explore the effect of additive noise in the system. We conclude with discussions of the 
scope of our findings in fourth section.

Three‑species food chain model incorporating the Allee effect
Complex systems research in general, and theoretical ecology in particular, has seen intense research activity in 
networks modelling interacting species, often focusing on local and global stability properties22–25. Here we will 
focus on the emergence of extreme events and consider as our test-bed the well-known model for the dynam-
ics of the snowshoe hare and the Canadian lynx populations, based on observed data22. Specifically, the system 
incorporates a three species vertical food chain, consisting of vegetation (denoted by u), prey (denoted by v) 
and predator (denoted by w). Additionally, we will incorporate in this model a term to reflect the Allee effect in 
the growth of the prey. The dynamics of this three species trophic system is described by the following sets of 
coupled differential equations:

The interaction between the vegetation and prey populations is considered to follow the type II functional 
response, described by the function f1(u, v) , where f1(u, v) = uv

1+ku . This well-known functional response is 
characterized by a decelerating intake rate, stemming from the assumption that the consumer is limited by its 
capacity to process food. The parameter k is the average time spent on processing a food item, which is termed 
the handling time in literature.

The interaction of the predator population with the prey is considered to follow the well-known Lotka-Volt-
erra type interaction, described by the function f2(v,w) , where f2(v,w) = vw . Here α1 denotes the maximum 
growth rate of the prey, which is in general a product of ingestion rate with a constant factor ( < 1 ), accounting 
the fact that not all of the ingested resource (vegetation) converted into prey’s biomass. A similar parameter for 
the predator is denoted by α2 . The parameters a, b and c represent the intrinsic growth rates of the three species 
u, v and w respectively. Further, the model allows the predator population to maintain a equilibrium population 
w∗ when the prey concentration is very low. In other words, predator can survive in the trophic system without 
depending on prey.

Importantly, in contrast to work on similar systems26, here we will also explicitly consider the Allee effect. 
Specifically, the Allee effect is considered in growth of the prey by introducing

where θ is the Allee strength parameter representing the critical prey density at which the probability of success-
ful mating would be half. The Allee effect here occurs due to difficulties in finding mates for sexual reproduction 
and A(v) describes the mating success at the low population density27,28. This kind of Allee effect in two and three 
dimensional population models has drawn much research attention19–21,27,29,30.

In this work we consider the parameter values a = 1 , b = 1 , c = 10 , w∗ = 0.006 , α1 = 0.5 , α2 = 1 , k = 0.05
22. We explore the dynamics of the system under varying θ , through numerical simulations using the Runge-
Kutta fourth order algorithm. We have ascertained the stability and convergence of our results with respect to 
decreasing step size.

Our main focus is to explore the dynamical consequences of the Allee effect in the population of the prey, in 
this three-species model system. We will first show that there is a sharp increase in the probability of obtaining 
unbounded vegetation growth beyond a critical value of the Allee parameter. We will then demonstrate that, 
interestingly, the system exhibits chaos as the Allee effect becomes more significant. Then we will move on to 
the central focus of this work, namely the influence of Allee effect on the emergence of extreme events. We will 
explicitly demonstrate that there is a pronounced increase in the propensity of extreme events under increasing 

(1)
u̇ = f (u, v,w) = au− α1f1(u, v),

v̇ = g(u, v,w) = α1f1(u, v) A(v)− bv − α2f2(v,w),

ẇ = h(u, v,w) = α2f2(v,w)− c(w − w∗).

(2)A(v) =
v

v + θ
,
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Allee parameter θ , and also show that the extreme events occur with strikingly different probabilities for the 
different species.

Temporal evolution of the population densities
Our first observation is the emergence of explosive runaway growth in vegetation when the Allee effect is too 
strong, i.e. when the Allee parameter θ is sufficiently large, the vegetation grows in an unbounded manner31. 
In order to quantify this blow-up, we estimate the probability of unbounded vegetation growth from a large 
sample of random initial states, followed over a long period of time. We also ascertain that the estimated values 
are converged with respect to increasing sample size, and thus can be considered to be robust numerically. The 
results thus obtained, for varying Allee parameter θ , are displayed in Fig. 1. It is clearly evident from the figure 
that there exists a critical value of θ , which we denote by θc , beyond which the vegetation has a probability of 
explosive unbounded growth. So in the rest of this work, we will restrict our analysis for the range θ ∈ [0, θc).

Next we investigate the temporal evolution of the population densities. Figure 2 shows representative time 
series of vegetation, prey and predator and the corresponding attractors in 3-dimensional phase space. To broadly 
illustrate the influence of Allee effect, we present this for three values of θ , with increasing magnitude. When 
Allee effect is absent in the prey population i.e. θ = 0 , we observe that all populations fluctuate periodically and 
are confined to a periodic orbit (see Fig. 2a,b). For a larger Allee parameter ( θ = 0.01776 ), the populations of 
vegetation, prey and predator all evolve in an aperiodic manner, as evident in Fig. 2c, with the corresponding 
chaotic attractor shown in Fig. 2d.

On further increasing θ to 0.02475, the size of the chaotic attractor increases, as evident from Fig. 2e,f. There-
fore increasing magnitude of the Allee effect parameter drives the system into a chaotic state from the periodic 
state. To corroborate this observation, we present the bifurcation diagram of the prey population, with respect 
to the Allee parameter θ , in Fig. 3. We observe the onset of chaos through the usual period-doubling cascade, 
initiating at period-4 at θ = 0 . Subsequently, we also observe narrow periodic windows, with period-3 being the 
most prominent one. The most significant implication of this bifurcation diagram is the emergence of chaotic 
dynamics in a very large range of the Allee parameter θ . That is, with no Allee effect or under very weak Allee 
effect the system is periodic, while a strong Allee effect typically induces chaos in this three-species system.

Extreme events induced by Allee Effect
One of the most interesting observations from the time series presented in the section above is the following: 
when the magnitude of the Allee parameter θ is low, vegetation and prey densities are confined to low values. 
However, the predator densities deviate very significantly away from their mean. Now for very small θ the sys-
tem is attracted to a periodic orbit, and so the large deviations are completely correlated with time and occur 
periodically. So they cannot be considered to be extreme events, as they are neither aperiodic, nor rare. But for 
larger θ , both predator and prey densities can sometime shoot up over 7 standard deviations away from the mean 
value. This is evident clearly in Fig. 2c,e where one can see that both predator and prey populations exceed the 
7σ threshold from time to time. The instants at which prey and predator populations exceed the 7σ threshold are 
now completely uncorrelated with time. This is consistent with the underlying chaotic dynamics that emerges 
under increasing Allee parameter θ.

In order to illustrate this, we mark the time instances at which a population exceeds the 7σ threshold, for 
different values of Allee parameter θ . Figure 4 shows this for the vegetation, prey and predator populations. The 

Figure 1.   Probability of unbounded growth of the vegetation population (u) with respect to θ . Here 
an explosive blow-up is considered to have occurred when the vegetation population exceeds a value of 
103 . The probability is estimated from a sample of 103 initial states randomly distributed in a hyper-cube 
( u ∈ [0 : 4], v ∈ [0 : 2],w ∈ [0 : 5] ) in phase space. Interestingly, the slight dip in the estimated probability of 
unbounded growth in the narrow window around θ ∼ 0.031 arises from unbounded orbits co-existing with a 
small set of initial states that evolve to bounded periodic orbits.
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density of points signifying the occurrence of extreme events is clearly the highest for the predator population. 
This indicates that the predator population has the greatest propensity for large deviations. It is also clear that 
vegetation has the least number of extreme events in the same time window. The uncorrelated nature of the 
extreme events is also evident in the scatter of these points, except in the small periodic windows that occur 
for certain special ranges of θ . The increasing density of these points also illustrate the increasing probability of 
extreme events in the populations with increasing Allee parameter θ.

In order to understand the phenomena quantitatively, we first estimate the maximum densities of vegetation, 
prey and predator populations (denoted by umax , vmax and wmax respectively) for varying the Allee parameter θ . 
To estimate this, we find the global maximum of the populations sampled over a time interval T = 1000 , aver-
aged over a large set of random initial conditions.

Figure 5 shows umax , vmax and wmax , for Allee parameter θ ∈ [0, θc) , scaled by their values at θ = 0 . These 
scaled maxima help us gauge the relative change in the maximum population densities arising due to the Allee 
effect. It is evident from our simulation results that the magnitude of the global maximum of vegetation does not 
change very significantly for increasing Allee parameter θ , with its magnitude around θc being approximately 4 
fold the value at θ = 0 . However, the magnitude of maximum prey and predator populations change very sig-
nificantly with respect to Allee parameter θ and exceeds over 10 fold the value obtained for θ = 0.

Figure 2.   Left panels display the time series for the vegetation (u), prey (v) and predator (w) populations in the 
system given by Eq. (1), and the right panels display the corresponding phase space attractor. The Allee effect 
parameter is θ = 0 (a,b), θ = 0.01776 (c,d), and θ = 0.02475 (e,f). The red dashed line shows the mean µ , and 
the black dashed line represents the threshold level of 7 standard deviations above the mean (i.e. µ+ 7σ).
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Figure 3.   Bifurcation diagram of prey populations with respect to Allee parameter θ . Here we display the local 
maxima of the prey population. The parameter values in Eq. (1) are as mentioned in the text.

Figure 4.   Figure marking the time instances at which a population exceeds the 7σ threshold, for different values 
of Allee parameter θ , for the case of (top to bottom) vegetation, prey and predator populations.
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We then go on to numerically calculate the probability density of the vegetation, prey, and predator population 
densities, for increasing Allee effect parameter θ . The tail of this probability density function reflects the influ-
ence of the Allee effect on the probability of obtaining extreme events. To illustrate this, we show the probability 
density function for the prey population in Fig. 6, for three different values of θ . Extreme events are confined 
to the tail of the distribution that lie beyond the vertical red line, marking the µ+ 7σ value in the figure. So it 
is clear from these probability distributions that the Allee effect in prey population promotes the occurrence 
of extreme events as the tail of the distribution is flatter and extends further with increasing Allee parameter θ.

In order to ascertain that the extreme values are uncorrelated and aperiodic we examine the time intervals 
between successive extreme events in the population. Figure 7 (left panel) shows representative results for the 
return map of the intervals between extreme events in the prey population and it is clearly shows no regularity. 
The probability distribution of the intervals is also Poisson distributed and so the extreme population buildups 
are uncorrelated aperiodic events, as clearly evident from the right panel of the figure.

In order to further quantify how Allee effect influences extreme events, we estimate the probability of obtain-
ing large deviations, in a large sample of initial states tracked over a long period of time. We denote this prob-
ability by Pext , and we calculate it by following a large set of random initial conditions and recording the number 
of occurrences of the population crossing the threshold value in a prescribed period of time, with this time 
window being several orders of magnitude larger than the mean oscillation period. This time-averaged and 
ensemble-averaged quantity yields a good estimate of Pext . With no loss of generality, we choose the threshold 
for determining extreme events to be µ+ 7σ , i.e. when the variable crosses the 7σ level, it is labelled as extreme.

This probability, estimated for all three populations is shown in Fig. 8. First, it is clear from Fig. 8, that the 
probability of the occurrence of extreme events is the lowest for vegetation, and the highest for predator popula-
tions, for any value of the Allee parameter θ ∈ [0, θc) . We also observe that, for values of the Allee parameter θ 
lower than a critical value denoted by θuc  the probability of obtaining extreme events in the vegetation popula-
tion tends to zero. Beyond the critical value θuc  , the vegetation population starts to exhibit extreme events. A 
similar trend emerges for the prey population. However, the critical value of the Allee parameter θ necessary for 
the emergence of a finite probability of extreme events, denoted by θvc  , is much smaller than θuc  . So for the prey 
population, a weaker Allee effect can induce extreme events.

Note that some mechanisms have been proposed for the generation of extreme events in deterministic dynam-
ical systems, which typically have been excitable systems. These include interior crisis, Pomeau-Manneville 
intermittency, and the breakdown of quasiperiodic motion. However the extreme events generated by these 
mechanisms occur typically at very specific critical points in parameter space, or narrow windows around it. 
The first important difference in our system here is that the extreme events do not emerge only at some special 
values alone. Rather, there is a broad range in Allee parameter space where extreme events have a very significant 
presence. This makes our extreme event phenomenon more robust, and thus increases its potential observability. 
This also rules out the intermittency-induced mechanisms that have been proposed, as is evident through the 
lack of sudden expansion in attractor size in our bifurcation diagram (Fig. 3) in general.

However, interestingly, the system does have one parameter window where there is attractor widening and 
this gives rise to a markedly enhanced extreme event count. The peak observed in Fig. 8 can be directly cor-
related with a sudden attractor widening leading to a marked increase of extreme event in a narrow window 
of parameter space located near the crisis (see Fig. 9). Additionally, for a narrow window around θ ∼ 0.02 , the 
emergent dynamics is periodic. So the large deviations are no longer uncorrelated, and so they are not extreme 
events in the true sense.

Lastly we notice that the predator population shows extreme events for all values of θ ∈ [0, θc) . So the predator 
population is most prone to experiencing unusually large deviations from the mean. We also observe that the 
probability of occurrence of extreme events in the predator population is not affected significantly by the Allee 
effect. This is in marked contrast to the case of vegetation and prey, where the Allee effect crucially influences 

Figure 5.   Global maximum of vegetation umax (blue), prey vmax (red) and predator (black) populations, with 
respect to the Allee parameter θ , scaled by their values obtained for θ = 0 . Clearly, when Allee parameter θ 
is sufficiently large, the maximum prey and predator populations are an order of magnitude larger than that 
obtained in systems with no Allee effect.
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the advent of extreme events. Also, for the predator population there is no marked transition from zero to finite 
Pext under increasing Allee parameter θ , as evident for vegetation and prey populations.

Effect of noise in the system: mitigation of blow‑ups and extreme events
Most realistic population models are not deterministic, as noise is ubiquitous in nature. So stochasticity must 
be incorporated into the models, since there are many external influences, such as migration, diversity and 
environmental fluctuation, present in the real ecosystem. For instance, in important earlier works the role of 
environmental fluctuation dependent fitness in population dynamics, namely parametric noise, in extinction 
and persistence has been studied32.

In this work, we explore the interplay of stochasticity and extreme events, by investigating the system under 
the influence of additive noise. It is of much relevance to explore if noise has any significant effect on the dynam-
ics, for instance on the unbounded vegetation growth under increasing Allee effect and on the emergent chaotic 
attractors. The other question of utmost interest is the following: does noise mitigate or aid the emergence of 
extreme events. This will be the focus of our investigation in this section.

Figure 6.   Probability Density Function (PDF) of the prey population v, for the system given by Eq. (1), with 
increasing magnitude of θ with (a) θ = 0 , (b) θ = 0.015 and (c) θ = 0.02 . The threshold for extreme event 
µ+ 7σ is denoted by vertical red dashed line.
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Specifically we investigate the dynamics of the three species system (1) under additive random noise ξ(t) , 
given by the following dynamical equations:

where f(u, v, w), g(u, v, w) and h(u, v, w) have the functional forms given in Eq. (1), and ξi(t), i = 1, 2, 3 are 
Gaussian white noises with zero mean and correlation function is given by < ξi(t), ξj(t

′
) >= σδ(t − t

′
)δij for 

i, j = 1, 2, 3 . Here σ represents the strength of the noise. To simulate the dynamics of this noise-driven system, 
we numerically solve the stochastic differential system by the explicit Euler-Maruyama scheme.

First we investigate if the boundedness of the system (3) is affected by the presence of additive noise. Recall 
that the system, without noise, blows up as the magnitude of the Allee parameter θ increases beyond a threshold 
(cf. Fig. 1). Therefore it is important to examine if noise suppresses or enhances the probability of unbounded 
growth in the system under Allee effect.

Figure 10 displays representative results for the probability of blow-ups in the population of vegetation, 
estimated for varying noise strengths σ , for the Allee parameter θ = 0.1 . Note that the system without noise (i.e. 
σ = 0 ) had significant probability of unbounded vegetation growth for this value of θ (see Fig. 1). It is clearly 
evident from the results in Fig. 10 that the probability of blow-ups for vegetation rapidly decreases to zero with 

(3)
u̇ = f (u, v,w)+ ξ1(t),

v̇ = g(u, v,w)+ ξ2(t),

ẇ = h(u, v,w)+ ξ3(t),

Figure 7.   (Left) Return Map of �ti+1 versus �ti , and (right) Probability distribution of �ti fitted with 
exponentially decaying function, where �ti is the ith interval between successive extreme events, where an 
extreme event is defined at the instant when the prey population crosses the µ+ 7σ line (cf. Fig. 2). Here 
θ = 0.024.

Figure 8.   Probability of obtaining extreme event in unit time ( Pext ), with respect to Allee parameter θ , 
estimated by sampling a time series of length T = 5000 , and averaging over 500 random initial states. Here we 
consider that an extreme event occurs when a population level crosses the threshold µ+ 7σ . Pext for vegetation, 
prey and predator are displayed in blue, red and black colors respectively. Note that there exists a narrow 
periodic window around θ ∼ 0.02 (cf. Fig. 9), and so the large deviations in this window of Allee parameter are 
not associated with true extreme events, as they occur periodically.
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increasing magnitude of noise strength. So the presence of noise helps to keep the populations bounded, indicat-
ing the constructive role of noise in the stability of this three species system.

Next we examine how noise influences the extreme events which were observed to emerge in this system in 
the presence of Allee effect. We first examine the temporal evolution of the population densities and their cor-
responding phase-space attractors. In Fig. 11 we display illustrative results of the times series and the phase-space 
attractors of the system governed by Eq. (3), for different noise strength σ . It is observed that when the strength 
is very low ( σ ∼ 10−4 ), all population densities fluctuate in an aperiodical manner and settle down to a chaotic 
attractor, as shown in Fig. 11a. Also extreme events occur in all populations for very low noise strengths, as is clear 
from the figure where the vegetation, prey and predator populations can be seen to cross the µ+ 7σ threshold. 
However with increasing strength of noise, these extreme events disappear from all populations in the system. 
Additionally, the populations are seen to fluctuate in a more regular almost-periodic manner (see Fig. 11b). On 
further increase of the noise strength all populations settle down to a quasi-fixed state, as evident from Fig. 11c. 
This suggests that noise transforms the chaotic behaviour of the system to a noisy fixed point. Importantly, the 
very long time intervals we sampled did not yield a single extreme event. That is, under increased noise strengths 
there is no evidence of extreme events any more, in either the vegetation, prey or predator populations. Thus 

Figure 9.   Bifurcation diagram of prey populations with respect to Allee parameter, in the range 
θ ∈ [0.0189 : 0.0191] . Here we display the local maxima of the prey population. The parameter values in Eq. (1) 
are as mentioned in the text.

Figure 10.   Probability of unbounded vegetation growth in presence of additive noise, with respect 
to noise strength σ . As in Fig. 1, a blow up to be considered to occur when the vegetation population 
exceeds 103 . Here the Allee parameter θ = 0.1 , and the other system parameters are the same as in Fig. 1. 
The probability is estimated from a sample of 103 initial states randomly distributed in a hyper-cube 
( u ∈ [0 : 4], v ∈ [0 : 2],w ∈ [0 : 5] ) in phase space.
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we arrive at the following important conclusion: Noise leads to quasi-fixed (non-zero) populations and the sup-
pression of extreme events in this three species system.

Further, in order to quantify how noise influences the emergence of extreme events, we again estimate the 
probability of obtaining extreme events, Pext , under varying noise strength σ . The results are exhibited in Fig. 12. 
It is clear from the figure that the probability of obtaining extreme events is the lowest for vegetation and the 
highest for the predator population. This is consistent with the observations for the system without noise (see 
Fig. 8). The new significant result here is that the probability of obtaining extreme events decreases to zero for 
increasing the noise strength σ . Therefore in presence of sufficiently strong additive noise, extreme events are 
suppressed in vegetation, prey and predator populations. This points to the novel finding that stochasticity can 
lead to the mitigation of extreme events.

Discussion
In summary, we explored the dynamics of a three-species trophic system incorporating the Allee Effect in the 
prey population. Our focus is on the emergence of extreme events in the system. In particular we address the 
significant question of whether or not Allee effect suppresses or enhances extreme events.

Our key observations are as follows: First, under Allee effect the regular periodic dynamics changes to chaotic, 
as evident from the emergence of chaotic attractors for increasing Allee parameter θ . Further, we find that the 
system exhibits unbounded growth in the vegetation population (a “blow-up”) after a critical value of the Allee 

Figure 11.   Time series and phase dynamics of the system (3) with different σ . (a) σ = 10−4 , (b) σ = 10−2 and 
(c) σ = 10−1 . We keep all other parameters values are same as before except θ = 0.024.
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parameter. The most significant result is the observation of a critical Allee parameter beyond which the prob-
ability of obtaining extreme events becomes non-zero for all three population densities. Though the emergence 
of extreme events in the predator population is not affected much by the Allee effect, the prey population shows 
a sharp increase in the probability of obtaining extreme events after a threshold value of the Allee parameter θ , 
and the vegetation population also yields extreme events for sufficiently strong Allee effect. An interesting open 
problem in this context would be to check the observation that the extreme events in the predator population 
are more pronounced than in prey and vegetation across other models, in order to establish the generality of this 
important trend in a larger class of models.

Lastly we consider the influence of additive noise on extreme events. First, we find that noise tames the 
unbounded vegetation growth induced by Allee effect. More interestingly, we demonstrate that stochasticity 
drastically diminishes the probability of extreme events in all three populations. In fact for sufficiently high noise, 
we do not observe any more extreme events in the system. This indicates that noise can mitigate extreme events, 
and has potentially important impact on the observability of extreme events in naturally occurring systems.

Data availability
Data will be made available on reasonable request.

Received: 9 June 2021; Accepted: 29 September 2021

References
	 1.	 Lubchenco, J. & Karl, T. R. Extreme weather events. Phys. Today 65, 31 (2012).
	 2.	 Kinney, R., Crucitti, P., Albert, R. & Latora, V. Modeling cascading failures in the North American power grid. Eur. Phys. J. 

B-Condens. Matter Complex Syst. 46, 101–107 (2005).
	 3.	 Strogatz, S. How the blackout came to life. The New York Times (2003).
	 4.	 Albeverio, S., Jentsch, V. & Kantz, H. Extreme Events in Nature and Society (Springer, 2006).
	 5.	 Dysthe, K., Krogstad, H. E. & Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008).
	 6.	 Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).
	 7.	 Lillo, F. & Mantegna, R. N. Power-law relaxation in a complex system: Omori law after a financial market crash. Phys. Rev. E 68, 

016119 (2003).
	 8.	 Smith, M. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. 

J. Ecol. 99, 656–663 (2011).
	 9.	 Majumdar, S. N. & Ziff, R. M. Universal record statistics of random walks and lévy flights. Phys. Rev. Lett. 101, 050601 (2008).
	10.	 Schehr, G. & Majumdar, S. N. Universal order statistics of random walks. Phys. Rev. Lett. 108, 040601 (2012).
	11.	 Kishore, V., Santhanam, M. & Amritkar, R. Extreme events on complex networks. Phys. Rev. Lett. 106, 188701 (2011).
	12.	 Balakrishnan, V., Nicolis, C. & Nicolis, G. Extreme value distributions in chaotic dynamics. J. Stat. Phys. 80, 307–336 (1995).
	13.	 Nicolis, C., Balakrishnan, V. & Nicolis, G. Extreme events in deterministic dynamical systems. Phys. Rev. Lett. 97, 210602 (2006).
	14.	 Ansmann, G., Karnatak, R., Lehnertz, K. & Feudel, U. Extreme events in excitable systems and mechanisms of their generation. 

Phys. Rev. E 88, 052911 (2013).
	15.	 Karnatak, R., Ansmann, G., Feudel, U. & Lehnertz, K. Route to extreme events in excitable systems. Phys. Rev. E 90, 022917 (2014).
	16.	 Kingston, S. L., Thamilmaran, K., Pal, P., Feudel, U. & Dana, S. K. Extreme events in the forced liénard system. Phys. Rev. E 96, 

052204 (2017).
	17.	 Moitra, P. & Sinha, S. Emergence of extreme events in networks of parametrically coupled chaotic populations. Chaos: Interdiscipl. 

J. Nonlinear Sci. 29, 023131 (2019).
	18.	 Premraj, D. et al. Dragon-king extreme events as precursors for catastrophic transition. Europhys. Lett. 134, 34006 (2021).
	19.	 Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation (Oxford University Press, 2008).

Figure 12.   Probability of obtaining extreme events in unit time ( Pext ) of the system (3) with respect to the noise 
strength σ . Here we also consider a extreme event occurs when population level cross the µ+ 7σ threshold. Pext 
for vegetation, prey and predator populations are shown by blue, red and black colour respectively.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20913  | https://doi.org/10.1038/s41598-021-00174-0

www.nature.com/scientificreports/

	20.	 Sen, D., Ghorai, S., Sharma, S. & Banerjee, M. Allee effect in prey’s growth reduces the dynamical complexity in prey–predator 
model with generalist predator. Appl. Math. Model. 91, 768–790 (2021).

	21.	 Dennis, B. Allee effects: Population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3, 481–538 (1989).
	22.	 Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 

399, 354–359 (1999).
	23.	 Sinha, S. & Sinha, S. Evidence of universality for the May–Wigner stability theorem for random networks with local dynamics. 

Phys. Rev. E (Rapid Commun.) 71, 020902 (2005).
	24.	 Sinha, S. & Sinha, S. Robust emergent activity in dynamical networks. Phys. Rev. E 74, 066117 (2006).
	25.	 Choudhary, A. & Sinha, S. Balance of interactions determines optimal survival in multi-species communities. PLoS ONE 10, 

e0145278 (2015).
	26.	 Chaurasia, S. S., Verma, U. K. & Sinha, S. Advent of extreme events in predator populations. Sci. Rep. 10, 1–10 (2020).
	27.	 Boukal, D. S. & Berec, L. Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. Theor. 

Biol. 218, 375–394 (2002).
	28.	 Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic 

cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150 (2004).
	29.	 McCarthy, M. The Allee effect, finding mates and theoretical models. Ecol. Model. 103, 99–102 (1997).
	30.	 Scheuring, I. Allee effect increases the dynamical stability of populations. J. Theor. Biol. 199, 407–414 (1999).
	31.	 Choudhary, A., Kohar, V. & Sinha, S. Taming explosive growth through dynamic random links. Sci. Rep. 4308, 1–8 (2014).
	32.	 Roth, G. & Schreiber, J. Pushed beyond the brink: Allee effects, environmental stochasticity, and extinction. J. Biol. Dyn. 8, 187–205 

(2014).

Author contributions
S.S. conceived the problem, D.S. did all the simulations, D.S. and S.S. analyzed the results and wrote the manu-
script together.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancement of extreme events through the Allee effect and its mitigation through noise in a three species system
	Three-species food chain model incorporating the Allee effect
	Temporal evolution of the population densities
	Extreme events induced by Allee Effect
	Effect of noise in the system: mitigation of blow-ups and extreme events
	Discussion
	References


