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Abstract

Objectives: The study aimed to propose a multimodal model that incorporates both macroscopic and microscopic images
and analyze its influence on clinicians’ decision-making with different levels of experience.

Methods: First, we constructed a multimodal dataset for five skin disorders. Next, we trained unimodal models on three
different types of images and selected the best-performing models as the base learners. Then, we used a soft voting strategy
to create the multimodal model. Finally, 12 clinicians were divided into three groups, with each group including one director
dermatologist, one dermatologist-in-charge, one resident dermatologist, and one general practitioner. They were asked to
diagnose the skin disorders in four unaided situations (macroscopic images only, dermatopathological images only, macro-
scopic and dermatopathological images, all images and metadata), and three aided situations (macroscopic images with
model 1 aid, dermatopathological images with model 2&3 aid, all images with multimodal model 4 aid). The clinicians’ diag-
nosis accuracy and time for each diagnosis were recorded.

Results: Among the trained models, the vision transformer (ViT) achieved the best performance, with accuracies of 0.8636,
0.9545, 0.9673, and AUCs of 0.9823, 0.9952, 0.9989 on the training set, respectively. However, on the external validation set,
they only achieved accuracies of 0.70, 0.90, and 0.94, respectively. The multimodal model performed well compared to the
unimodal models, achieving an accuracy of 0.98 on the external validation set. The results of logit regression analysis indi-
cate that all models are helpful to clinicians in making diagnostic decisions [Odds Ratios (OR) > 1], while metadata does not
provide assistance to clinicians (OR < 1). Linear analysis results indicate that metadata significantly increases clinicians’ diag-
nosis time (P < 0.05), while model assistance does not (P > 0.05).

Conclusions: The results of this study suggest that the multimodal model effectively improves clinicians’ diagnostic perform-
ance without significantly increasing the diagnostic time. However, further large-scale prospective studies are necessary.
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Introduction
Skin diseases, as common and prevalent diseases, have a
negative impact on people’s health and quality of life.1

There are thousands of varieties of skin disorders,2 and
there are significant differences in prognosis.3 Accurate
and timely diagnosis is crucial to the diagnosis and treat-
ment of skin diseases. Skin disease diagnosis depends not
only on physical examination results but also on skin
tissue biopsy results (considered the gold standard for
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diagnosing skin diseases),4–7 but dermatologists themselves
require at least 2–3 years of specialist training to differenti-
ate a skin pathology. Therefore, diagnosing skin diseases by
integrating and processing data from multiple modalities is
challenging for both general practitioners and dermatolo-
gists. Furthermore, in China, the dermatologist–patient
ratio can reach 1:60,000; the majority of experienced der-
matologists work in large cities, and general practitioners
have limited knowledge of dermatological specialties.8

Due to the insufficient number of dermatologists and the
wide variation in levels of experience, many cases have
been missed or misdiagnosed, resulting in the clinical diag-
nosis of skin diseases being far less accurate than neces-
sary.9,10 Hence, developing computer-aided diagnosis
(CAD) systems to assist dermatologists in improving effi-
ciency and expertise is of great significance to meet the
needs of medical care.

Most CAD systems currently in use are built using
machine learning or deep learning (DL) methods. Among
machine learning (ML) methods, support vector machines
(SVM) are widely used in constructing classifiers. Celebi
et al.11 proposed an SVM-based method for detecting pig-
mented skin lesions from dermoscopy images. They
applied this method to a dataset containing 564 images
and obtained a specificity of 92.34% and a sensitivity of
93.33%. Maqsood et al.12 proposed a new framework for
detecting skin diseases, which uses neural networks to
extract image features at multiple stages and finally feeds
them into SVM for classification. Results on multiple data-
sets demonstrated that this framework had achieved
state-of-the-art (SOTA) performance. Compared to ML,
DL relies on deep neural networks to automatically
extract features and is receiving increasing attention. The
majority of current DL methods are based on convolutional
neural networks (CNNs).13,14 For example, Binol H et al.15

proposed a deep CNN called Ros-NET for the automatic
identification of rosacea lesions. Abayomi-Alli et al.16

designed an improved data augmentation model for the
effective detection of melanoma. Nawaz et al.17 presented
an improved DL-based approach, specifically the
DenseNet77-based UNET model, for efficient melanoma
segmentation. Their results on the public datasets
ISIC-2017 and ISIC-2018 demonstrate that the method is
robust in skin lesion segmentation and can accurately rec-
ognize moles of varying colors and sizes. In addition,
some studies have also confirmed the excellent capabilities
of CNNs in other skin diseases, such as atopic dermatitis,18

skin cancer,19 onychomycosis,20 and psoriasis.6,21 While
these methods have excellent performance, the limited
receptive fields restrict their ability to extract global features
from images, a limitation that ViT, proposed in 2020,22

compensates for. Sarker et al.23 presented a transformer-
based model for classifying skin lesion and achieved excel-
lent accuracy on the HAM10000 dataset. SeATrans, pro-
posed by Wu J et al.24 also outperformed a wide range of

SOTA segmentation-assisted diagnosis methods in several
tasks. However, the majority of current CAD systems
were based on unimodal data. While a unimodal design
approach has the advantages of objectivity and reproduci-
bility, multimodal data cannot be fully utilized in clinical
diagnosis scenarios using this method.

Clinicians usemultimodal data tomake a diagnosis, under-
scoring the need for multimodal methods. Multimodal fusion
CAD solutions can help models learn complex and compre-
hensive clinical feature representations and fully utilize clin-
ical data from real diagnostic scenarios, thus assisting
clinicians in making accurate diagnoses. In 2018, Yap
et al.25 effectively improved the detection accuracy of five
skin tumors by encoding dermatoscopic and macroscopic
images separately using ResNet5026 and then fusing them
with patient metadata. In 2020, Bi et al.27 proposed a hyper-
connected network, HcCNN, for classifying benign and
malignant skin lesions. They utilized multi-scale attention
blocks to prioritize the semantically more important regions
of the two modalities and achieved an average accuracy of
74.9%. In 2022, Tang et al.28 proposed a multimodal algo-
rithm (FusionM4Net) for multi-label skin lesion classifica-
tion, dividing feature extraction and classification decision
into two stages, and ultimately achieving an average accuracy
of 78.5% on a seven-point checklist dataset. Recently, Tian
et al.29 created a multi-view non-tumorous facial pigmenta-
tion dataset. They then used multi-view CNN to diagnose
these indistinguishable diseases and obtained a great perform-
ance.29 These studies have effectively advanced the progress
of multimodal models in the field of dermatology, but they
solely focused on enhancing model performance and
neglected to carry out additional prospective research.

A few models have been tested in a prospective real-
world setting.10,30–32 For example, Tschandl et al.33 found
that good quality artificial intelligence (AI)-based support
of clinical decision-making, through the interaction of
online test raters with different forms of AI-based decision
support, improves diagnostic accuracy more than either AI
or physicians alone. They also observed that the least
experienced clinicians benefit the most from AI-based
support.33 In 2022, Han et al. reported the first randomized,
prospective clinical trial in dermatology that evaluated the
performance of physicians collaborating with AI.34 They
further verified that AI could enhance the accuracy of non-
expert physicians in real-world settings.34,35 Although these
studies showed AI’s potential for improving the perform-
ance of nonspecialists in diagnosing skin diseases, they
only used dermoscopic or macroscopic image datasets to
train the unimodal CAD systems. However, these CAD
systems may not accurately simulate the behavior of derma-
tologists making diagnoses based on multimodal data. As a
result, the results of prospective studies based on unimodal
models may not be representative of the performance of
multimodal models when applied in real-world settings.
To the best of our knowledge, there are no reported
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prospective studies in the field of dermatology that investi-
gate whether the decisions made by multimodal CAD
systems can truly influence clinician’s decision-making.
In this study, to validate the superiority of the mtultimodal
model in clinical settings, we constructed three unimodal
models and a transformer-based multimodal model using
soft voting strategy. Subsequently, we conducted clinician
testing to measure the impact of various assistance
methods on the diagnostic accuracy and time required for
clinicians with different levels of experience. The main con-
tributions of our study can be summarized as follows:

1. We collected and created a new multimodal dataset,
called HuaqiaoDerm-SD5, which includes 1302 macro-
scopic lesion images, 3056 dermatopathological
images, and patient metadata for five skin disorders:
lichen planus (LP), eczema (Ecz), psoriasis (Pso), seb-
orrhoeic keratosis (SK), and nevus (Nv).

2. We employed a soft voting method to construct a multi-
modal model that integrates macroscopic images (skin
lesion images) and microscopic images (dermatopathol-
ogy images) based on the clinical diagnostic behaviors
of dermatologists. The proposed multimodal model suc-
cessfully mitigates the problem of over-training in uni-
modal models and exhibits excellent performance on
test data.

3. Logit and linear regression models were used to analyze
the impact of different auxiliary methods on clinicians’
diagnostic accuracy and time, and quantitatively vali-
dated the greater superiority of the multimodal model.
This fills a research gap in prospective studies of multi-
modal models in dermatology.

Materials and methods
This section includes: dataset construction, model construc-
tion, clinician study, and statistical analyses.

Figure 1 shows the overall flowchart of this study.

Dataset construction

Data collection. The study was authorized by the Ethics
Committees of Jinan University’s First Affiliated Hospital
and carried out in accordance with the Helsinki
Declaration. Individual consent was waived for this retro-
spective analysis. (Approval number: KY-2023-130;
Approval Date: 2023-03-23).

In order to validate the theoretical analysis suggesting
that the multimodal diagnostic model is superior to the uni-
modal diagnostic model, we selected five common but diag-
nostically challenging skin disorders: LP, Ecz, Pso, SK, and
Nv. This selection aims to provide empirical evidence for
the results of the theoretical analysis. This study retrospect-
ively collected data from 1561 patients who underwent skin
tissue biopsy examinations at the First Affiliated Hospital of

Jinan University from 2006 to 2022, which confirmed the
presence of LP, Ecz, Pso, SK, and Nv, five skin disorders.
Two professional dermatologists from the First Affiliated
Hospital of Jinan University removed the following two
types of images: 1. skin lesions may be partly or entirely
obscured or covered; 2. excessive exudate results in loss
of surface appearance and original texture. Finally, we
obtained 1311 images of macroscopic skin lesions, 3056
histopathological images (containing 1534 high-
magnification dermpathology images and 1522 low-
magnification dermpathology images), and metadata
(including age, gender, and biopsy site) from 1543 patients
for the experiment. The discrepancy between the number of
images and patients is because some patients had images
that did not meet the inclusion criteria and were excluded,
and there were also a few patients with missing images of
one modality. Table 1 displays the distribution of disease
categories and the demographic information of the patients,
respectively. We also present some examples of our dataset
in Figure 2.

DL models require sufficient data for training. However,
to fairly compare the diagnostic capabilities of models and
clinicians, it is necessary to ensure that the images used for
model test and clinician test are the same. Therefore, we
first randomly selected 50 patients (each containing 50
macroscopic skin lesion images, 50 low-magnification der-
matopathological images, and 50 high-magnification der-
matopathological images) from which the modality intact
is used for external validation of the model and for the clin-
icians’ study. The remaining patients are divided into train-
ing and validation sets in a ratio of 9:1. Specifically, there
are 1185 macroscopic skin lesion images, 1375 low-
magnification dermpathology images, and 1386 high-
magnification dermpathology images for training, along with
126 macroscopic skin lesion images, 147 low-magnification
dermpathology images, and 148 high-magnification derm-
pathology images for validation. To prevent potential data
leakage across patients, we implemented secure data storage
protocols and anonymized patient information, ensuring con-
fidentiality. Access to the data was restricted to authorized per-
sonnel only, and all necessary precautions were taken to
protect patient privacy.

Data augmentation. Data augmentation is a method of
increasing the number and diversity of samples. A
category-balanced dataset is essential for training, and an
uneven distribution of samples may lead to bias.
Considering our dataset is unbalanced and exhibits a con-
siderable variation in the number of samples for each
disease category (e.g. there are 441 macroscopic images
of Nv, but only 65 macroscopic images of LP), we
enhanced the dataset used for model training using horizon-
tal flip, vertical flip, rotation, and luminance shift. As shown
in Figure 3, after enhancement, the number distribution of
each disease is relatively balanced.

Zhang et al. 3



Model construction

Constructing unimodal models. To determine the most
appropriate model structure for the three types of
images, we train and validate the convolution-based
neural networks Alexnet, VGG16, ResNet50, and the
transformer-based neural network ViT on their respective
unimodal datasets. In comparison to convolutional neural
networks, the ViT is a novel model architecture intro-
duced by Google researchers that utilizes the attention
mechanism. It divides the input image into patches,
applies position encoding, and subsequently feeds it
into the Transformer Encoder (TE) to determine the inter-
dependence among pixels. The attention mechanism pos-
sesses stronger global modeling capabilities and is
capable of capturing global information more effectively.
Additionally, due to the ability to perform parallel calcu-
lations, the output of each position can be computed
independently, resulting in a significant improvement in
efficiency.

During the training process, to accelerate conver-
gence and prevent overfitting, we adopt the transfer
learning technology by initializing the model with pre-
trained weights from ImageNet. We utilize Adam as
the optimizer with an initial learning rate of 0.0001.
Additionally, we employ an early termination strategy
to prevent overtraining. The training process is termi-
nated when the training loss continues to decrease or
remains unchanged, but the validation loss increases.
We assigned the names model 1, model 2, and model 3
to the trained macroscopic image model, low-

magnification dermatopathology image model, and
high-magnification dermatopathology image model,
respectively.

Construct multimodal model using soft voting strategy.
Multimodal models can process multiple types of images
simultaneously, enabling richer information representation.
Data from different modalities can complement each
other, providing more comprehensive and accurate infor-
mation. Additionally, the multimodal model closely
aligns with the diagnostic behavior of clinicians and
offers better interpretability.36 In this context, we utilized
the soft voting method in ensemble learning to construct
the multimodal DL model for verifying its diagnostic
assistance to clinicians of varying expertise levels
during subsequent testing. We selected the voting
method because it closely approximates the decision-
making process of clinicians, prioritizing more important
image types. Soft voting, unlike hard voting, utilizes the
soft labels outputted by the base learners, providing more
informative data. The structure of the designed model is
depicted in Figure 4. The base learners 1, 2, and 3
represent model 1, model 2, and model 3, which were
trained in the previous section. They are used to extract
features from unimodal data, respectively. The output
probabilities of the base learners are utilized as soft
labels, containing more information regarding disease
categories. Subsequently, these labels are fused using a
weighted average method (as depicted in Equation (1)).
Finally, a softmax layer will be employed to obtain the

Figure 1. Research process flowchart. LM: low magnification; HM: high magnification.
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final result.

Fout = β1 ×Wa + β2 ×Wb + β3 ×Wc (1)

where β1, β2, and β3 represent the weight factors of the
three base learners, respectively. Wa, Wb, and Wc are
the soft labels of the three base learners, respectively.

Clinician study

A total of 12 clinicians participants certified by the
health administrative departments under the State
Council of China participated in this study, including
three director dermatologists (>15 years of dermatology

practice), three dermatologists-in-charge (3–5 years
of dermatology practice), three resident dermatogists
(<3 years of dermatology practice, in the middle of
residency training), and three general practitioners
(3–5 years of general practice). They were divided into
three groups: A, B, and C. Each group contained one
director dermatologist, one dermatologist-in-charge, one
resident dermatologist, and one general practitioner. The
participants included in the three groups were not
duplicated.

Next, to compare the impact of multimodal model and
unimodal models on doctors’ diagnostic decisions, we
established seven different experimental arms. The detailed

Table 1. Demographics and other details of multimodal skin disease dataset (HuaqiaoDerm-SD5).

Category LP Ecz Pso SK Nv

Total (N= 1543) 4.7% (73) 11.9% (183) 27.6% (426) 28.6% (441) 27.2% (420)

No. of images

Macroscopic lesion 56 134 265 415 441

Low magnification dermatopathology 70 171 426 420 435

High magnification dermatopathology 73 183 422 415 441

Gender

Female (N= 707) 49.3% (36) 30.6% (56) 34.0% (145) 63.3% (279) 45.5% (191)

Male (N= 836) 50.7% (37) 69.4% (127) 66.0% (281) 36.7% (162) 54.5% (229)

Age (years)

Maximum 85 94 89 89 69

Minimum 5 9 4 19 4

Mean± SD 42.6± 18.5 46.3± 20.6 38.9± 16.6 55.7± 16.1 30.0± 11.2

Biopsy site

Head and neck (N= 436) 16.4% (12) 13.1% (24) 9.9% (42) 38.3% (169) 45% (189)

Trunk (N= 524) 34.2% (25) 27.9% (51) 44.8% (191) 22.9% (101) 37.1% (156)

Arm (N= 177) 23.3% (17) 15.8% (29) 15.7% (67) 10.7% (47) 4.0% (17)

Leg (N= 406) 26.0% (19) 43.2% (79) 29.6% (126) 28.1% (124) 13.8% (58)

Race

Asian (N= 1535) 97.3% (71) 100% (183) 99.3% (423) 99.5% (439) 99.8% (419)

Non-Asian (N= 8) 2.7% (2) 0% (0) 0.7% (3) 0.5% (2) 0.2% (1)

Abbreviations: LP: lichen planus; Ecz: eczema; Pso: psoriasis; SK: seborrhoeic keratosis; Nv: nevus; No.: number.
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description of these experimental arms is shown in Table 2.
For experimental arms (e, f, g) with model assistance (includ-
ing unimodal models and a multimodal model), we applied
the respective models to the images in the testset to generate
the probability distribution histograms. The relative size
of the probability of each disease in the histogram indicated
the diagnostic confidence of the model, and they sum up
to 1. For macroscopic images, model 1 output the corre-
sponding histograms; for low and high-magnification
dermatopathological images, model 2 and model 3
output the histograms, respectively. For macroscopic
images, low-magnification dermatopathological images,
and high-magnification dermatopathological images, the
model 4 output the corresponding histograms.

Finally, the groups of doctors mentioned above would
read the patient information in the testset across seven dif-
ferent experimental arms and provide diagnostic results.
Specifically, experimental arms a and e were assigned to
group A participants to study the effectiveness of model 1
as a clinical aid. Experimental arms b and f were assigned
to group B participants to study the effectiveness of
model 2 and model 3 as clinical aids. Experimental arms
c, d, and g were assigned to group C participants to inves-
tigate the effectiveness of the metadata and multimodal
model as clinical aids, respectively. The allocation of
image to experimental arms was counterbalanced across
participants, so that each image had approximately the
same number of participants for each arm. It is not strictly
the same because each image was read 12 times (once per
participant) across seven experimental arms. Specifically,
for participants in groups A and B, the readings of individ-
ual images were evenly distributed across the arms because
each image was read two times on four experimental arms
(once per participant). However, for participants in group C,

each image was read four times across the remaining three
experimental arms (c, d, g). Consequently, each image was
read by one reader for two conditions and by two readers for
the third condition.

Before the clinicians’ test began, each participant was
given an introduction on how to perform the specific test.
Participants were asked to diagnose the samples under
various experimental conditions. In addition, they were
told that the diagnostic accuracy was used as a measure
of the outcome, but not the time of diagnosis. Following
the completion of the test by the clinicians, we collected
their diagnostic accuracy and diagnostic time for further
statistical analysis.

Statistical analyses

We used Stata 16.0 statistical software to construct the logit
regression models37 in order to compare and explore the
impact of the model on clinicians’ decision-making. The
dependent variable in the logit models was the participant’s
judgment of the case as true (T) or false (F), represented as
T= 1 and F= 0. Whether the participants used assistance
was selected as an independent variable. The auxiliary
methods consist of model assistance and metadata assist-
ance. Based on this, we established logit regression
models for two conditions: controlling doctor level or not.
Ultimately, we chose the Logit model result with the
highest prediction accuracy under the two conditions as
the final outcome for detailed analysis. Additionally, we uti-
lized linear models to analyze the effect of different auxil-
iary methods on diagnosis time. In linear model, the
dependent variable was the subject’s time to diagnosis,
while the usage of assistance by the participants was
chosen as an independent variable.

Figure 2. Example images from our private multimodal dataset, HuaqiaoDerm-SD5. Five categories of skin disorders are abbreviated as:
LP: lichen planus; Ecz: eczema; Pso: psoriasis; SK: seborrhoeic keratosis; and Nv: nevus; LM: low magnification; HM: high magnification.
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Results

Performance of unimodal model on validation
dataset

The performance indicators of the constructed unimodal
model on the validation set are shown in Table 3. ViT
achieved higher Top-1 accuracy rates than all other
models used for comparison on the macroscopic image,
low-magnification dermatopathology image, and high-
magnification dermatopathology image datasets. The accur-
acy rates were 0.8636, 0.9545, and 0.9673 respectively.
ViT also outperformed other models on the AUC indicator.
ViT achieved AUC scores of 0.9952 and 0.9989 on the low-

magnification dermatopathology image and high-
magnification dermatopathology image datasets, respect-
ively. These scores were 0.18% and 0.30% higher than
Resnet50, the best model in the convolutional neural
network. Additionally, the ViT achieved satisfactory preci-
sion and recall indicators. This demonstrates that the
attention-based model has powerful long-distance modeling
capabilities and can effectively extract image features com-
pared to CNNs. Therefore, we chose ViT as the base learner
to build the multimodal model.

Performance of the models on the testset

Table 4 summarizes the diagnostic accuracy of the uni-
modal models (model 1, model 2, model 3) and the multi-
modal model (model 4) on the testing set. It showed that
model 4 achieved the highest 98% accuracy, followed by
model 3, model 2, and model 1. The result indicates that
the multimodal model was overall better than the unimodal
model at identifying the five skin disorders. The intuitive
reason is that multimodal learning can aggregate informa-
tion from multiple data sources, enabling the model to
learn a more comprehensive representation. Furthermore,
the unimodal models all show some degradation compared
to the metrics on the training set. This indicates that during
the training process, the models may have learned the char-
acteristics of some specific datasets, indicating overfitting.
However, multimodal models can learn more general data
features, effectively alleviating this situation and achieving
better performance.

Specifically, model 1’s overall performance significantly
differed from that of model 4, with the lowest overall accur-
acy. To investigate the specific reasons for the classification
errors, we created a confusion matrix for both models.
According to Figure 5, model 1 primarily misclassified
Ecz as LP or Pso. Additionally, it misclassified three Pso
images as LP. This is likely because these three diseases
have very similar features and can be easily misdiagnosed,
even by dermatologists. Furthermore, a few SKs were mis-
classified as Nv, which also had an impact on the model’s
accuracy. For model 4, only one case of Pso was misclassi-
fied as LP. This result demonstrates that combining infor-
mation from multiple modal images can yield a model
with enhanced feature representation capabilities.

Effect of model assistance on the diagnostic
accuracy of clinicians

The logit model, which controls the type of clinician, had
a higher accuracy of 86.2% compared to the model that
does not control the type of clinician (as provided in
Supplemental Table S1, with an accuracy of 84.3%).
Hence, we chose this model for further analysis. Table 5
shows that all auxiliary methods of the model are beneficial

Figure 3. Image distributions of the dataset before and after
augmentation. Abbreviations: LP: lichen planus; Ecz: eczema; Pso:
psoriasis; SK: seborrhoeic keratosis; Nv: nevus; LM: low
magnification; HM: high magnification.
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for clinicians’ diagnosis (OR> 1), except for metadata,
which does not provide significant improvement (OR< 1).
Among all auxiliary models, the multimodal model 4 had
the highest Logit Coefficient Estimate (2.972) and OR
(19.525), making it the most effective auxiliary method
for clinicians. Dermatopathology models 2 and 3 are also
beneficial for clinicians, although not as effective as the
multimodal model. Macroscopic image model 1 is not as

Figure 4. Structure of the proposed multimodal deep learning model.

Table 2. Table of samples clusters.

Group
number Contents

a Macroscopic images

b Low & high-magnification dermatopathological
images

c Macroscopic images+ Low & high-magnification
dermatopathological images

d Macroscopic images+ Low & high-magnification
dermatopathological images+metadata

e Macroscopic images+ histograms output by
model 1

f Low & high dermatopathological images+
histograms output by model 2 and model 3

g Macroscopic images+ Low & high
dermatopathological images+ histograms
output by model 4

Table 3. The performance of unimodal models on validation
dataset.

Macroscopic image dataset

Accuracy Recall Precision F1 Score AUC

Alexnet 0.8182 0.8562 0.8416 0.8253 0.9654

VGG16 0.8561 0.8533 0.8483 0.8441 0.9722

Resnet50 0.8409 0.8232 0.8765 0.8277 0.9714

ViT 0.8636 0.8648 0.8610 0.8589 0.9823

Low-magnification dermatopathology image dataset

Alexnet 0.9026 0.9071 0.9045 0.8998 0.9872

VGG16 0.9156 0.9082 0.9069 0.9069 0.9911

Resnet50 0.9416 0.9368 0.9400 0.9365 0.9934

ViT 0.9545 0.9560 0.9574 0.9545 0.9952

High-magnification dermatopathology images dataset

Alexnet 0.9150 0.9261 0.9144 0.9159 0.9841

VGG16 0.9477 0.9495 0.9517 0.9499 0.9949

Resnet50 0.9542 0.9579 0.9588 0.9558 0.9969

ViT 0.9673 0.9697 0.9655 0.9666 0.9989
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evidently helpful to clinicians compared to the first two
ways, but it still shows statistical significance (P< 0.05).
However, metadata is not beneficial for clinicians’ diagno-
sis and may even interfere with their decision-making
(Logit Coefficient Estimate < 0). This may be because our
metadata only includes general information such as age
and gender.

Effect of model assistance on the diagnostic time of
clinicians

Table 6 presents the impact of various auxiliary methods on
the diagnosis time of clinicians. Despite the model-assisted

approach providing an additional percentage of diagnostic
confidence for the five skin disorders during diagnosis,
the extra information does not significantly enhance the
clinician’s diagnostic time (P> 0.05). The inclusion of
patient metadata has resulted in an increased diagnostic
time for clinicians (P< 0.05). This indicates that metadata
may not provide valuable information. Although it cannot
significantly enhance clinicians’ diagnostic abilities, it
adds to their workload by requiring them to read this infor-
mation. Furthermore, we calculated the average diagnostic
time for clinicians. According to Table 7, clinicians’
average diagnostic time per patient increased by less than
2 seconds with model assistance. However, with metadata
assistance, it increased by nearly 12 seconds. In conclusion,
the multimodal DL model offers the most remarkable and
efficient improvement for clinicians when considering the
above information. Moreover, this improvement will not
significantly impose additional burden on clinicians.

Benefit from assistance varies with clinician’s
background level

The analysis above revealed that only the dermatopathol-
ogy model 2&3 and the multimodal model 4 were statistic-
ally significant in improving clinicians’ diagnoses. Still, the
effect of these models on improving doctors at different
levels may vary. As shown in Figure 6, the director derma-
tologists could reach 98% diagnostic accuracy without the
aid of dermatopathology model 2&3. In contrast, the resi-
dent dermatologists only achieved 82%. When assisted by

Table 4. Different models’ diagnostic performance in the
five-category classification task.

Accuracy (%)

Catogory LP Ecz Pso SK Nv ALL

Model 1 1.00 0.10 0.70 0.70 1.00 0.70

Model 2 1.00 0.90 0.90 1.00 0.70 0.90

Model 3 1.00 1.00 1.00 0.80 0.90 0.94

Model 4 1.00 1.00 0.90 1.00 1.00 0.98

Abbreviations: LP: lichen planus; Ecz: eczema; Pso: psoriasis; SK: seborrhoeic
keratosis, Nv: nevus.

Figure 5. Confusion matrices of the models and five skin disorders. Figures a and b are the confusion matrices of model 1 and model 4 in
classifying the test set, respectively. The x-axes are the predicted labels, which are the diagnoses made by the model. The y-axes are the
true labels, which are the pathological results. The number in each small square represents the corresponding number of images with the
same predicted true label. Five categories of skin disorders are abbreviated as: LP: lichen planus; Ecz: eczema; Pso: psoriasis; SK:
seborrhoeic keratosis; Nv: nevus.
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the model, the dermatologists-in-charge can attain a level
comparable to that of director dermatologist, with general
practitioners surpassing even the resident dermatologists.

Likewise, the diagnostic accuracy of dermatologists-in-
charge and general practitioners was very low in the
absence of the multimodal model. However, general practi-
tioners improved significantly with the multimodal model
and even outperformed director dermatologists. This could
be due to general practitioners relying heavily on models.
In our test set, general practitioners, aided by the multimodal
model, outperformed even the performance of the director

dermatologist. While this does not conclusively prove that
clinicians of lower seniority can reach the expert level with
the model’s assistance, it does confirm that the model has a
more notable impact on advancing clinicians with lower
seniority.

Discussion
In this study, we quantitatively explored the impact of dif-
ferent auxiliary methods on clinicians’ decision-making by
building models and conducting clinical tests. We found
that among the auxiliary testing methods, multimodal
models can provide clinicians with the greatest assistance,
improving diagnostic accuracy without significantly
increasing the diagnostic time, which is consistent with
the expected results. This trial provides quantitative valid-
ation for the superiority of a multimodal CAD model.

In the medical field, most of the existing networks based
on multimodal fusion are focused on medical images such
as CT, MRI, and ultrasound. For instance, Hao et al.38 pro-
posed a novel multimodal neuroimaging feature selection
method with consistent metric constraints (MFCC) for
Alzheimer’s disease diagnosis based on two types of

Table 5. Logit regression analysis of diagnostic accuracy rates for participants (control clinicians’ type).

Variables Logit coefficient estimate Odds ratio Standard error Z score P value > |Z Score| 95% confidence interval

Intercept 1.821 6.179 0.856 2.128 0.033 1.155–33.05

Metadata −0.827 0.438 0.662 −1.248 0.212 0.119–1.603

Model 1 1.991 7.323 0.744 2.677 0.007 1.705–31.463

Model 2&3 2.497 12.149 0.854 2.925 0.003 2.279–64.769

Model 4 2.972 19.525 1.101 2.699 0.007 2.255–169.018

N= 600; Log likelihood=−218.831; Accuracy= 86.2%.

Table 6. Analysis of participants’ diagnostic time using linear regression.

Variables Logit coefficient estimate Standard error T score P value > |T Score| 95% confidence interval

Intercept 10.971 2.434 4.507 <0.001 6.191–15.752

Metadata 4.569 2.079 2.198 0.028 0.486–8.653

Model1 −3.345 2.072 −1.615 0.107 −7.414–0.724

Mode2&3 1.355 2.072 0.654 0.513 −2.714–5.424

Model4 2.156 2.060 1.047 0.296 −1.889–6.200

N= 600; R2= 0.386; F= 41.234; P(F) < 0.001.

Table 7. Time spent by participants for each type of image
diagnosis.

Mean time spent on task,
seconds

Total no. of
reads

Model 21.172 267

Metadata 31.606 66

Unassisted 19.629 267
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multimodal image data: VBM-MRI and FDG-PET. Liu
et al.39 use a deep learning model to diagnose significant
liver fibrosis in chronic hepatitis B (CHB) patients by inte-
grating ultrasound contrast-enhanced micro-flow (CEMF)
cines, B-mode images, and clinical parameters. These
multimodal data differ greatly from the skin disease
modal data, making it difficult to directly migrate the
models to skin disease diagnosis. Thus, an increasing
number of tasks involve multimodal input in the field of
dermatology. Similar to the findings of Yap et al.,25 Bi
et al.,27 Cai et al.,40 Tang et al.,28 and Tian et al.,29 we all
discovered that the completed multimodal data fusion
CAD systems achieved greater diagnostic accuracy than
single-modality CAD systems. However, Yap and Bi

et al.’s multimodal CAD systems fused patient clinical
images and dermatoscopic images25,27; Cai et al. proposed
a multimodal Transformer that fuses two modalities: macro-
scopic skin lesion images and metadata.40 Tang et al.’s
system fused patient clinical images, dermatoscopic
images, and patient information metadata28; and Tian
et al. combined clinical images captured under different
light sources with nine distinct views29; To date, there is
no multimodal fusion CAD system that fuses modal infor-
mation such as skin pathology and other laboratory examin-
ation data. For the diagnosis of skin diseases, pathological
images can provide characteristic manifestations of dis-
eases, which are vital for the diagnosis of skin diseases,
and can be independent of and complementary to the

Figure 6. Bar graphs showing varying experience level of clinicians’ diagnositic accuracy for cases with five-class skin diseases under (left)
unassisted and (right) model-assisted conditions. Panel a illustrates readers reading LM&HM dermatopathological images, while Panel b
represents reading macroscopic skin lesion images alongside LM&HM dermatopathological images. Each plot breaks down performance
by the reader’s previous experience with skin images: director dermatologists (DD; n= 3), dermatologists-in-charge (DIC; n= 3), resident
dermatologists (RD; n= 3), general practitioners(GP; n= 3). LM: low magnification; HM: high magnification.
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modal information provided by clinical images and dermo-
scopic images. Because skin pathology images provide
information about disease characteristics that other modal-
ities cannot, we included them in the multimodal CAD
model we developed for this study. This, we believe, is
an important reason for our multimodal CAD model’s
excellent performance.

More importantly, after constructing the models, we
further performed clinical quantitative validation of the
models. Previous studies have mostly pitted models and
doctors against each other, with the models and doctors
competing to reflect the models’ diagnostic performance.
According to Hekler et al.,41 a diagnostic model obtained
by fusing human and AI models’ diagnoses could achieve
better image classification than classification by only der-
matologists or only CNNmodels. When dermatologists col-
laborated with the model, the average accuracy increased by
1.36%.41 This implies that figuring out a good way to
combine humans and artificial intelligence could help the
model perform better. In fact, studies have shown that
when various types of models are applied in real-world
scenarios, they often confront both over-reliance (repeating
the model’s errors) and under-reliance (ignoring the predic-
tions of accurate algorithms).42–45 While numerous models
with outstanding performance have been developed and
some are currently in use,46 only a limited number have
undergone testing in real-world settings.10,30–32 Therefore,
more studies are necessary to evaluate the extent of
improvement that can be achieved in clinicians’ diagnostic
results through the utilization of these models.

There are also some limitations to our research. First, the
multimodal model in this study used a weighted fusion
approach. However, there are several other fusion
approaches to the multimodal model, and different
methods may also influence the model’s performance.
The second limitation is that, due to insufficient data for
some rare diseases, our database currently only includes
five skin disorders. However, currently there is no multi-
modal dataset available in public databases of skin diseases
that includes both macroscopic images and dermatopatho-
logical images, so our proposed model cannot be verified
by an external dataset. The third limitation is that the vast
majority of the data we use for training comes from Asian
populations, and the predictions of the algorithms are
heavily dependent on the features of the training data.34

Therefore, they may exhibit uncertainty in different set-
tings, so the accuracy of our deep learning algorithms and
their usefulness in assisting clinicians cannot be generalized
to non-Asian populations.

For future research: (1) Conduct a multicenter study to
increase the size of the dataset by combining patient data
from other hospitals and supplementing data from new
patient visits to include more skin disease categories. (2)
Consider adding further large-scale prospective validation
of the model in future research.

Conclusions
In this study, we collected and constructed a multimodal
dataset consisting of macroscopic images, dermatopatholo-
gical images, and metadata for five skin disorders. We then
developed a new multimodal DL model for the diagnosis of
skin conditions, performed quantitative validation of the
model-assisted effects, and experimentally demonstrated
that the developed model does have better assisted effects
for clinicians. On the basis of these findings, we conclude
that the multimodal model is superior to the unimodal
model when used for both independent and assisted diagno-
sis of skin diseases, providing evidence of the model’s clin-
ical applicability.
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