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Abstract

Community structure detection is an important tool in graph analysis. This can be done, among other ways, by solving for
the partition set which optimizes the modularity scores Q. Here it is shown that topological constraints in correlation graphs
induce over-fragmentation of community structures. A refinement step to this optimization based on Linear Discriminant
Analysis (LDA) and a statistical test for significance is proposed. In structured simulation constrained by topology, this novel
approach performs better than the optimization of modularity alone. This method was also tested with two empirical
datasets: the Roll-Call voting in the 110th US Senate constrained by geographic adjacency, and a biological dataset of 135
protein structures constrained by inter-residue contacts. The former dataset showed sub-structures in the communities that
revealed a regional bias in the votes which transcend party affiliations. This is an interesting pattern given that the 110th
Legislature was assumed to be a highly polarized government. The a-amylase catalytic domain dataset (biological dataset)
was analyzed with and without topological constraints (inter-residue contacts). The results without topological constraints
showed differences with the topology constrained one, but the LDA filtering did not change the outcome of the latter. This
suggests that the LDA filtering is a robust way to solve the possible over-fragmentation when present, and that this method
will not affect the results where there is no evidence of over-fragmentation.
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Introduction

Many problems in science can be abstracted as networks. For

example, in biological sciences, protein structures can be

abstracted as graphs of connected residues [1], metabolic networks

can be created by connecting enzymes by their interactions in a

given pathway [2], or food webs can be created by joining species

with their trophic interactions [3]. Networks are common models

for the Internet [4] and social networks [5]. Any kind of data that

can be summarized into vertices (nodes) and connections (edges),

can be abstracted as a graph. An special case of graphs can be

constructed when one is interested in the correlation among

variables. In this case, a correlation network can be constructed by

assigning each variable to a vertex (or node), and the connections

between are defined by the correlation. Since correlation is a

measure of strength of relationship, the actual correlation value

can be use as a weight in the edge, therefore representing such

relationship. This graph abstraction is useful since allow us to

analyze the relationships using the graph invariants. There are

many such properties, but one of special interest here is the

community structure which represents how the vertices are

arranged in groups densely connected internally and sparsely

connected externally [6].

Many networks have heterogeneous edge densities, which may

imply a community structure. Communities are groups of nodes

whose associations imply new insights in the understanding of a

system [7]. A community can be loosely defined as groups of nodes

that share more among themselves than to the rest of the graph.

The most commonly used algorithm (and the one of focus in this

paper) to detect communities in graphs is the modularity

optimization proposed by Newman and Girvan [8]. In this

algorithm, the modularity score Q is optimized to obtain a

partition scheme. Intuitively, Q evaluates the excess of the number

of edges inside a group against the expected connectivity of a

randomly connected graph with similar properties. It can be

calculated with:

Q~
1

2m

X
vw

Avw{

P
wAvw

P
vAvw

2m

� �
d(Cv,Cw) ð1Þ

where m is the number of edges in the graph, Avw represents the

weight of the edge between vertices v, and w,
P

w Avw and
P

v Avw

are the weighted degree of a vertex (v or w), defined to be the sum

of the edge weights of the adjacent edges for each vertex. Cv and

Cw are communities to which the vectors v and w belong to, and

the d is a binary function where d(Cv,Cw) is 1 if Cv~Cw and 0
otherwise.

This approach has been applied to numerous problems [7,9,10].

Despite its wide use, exact algorithms for modularity optimization

are computationally expensive. Some caveats also exist [7]: One

example is the fact that high Q can be found in random graphs
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[11]. This issue might create either an over-fragmentation of the

graph into smaller communities, or a failure to detect a small

community which size is below a preset resolution limit [12].

Despite these caveats, modularity optimization (and in general

community structure detection) is still an important tool in science

if the confidence in the robustness of the solution can be assessed.

Other methods to re-construct graphs and assess their structure

exist, particularly dealing with high-dimensional data. Methods

such as sparse graphical models [13] and LASSO-type problems

[14] can be applied in graph reconstruction, and sometimes in

community structure detection [15]. However, most of these

methods rely on the assumption of independence of the variables

[14] (or at least that the covariates are not highly correlated [16]),

on the a priori determination of the number and size of the

communities [15], and a full sparcity of the covariation among

traits in the data. These kind of limitations makes these particular

methods of limited in use in correlation networks, where the

covariates are normally correlated, non-independent, and not

completely sparse.

There is no guarantee that a community based on correlation is

actually meaningful. It is posited here that asserting the statistical

significance of a community enhances the odds that such structure

provides insight. An application in protein structures exploring this

with a Cholesky decomposition-based simulation have previously

been shown [1]. After the membership vector is created by the

optimization of Q, a pairwise permutation test is used to evaluate

the statistical significance of each bipartition between modules. If

the test fails, the two modules are merged and the membership

vector is iteratively refined. In this work [1], the performance of

community inference was shown to be high for simulated data.

Let us consider the case of correlation networks, where the

edges are defined as the correlation between two nodes. These

networks are important in biological sciences [1,17–19] and

economics [20,21] since they constitute an intermediate between

topology and the dynamics of the system [22]. Analyzing the

community structures of these networks can help identify clusters

of co-expressed genes causing a disease, or groups of stocks that

are co-varying in the market. It is important to know whether such

clustering partition has any significance. In some cases it is also

appropriate to constraint a graph to a meaningful topology. For

example: let’s define a correlation network as a graph where two

vertices are connected by an edge with a weight determined by the

correlation of a pair of properties. It is also possible to further

define a topologically-constrained correlation graph as a graph

where an edge would exist only if the two incident vertices are

connected by another meaningful property. The extra constraint

in topology will create a sparser graph. Sparser graphs show an

intrinsic level of modularity due to their topologies [23]. This is a

problem if the modularity is inferred on the assumption that the

community structure is dictated by correlation. It has also been

shown that sparser graphs tend to cluster into more modules than

predicted before [24]. Let’s define this effect as over-fragmenta-

tion. In some cases the sparsity caused by the constraint is not

complete; that is, not the majority of entries in the adjacency

matrix are zero. Given this and coupled with the fact that in

correlation networks covariates are correlated and most of them

are not zero, methods that can be more robust against over-

fragmentation (such as LASSO-based and sparse graphical

methods) are not easily applicable.

Here the effect of the topology-constraint in the community

structure detection by modularity (Q) optimization is analyzed,

and a strategy to mitigate the over-fragmentation is proposed.

Such an effect will be evaluated in a simulation, a protein dataset,

and in the 110th US Legislature roll-call votes. In the first two

cases, the additional property or constraint property, will be the

contact between points in the simulation or residues in the protein.

For the roll-call votes, the constraining property is the geographic

adjacency of the state of origin of each senator.

Results and Discussion

To compare with the topology-unconstrained simulations in [1]

a shape-structured simulation using Cholesky decomposition (See

Methods) is developed. The simulation uses two contiguous letters

‘‘H’’ (Figure 1) to create a heterogeneous shape. The topology

constraint is based on contacts since the points in simulation lay on

a unit grid. The shape was chosen since it creates a point of

contact between the two clusters as well as bottlenecks of contacts

which make it a more difficult clustering problem for the topology

constraint.

Table 1 shows the results of the performance (mean F-score 6

standard deviation; refer to Methods for details) of the methods in

[1] in a topology (contacts) constrained simulation. As can be seen,

the results here differ from that in [1] simulations, which has no

contact constraints. It appears that the reduced number of edges,

given the constraint, creates an over-fragmentation by the

modularity optimization that cannot be corrected by the 95%

confidence permutational t-test reported by [1].

Addressing the over-fragmentation problem: Linear
discriminant filtering

Linear discriminants are a standard multivariate statistical tool

to reduce the dimensionality by finding a suitable linear subspace

in which the the groups or classes are optimally separated by

maximizing the variance between groups while minimizing the

intraclass variance. It has been commonly used as a preprocessing

step in pattern recognition systems [25] and is commonly used in

other sciences to explore the variate space to find shared properties

of samples and variables [26]. It is based on a linear model where a

given dependent variable can be explained by a linear combina-

tion of factors given by the independent variables. Such factors can

be a clustering scheme itself. By providing a membership vector

derived from the optimization of the modularity score, the linear

discriminant analysis (LDA) will provide a set of linear discrim-

inants that better fit the data. Such linear discriminants can be

analyzed for the differences between groups. When the differences

between groups are not large enough given a particular clustering

Figure 1. Starting shape for simulation. Letters and colors
represent the true clustering. The chokepoints (gray arrows) create
weakly linked sub-clusters that should not be fragmented.
doi:10.1371/journal.pone.0113438.g001
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scheme, some collision between classes may occur in which case it

can be hypothesized that there is not enough information in the

data to support their separation.

After obtaining the membership vector for a topology-

constrained dataset, and before performing significance testing as

explored in [1], a filtering step is introduced using LDA:

1. Given the membership vector of the modularity optimization,

fit the data to the grouping using LDA.

2. Using the first two linear discriminants find the 95%

confidence ellipses of each group.

3. Determine if there is a collision between all pairs of ellipses.

4. Merge groups if a collision is found.

The Methods section contains the details for each of these steps.

Table 2, shows the results of 20 replicates of the simulation of

topology-constrained correlation networks with the implementation

of LDA filtering. As can be seen, the improvement is significant

(Mann{WhitneyU : 5287314:000; p{value : v0:0001) obtain-

ing the true answer in most cases (even in intra-community

correlations as low as 0.15). Is important to keep in mind that our

simulations also include correlation between clusters (inter-commu-

nity correlation) drawn from a random uniform distribution with

minimum of 0 and maximum of 0.1. This means that the

discrimination with the LDA filtering is robust even with correlation

noise.

Despite the usefulness of the LDA in topology-constrained

correlation network analysis, it is important to state that in a fully

or nearly-fully connected graph, LDA tends to cluster everything

in a single group. This is particularly true when the variance is

small (data not shown). However, as shown in Table 2, LDA

dramatically increases the performance when there is a topology

constraint in the graph.

Case studies
Now some case studies that have been analyzed previously

[1,27] will be considered. In this section it will shown how there

are some real cases in which a topology-constrained correlation

network community structure is over-fragmented. It is also shown

how LDA can address fragmentation without systematically

merging every partition scheme.

Voting in the United States 110th Senate. A great effort

has been placed into analyzing the political partisanship in the US

congress, particularly on how polarized Legislatures can influence

the voting on non-particular issues [28]. In the 110th Legislature

of the United States, in the second government of G.W. Bush, the

polarization was evident. It has been suggested that in highly

polarized Legislatures the representatives tend to vote more

strongly with their party. Figure 2 shows that not only the

polarization played an important roll. In Figure 2a, it is evident

that the vote of individual representatives fell along party lines.

Each color represents the cluster and the party, with the exception

of the independent representatives whose votes are indistinguish-

able from the Democrats, and Senator Snowe, that despite being a

Republican voted more similarly to Democrats. Figure 2a). If this

correlation graph is constrained to geographical adjacency (i.e.

neighboring states), the clustering is modified. In Figure 2b six

clusters are found. The singleton (black node) corresponds to

senator Nelson, a Democrat representative the Republican

dominated region of Florida (South USA; Figure 3). Nodes in

cyan and magenta correspond to Alaska and Hawaii, which have

no neighbors. The yellow cluster includes Maine and New

Hampshire senators who (as can be seen in Figure 3) are

Republicans in a Democrat/independent neighborhood. When

the LDA prefiltering is used (Figure 2c), the clusters corresponding

to Hawaii and Alaska are merged with the blue cluster which

mainly contains Democrats, while Alaska had a Republican

representation. However in Figure 2a, the Alaskan representatives

had a voting profile closer to the Democrat along with Senator

Collins (Maine), Senator Specter (Pennsylvania) and Senator

Smith (Oregon), who were also Republicans with an intermediate

voting profile between Democrats and their party. In figure 2c,

Senator Collins (Maine) and Senator Specter (Pennsylvania)

actually cluster with a few other Republicans and Democrats

following a neighborhood voting profile. Despite polarization,

there is still a neighborhood signal driving some of the votings.

However, most Republicans and Democrats have a clear partisan

profile of voting, and the differences rely on particular bills and

motions that might have a regional scope.

In this example it can be seen that after the LDA filtering, the

number of clusters obtained is reduced. Given the results of the

simulation show that the heuristic to optimize Q does over-

fragment the graph, the observed reduction is likely a more

accurate description of the community structure giving a regional

focus. The LDA filtering proposed here have no information of the

topology constraint, therefore the results shown in this section

demonstrate that there is a geographic signal in the US votes, and

that does not follow a party-strict pattern. In this particular case,

the correlation graph in Figure 2a shows that the polarization

plays the major role, splitting most Democrats and Republicans in

different groups. However, Figures 2b and 2c show that a regional

bias remains in some of the motions voted.

a-Amylase homologs sub-domain architecture. In

Hleap et al. [1], a dataset of 85 protein structures was analyzed

to find a sub-domain architecture. They found four significant

clusters, one of which comprises the minimum functional TIM-

barrel [1]. In this manuscript that search has been broaden

gathering 135 structures. To show a biological application of the

LDA prefiltering, the algorithm described in [1] without contacts

restrains was performed, with inter-residue contacts constraint,

and the latter with LDA pre-filtering. Figure 4 shows the results

for this case, where each color represents a cluster of residues

within the protein. In the absence of contact restrains (Figure 4a)

bigger clusters are found. Some clusters are made of disconnected

components (orange cluster). There are significant smaller clusters

than in the other cases (Figures 4b and 4c), and the biological

meaning for the lack of contiguity is obscure. It can be ascribed

that disjoint components in a cluster reflect a higher level

community, which is not interesting from a protein modularity

perspective. Figure 4b, shows the result for the same algorithm,

when considering topology constraint based on the inter-residue

contacts. Here, more sensible results are gathered returning the

minimal functional TIM barrel topology obtained in [1] (yellow

cluster). Figure 4c corresponds to the same topology-constrained

network in Figure 4b, but with LDA pre-filtering, however the

result is identical. This suggests that the LDA-filtered community

structure at the protein level is strong and significant enough to

avoid merging. This observation makes sense since Hleap et al. [1]

were testing for correlation among residues and this information

can be correlated with the contact between them. It is also

important to state that when no over-fragmentation occurs (like in

this particular dataset) LDA will not affect the result.

Conclusions

Here, by means of structured simulations, it is shown that

topological constraints in a correlation network can lead to over-

fragmentation, which supports the claims in [24].

Community Detection in Correlation Networks
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It also has been shown that topological constraints can be used

to mine correlation graphs to obtain particular insights. The Roll-

Call voting results demonstrate that there is a more complex

structure than partisan politics alone, and in the LDA-filtered

graph there is less fragmentation than in the non-filtered one. The

inter-residue correlation network in protein structures needs to be

considered with contacts to obtain biologically meaningful results.

This can be a problem if artificial fragmentation is being created.

However, it has been shown that LDA filtering does not merge

Figure 2. Networks of correlations of roll-call votings in the 110th US senate. 2a: Correlation network without state neighborhood
constrain and without the use of LDA pre-filtering; 2b: Correlation network with state neighborhood constrain but without the use of LDA pre-
filtering; 2c: Correlation network with state neighborhood constraint and using of LDA pre-filtering. The nodes are colored by cluster and each party
is denoted with a given shape. Triangle: Independent; Square: Republican; Circle: Democrat. Letters inside nodes represents some senators names
mentioned in text. S: Snowe; N: Nelson (FL); G: Smith (OR); Collins (ME); P: Specter (PA).
doi:10.1371/journal.pone.0113438.g002

Figure 3. 110th US Congress Senate. USA map colored by the party
who holds the seats in the 110th Senate (between January 3, 2007, and
January 3, 2009). Blue: fully Democratic state; Red: Fully Republican
state; Purple: Half Republican, half Democratic; Striped blue: Indepen-
dent senator. Image taken from http://commons.wikimedia.org/wiki/
File:110th_US_Congress_Senate.svg.
doi:10.1371/journal.pone.0113438.g003

Figure 4. a-amylase homologs. Clusters (modules) found in an
extension of the modularity inference performed in [1], inclusing 135
homologs of the catalytic domain of the a-amylase. a) Modules inferred
without constraining the topology with inter-residue contacts. b)
Modules inferred constraining the topology in A with inter-residue
contacts. c) Modules inferred by prefiltering the results in B, before
significance testing.
doi:10.1371/journal.pone.0113438.g004
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clusters that were found to be meaningful in the first place.

It can be argued that other methods, such as sparse graphical

models and LASSO-based methods [15,29], exist to cope with the

over-fragmentation in sparser graphs. However, correlation

graphs normally do not fulfill the assumptions of such methods

like independence of the variables, a priori knowledge of some

community properties, and a high degree of sparceness of the

covariation among variables. Furthermore, optimization of Q has

been an important tool for community detection in graph theory.

Solving the problem of over-fragmentation by LDA and statistical

testing is an important contribution to the study of correlation

graphs in a data-driven way, without the need of a model, and

where the distributional properties of the variables are not the

main driving force of inference.

Methods

Multivariate normal structured simulations
To create the true clustering shown in Figure 1, the same

approach done in [1] non-structured or topology-unconstrained

simulations will be applied. However, to retain the shape

(topology), the following procedure will be done:

1. Create a 1|k vector with original shape coordinates (k).

2. Create a n|k shape matrix, where each row is a repetition of

the vector in the previous step. n is the number of desired

samples.

3. Obtain a n|k multivariate normal (MVN(0,U(0,1))) matrix

as performed in [1].

4. Create a k|k correlation matrix following the structure of

each true module.

5. Perform the Cholesky decomposition on the random matrix

(multivariate normal matrix) as explained in [1].

6. Sum the factorized random (and therefore now correlated) and

shape matrices.

For the Cholesky decomposition, the intracorrelation in both

clusters was controlled, starting in 0.15 to 0.95, in 0.05 increments.

The intercorrelations in between clusters were drawn from a

uniform distribution (U(0,0:1)). Given that [1] showed that 500

samples were enough to resolve most of the correlations, only as

many samples were used.

This simulation was repeated 20 times for each intracorrelation

pairs.

Performance measure
To quantify the performance of the simulation, an F-Score was

calculated as:

F{score~2
Sn|Sp

SnzSp
ð2Þ

where Sn stands for sensitivity which can be expressed as TP
TPzFN

;

and Sp stands for specificity which can be estimated as TP
TPzFP

.

In all cases, TP are the true positives, FN are the false negatives,

and FP are the false positives.

The results of the 20 simulations are summarized as the mean F-

score 6 the F-score standard deviation for each intracorrelation

pair.

Contact definition
In structured (shape-defined) datasets, a contact matrix can be

inferred. Each point in a given configuration is said to be in

contact with any other point in the dataset if the distance between

a given pair is not greater than one unit plus the standard

deviation of the simulation. This holds true only if the shape being

constructed lays on a grid of one unit per square cell (like ours

does). In the Roll-Call voting dataset, the contact was defined as

touching (neighbors) states. In the case of the protein dataset, the

contact matrix was inferred as in Hleap et al. [1].

Filtering the Q optimization output
The output of the modularity (Q) optimization developed by [8]

is a membership vector. Here as in [1], the optimization is

performed using a fast-greedy algorithm, which has been shown to

be a good and fast heuristic for the optimization of Q [30]. After

such a membership vector is obtained, the refinement proposed by

[1] can be performed. However, some over-fragmentation may

occur when a topology-constrained graph is used. To deal with

this issue, here it is proposed a Linear Discriminants (LD) pre-

filtering of the modularity membership vector.

Linear Discriminant Analysis (LDA). The LDA for the

present paper was performed using the lda function available in

the package MASS [31] in R [32]. Here the fit will be done

between the correlation magnitude matrix (as performed in [1]),

where each entry row/column corresponds to each variable, and

each entry is the magnitude of the correlation vector as the square

root of the sum of squared correlations in each dimension (X, Y for

2D, and X, Y, Z for 3D). The latter two cases are generalizations

of the simpler case of one dimension in which case the data is the

n | n correlation matrix, n being the variables in the dataset. In

any of the cases, a fisher transformation and a significant test of the

correlation is performed, as suggested in [1]. This data matrix is

the same matrix that represents the graph, where the non-zero

entries correspond to an edge and the actual value represents the

weight of that edge.

Collision test and membership refinement. After the first

two LD are obtained, a 95% confidence ellipse is computed. Here,

the package ellipse [33] implemented in R [32] is used to compute

the ellipses. After the ellipse have been estimated, a collision test is

made. A point will be inside or at the edge of any given ellipse if

the following inequality [34] is satisfied:

(x{h)2

r2
x

z
(y{k)2

r2
y

v~1 ð3Þ

where x and y are the coordinates of a given point, h and k are the

coordinates of the center of the ellipse, and rx and ry are the semi-

minor and semi-major axes of the ellipse.

If the inequality in equation 3 is satisfied, the two ellipses are

colliding and therefore the groups/classes they represent should be

merged, otherwise the groups are not touched.

With this approach some of the over-fragmentation created by

the lost of edges in a topology-constrained network might be dealt

with.

Case studies datasets
Voting in the United States 110th Senate. The Roll-Call

voting of 110th United States Senate (available online at [35] or in

Supporting Information File S1) was used to construct the

network. First a data matrix is created where each row represents

each senator and each column represents a vote for a given motion

or amendment. With that data matrix a correlation matrix J is

created, where each entry have been tested for significance using a

Z test of a fisher transformation of the correlation. If the

significance test failed, the corresponding entry is set to zero,
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otherwise the correlation value is recorded. Let S~(N, f ) be an

undirected graph, where N is a list of nodes (senator) and f is a

function f : N|N? that assigns an edge weight to each senator

pair. An edge Eij is assigned only if Jijw0. To create a topology-

constrained graph a fixed topology accounting for neighboring

states is applied to the edge assignment as an extra condition. In

the topology-constrained weighted network, an edge will be drawn

only if Jijw0, and if the senators represent neighboring states.

This constraint will allow to test the hypothesis if there is any

subdivision that is determined by the geography more than by only

party affiliation.

a-Amylase structures homologs. The a-Amylase-like

family catalyzes the hydrolysis of a-(1,4) glycosidic bonds of

polysaccharides, therefore being classified as glycoside hydrolases

[36] in the family 13 [37]. It is a multi-reaction catalytic family

since its members can catalyze different reactions (hydrolysis,

transglycosylation, condensation and cyclization) [38]. All mem-

bers of this family share a symmetrical TIM-barrel ((b=a)8)

catalytic domain [39], including those without any catalytic

activity [40]. This fold is highly versatile and widespread among

the structurally characterized enzymes, being present in almost

10% of them [41–44]. There has been a debate about the type of

evolution that this fold has been through: convergent, divergent or

a mixture of both mechanisms [41]. However, there is some

evidence suggesting the divergent evolution hypothesis is the most

likely [42]. The catalytic activity and substrate binding residues

occurs at the C-termini of b-strands and in loops that extend from

these strands [39]. The catalytic site includes aspartate as a

catalytic nucleophile, glutamate as an acid/base, and a second

aspartate for stabilization of the transition state [45]. The catalytic

triad plus an arginine residue are totally conserved in this family

across all catalysis-active members [37].

In [1], the protein structures belonging to the a-Amylase

catalytic domain were gathered from the Homstrad database [46]

and these seeded a Blast search restricted to the protein data bank.

Here, the search is broaden by seeding a PSI-BLAST [47] search

with a PFAM [48] seed alignment of a-Amylase structures (PFAM

code PF00128). The PSI-BLAST search was restricted to

structures available at the protein data bank (http://www.rcsb.

org/pdb/). There were in total 135 structures gathered which

homology and membership to the a-amylase family (the Glycoside

Hydrolase Family 13, GH13) was guaranteed (Available in File

S1).

Those 135 structures were aligned using the algorithm proposed

by [49] that modifies the pairwise MATT flexible structure aligner

[50] to complete the multiple structure alignment.

After the alignment, the procedure explained in [1] was used,

where the coordinates of the centroid of homologous residues are

recorded in a data matrix. The graph construction is performed as

before, but one correlation matrix is created per dimension, and

then the matrix of magnitudes of the correlation vectors (J) is

computed as the euclidean distance between the three matrices.

Edges will be assigned, as before, if two residues correlate and if
they are in contact in the structure (topology constraint).

Supporting Information

File S1 Data File. The data is available as supporting

information as a compressed TAR file named File S1.tar.gz

containing the files Amy135.gm and sen110kh.2008.USA.roll.call.txt.

File sen110kh.2008.USA.roll.call.txt. It contains the informa-

tion of the Roll-Call votings in 2008 for the US Senate. This

information is available also in VoteView [35]. The file is space-

delimited text file where each line represents a Senator. The first field

corresponds to the Senator’s code, followed by the state they

represent. After the state, a number indicating party affiliation,

followed by the lastname of the Senator. The last field correspond to

the Roll-Call votes. File Amy135.gm. It contains the centroid

coordinates in a semicolon-delimited format. In this format the first

field correspond to the name of the structure and the X, Y, and Z

coordinates for the centroid of each homologous aminoacids are

stored sequentially. There is one line per structure (135 in this

dataset), and 3 times the number of homologous residues coordinates

entries.

(GZ)
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