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Esophageal squamous cell carcinoma (ESCC) is the most prevalent form of esophageal cancer in China and is closely associated with
malignant biological characteristics and poor survival. Ferroptosis is a newly discovered iron-dependent mode of cell death that plays
an important role in the biological behavior of ESCC cells. The clinical significance of ferroptosis-related long noncoding RNAs (FRLs)
in ESCC remains unknown and warrants further research. The current study obtained RNA sequencing profiles and corresponding
clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and FRLs were obtained
through coexpression analysis. Consensus clustering was employed to divide the subjects into clusters, and immune-associated
pathways were identified by functional analysis. The current study observed significant differences in the enrichment scores of
immune cells among different clusters. Patients from TCGA-ESCC database were designated as the training cohort. A ten-FRL
prediction signature was established using the least absolute shrinkage and selection operator Cox regression model and validated
using the GEO cohort and our own independent validation database. Real-time quantitative polymerase chain reaction was used to
verify the expression of the ten FRLs, and the ssGSEA analysis was employed to evaluate their function. In addition, the IMvigor
database was used to assess the predictive value of the signature in terms of immunotherapeutic responses. Multivariate Cox and
stratification analyses revealed that the ten-FRL signature was an independent predictor of the overall survival (OS). Patients with
ESCC in the high-risk group displayed worse survival, a characteristic tumor immune microenvironment, and low
immunotherapeutic benefits compared to those in the low-risk group. Collectively, the risk model established in this study could
serve as a promising predictor of prognosis and immunotherapeutic response in patients with ESCC.

1. Introduction

Esophageal cancer is the eighth most prevalent type of can-
cer and sixth leading cause of cancer-related deaths world-
wide. Regardless of the multidisciplinary approach
employed in the management of esophageal cancer, includ-
ing surgery, chemoradiotherapy, and immunotherapy, the
five-year survival rate remains approximately 20% [1].
Esophageal squamous cell carcinoma (ESCC) is the main

histological type of esophageal cancer, particularly in East-
ern Asia [2]. The median survival of the majority of patients
with ESCC is less than 10 months, owing to the fact that the
disease is often diagnosed at an advanced stage, which poses
a great challenge from a therapeutic perspective [3]. Hence,
there is an urgent need to identify sensitive tumor factors
and new specific biomarkers for precise diagnosis, individu-
alized therapy, and prognosis prediction of patients with
ESCC.
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Ferroptosis is an iron-dependent programmed cell death
induced by the accumulation of lipid-based reactive oxygen
species and was originally proposed in 2012 [4, 5]. Recent
studies have shown that ferroptosis is a significant regulatory
mechanism involved in the growth and development of var-
ious malignancies. Consequently, ferroptosis-related long
noncoding RNAs (FRLs) have been identified as effective
biomarkers for predicting the prognosis of several malignan-
cies, including lung [6], gastric [7], hepatocellular [8], and
breast [9] carcinomas. Moreover, it may be considered that
combination with agents that induce ferroptosis signaling
may improve the antitumor efficacy, especially in clinical sit-
uations involving therapy-resistant carcinomas. Previous
studies have reported that ferroptosis resistance leads to
poor therapeutic efficacy and unfavorable prognosis in hepa-
tocellular carcinoma [10, 11]. Ferroptosis plays a crucial role
in ESCC development. A recent study reported that 5-
aminolevulinic acid induces ferroptosis through the regula-
tion of glutathione peroxidase 4 (GPX4) and heme oxygen-
ase 1 (HMOX1) and exerts antitumor effects in ESCC [12].
Furthermore, another study reported that SLC7A11 inhibits
ferroptosis and induces NRF2-associated radioresistance.
These results indicate that SLC7A11 is a potential biomarker
for ESCC [13]. The mechanism of FRLs in ESCC remains
ambiguous, and further research is required to comprehend
their biological functions.

Long noncoding RNAs (lncRNAs) are non-protein-
coding RNAs with a molecular weight of >200 nucleotides
[14]. Although lncRNAs do not encode proteins, they play
significant roles in the stability and translation of cytoplas-
mic mRNAs and are involved in the regulation of signal
transduction [15]. However, the literature includes few stud-
ies on the function of FRLs in ESCC. This scenario warrants
the identification of FRLs that could serve as biomarkers and
treatment targets.

A previous study demonstrated an in vivo interaction
between the tumor immune microenvironment (TIME)
and ferroptosis [16]. The TIME influences iron metabolism,
and ferroptosis can augment the exposure of tumor antigens,
thereby improving immunogenicity and promoting the effi-
cacy of immunotherapy [17]. Recent clinical trials involving
immunotherapy using immune checkpoint inhibitors (ICIs)
have yielded a major breakthrough, and therapy has pro-
vided carcinoma patients with survival benefits [18]. Wang
et al. reported that CD8+ T lymphocytes may induce ferrop-
tosis in tumor cells in vivo through the downregulation of
SLC7A11 and that ferroptosis-suppressed tumor cells are
resistant to ICI therapy [19]. However, the current literature
fails to elucidate the underlying mechanisms associated with
ferroptosis and antitumor immunity due to the limited
number of studies on this subject.

Tumor cells frequently exhibit abnormal expression of
FRLs, which is associated with tumor development [20,
21]. However, the specific molecular mechanisms of FRLs
in ESCC remain unknown and warrant further research.
The current study is aimed at investigating the biological
function of FRLs in ESCC using bioinformatics and identify-
ing potential biomarkers and treatment targets to predict
prognosis and improve treatment efficacy in ESCC patients.

The present study used The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases to select
FRLs associated with ESCC and identify ten lncRNAs with
close correlation to the prognosis of ESCC. A prognostic
multi-lncRNA signature was established using TCGA-
ESCC database and validated by means of the GEO cohort
using the least absolute shrinkage and selection operator
(LASSO) Cox regression model. Real-time quantitative poly-
merase chain reaction (qRT-PCR) was used to verify the
expression of ten FRLs. Finally, risk prediction tomography,
functional enrichment analysis, and immune landscape
analysis were performed to provide promising insights into
the clinical outcomes, underlying mechanisms, and immu-
notherapy of ESCC.

2. Materials and Methods

2.1. Data Collection. The RNA sequencing dataset and corre-
sponding clinical information regarding ESCC were
obtained from TCGA (https://tcga-data.nci.nih.gov/tcga/)
database. The expression profiles of GSE53624 and
GSE53625, which contained 119 and 179 ESCC cases,
respectively, were obtained from the GEO (https://www
.ncbi.nlm.nih.gov/geo/) database. Moreover, the IMvigor210
cohort was obtained from the IMvigor210CoreBiologies in
the R package, which comprised the expression files and
clinical data of patients with advanced urothelial cancer
who underwent ICI therapy, to assess the predictive value
of the risk score in ICI therapy [22]. The clinical character-
istics of the patients enrolled in this study are shown in
Table S1 in the Supplementary Material.

2.2. Identification of Ferroptosis-Related lncRNAs. Data on
ferroptosis-related genes (FRGs) were retrieved from previous
studies [23]. FRLs were screened from FRGs by coexpression
analysis of data obtained from TCGA-ESCC database [24].
The current study performed a correlation analysis of FRLs
and FRGs to calculate Pearson’s correlation coefficients. FRLs
with absolute values of Pearson’s correlation coefficient > 0:30
and P value < 0.05 were selected. The Cytoscape software was
used to construct and visualize a regulatory network between
the selected FRLs and the corresponding FRGs.

2.3. Cluster Analysis Based on FRLs. In the present study, a
consensus clustering analysis was performed using FRLs.
First, the Cox regression analysis using the data obtained
from TCGA-ESCC database was conducted to identify the
candidate FRLs with close association to the overall survival
(OS) (P < 0:05). Subsequently, the FRLs were extracted for
clustering analysis. The “ConsensusClusterPlus” R program
was used to implement clustering and the best cluster num-
ber was chosen as the value of coexistence correlation coeffi-
cient, K . The OS of the different subgroups was compared
using the Kaplan–Meier survival curve.

2.4. Differential Expression and Functional Enrichment
Analyses. The “limma” R package was applied to identify the
significant differentially expressed mRNAs among different
clusters with a false discovery rate < 0:05 and logFC > 1 in
TCGA cohort. Venn diagrams were created by means of
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VENNY 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/index
.html) to identify common significant differentially expressed
mRNAs between clusters. The PD-L1 expression in the differ-
ent subgroups was compared, and a correlation analysis
between PD-L1 expression and FRLs was performed. More-
over, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses of common significantly dif-
ferentially expressed mRNAs between clusters were performed
using the R package “clusterProfiler.” Potential biological pro-
cesses, molecular functions, cellular components, and pathways
associated with these mRNAs were explored.

2.5. Analysis of Immune Infiltration between Subgroups. The
StromalScore, ImmuneScore, and ESTIMATEScore in the
different ESCC clusters were calculated using the “ESTI-
MATE” R package. Two algorithms were used to quantify
the immune cells and compare the abundance differences
between these immune cells in different clusters. The infil-
trating scores of ten immune cells were evaluated with the
“MCPcounter” R package, and 28 immune cells were deter-
mined using single-sample gene set enrichment analysis
(ssGSEA) with the “GSVA” R package [25]. Statistical signif-
icance was set at P < 0:05.

2.6. Identification and Validation of the Prognostic FRL
Signature. The FRLs that displayed significance (P < 0:05)
in both the Kaplan–Meier and univariate Cox analyses for
OS were selected as the potential prognostic genes and then
extracted into the LASSO analysis with the “glmnet” R pack-
age. Candidate FRLs were obtained when the best penalty
parameter, lambda, was achieved in the training cohort
[26]. The risk score was computed using the normalized
gene expression level and the corresponding regression coef-
ficient as follows: risk score = sum ðgene expression level
corresponding coefficientÞ. Subsequently, patients were
divided into high- and low-risk groups according to their
respective median risk scores. Time-dependent ROC curve
analysis was performed to assess the prognostic predictive
value of the model with the “risksetROC” R package. The
difference in survival between the two groups was assessed
using the Kaplan–Meier method. The same formula and sta-
tistical analyses were used to analyze the external validation
database of the GSE53624 cohort to test the stability of the
model developed in the current study. Survival differences
between high- and low-expression candidate FRLs are
shown with the Kaplan–Meier curves. Differences in clinical
variables between the high- and low-risk groups were com-
pared using the Wilcoxon test. Kaplan–Meier curves were
used to compare survival differences between the high- and
low-risk groups stratified by clinical characteristics.

2.7. Tissue Sample Collection and FRL Expression Detection.
A total of 35 human ESCC tissues were obtained from the
Affiliated Hospital of Jiangnan University (Wuxi, Jiangsu,
China) and the Suzhou Municipal Hospital (Suzhou,
Jiangsu, China) from 2018 to 2021. The previously collected
tissue samples were stored and transported at -80°C. The
study was approved by the Affiliated Hospital of Jiangnan
University and the Suzhou Municipal Hospital for Biomed-

ical Research Ethics Committee, and these patients signed
the informed consent. The clinical characteristics of these
patients enrolled in this study are shown in Table S1.

The RNA was extracted from 35 ESCC tissues, TRIzol
(Invitrogen, Carlsbad, CA, USA), according to the reagent
instructions, and purified with the RNeasy Mini reagent (Qia-
gen, Valencia, CA, USA). The amount and quality of RNA
were evaluated by spectrophotometer (ND-1000, Nano Drop
Technologies, Wilmington, De, USA), and the integrity of
RNA was evaluated by gel electrophoresis. We used Arraystar
Human lncRNA V3.0 chip to analyze RNA samples. The chip
could detect more than 30,000 lncRNAs. We removed rRNA
from the total RNA and obtained mRNA (mRNA-ONLYTM
Eukaryotic mRNA Isolation Kit, Epicentre). Oligo (dT) and
random primers were mixed to amplify each sample and tran-
scribed into fluorescent cRNAs, which were hybridized with
human lncRNA chip. Agilent chip scanner (Agilent p/n
G2565BA) scanned the chip after cleaning the slide, and the
chip diagram was obtained by the Agilent Feature Extraction
software (v11.0.1.1). After reading, the original data were
obtained, using the Gene Spring GX v12.1 software (Agilent
Technologies) for raw data standardization and subsequent
data processing. After data standardization, select high-
quality probes (if more than 17 of 35 samples were labeled
Marginal or Present) for further analysis.

2.8. Validation of Expression of Prognostic FRLs. Human
ESCC cells (KYSE-150 and ECA-109) and normal esopha-
geal epithelial cells (HET-1A) were obtained from the
Shanghai Institute of Cell Biology (Shanghai, China). The
cells were cultured in an RPMI 1640 medium (Gibco) sup-
plemented with 10% fetal bovine serum under a humidified
atmosphere of 37°C and 5% CO2. HET-1A cells were cul-
tured in serum-free LHC-9 medium. Cellular RNA was
extracted using RNeasy kits (Qiagen, Hilden, Germany)
and quantified using Nanodrop (Thermo Fisher). The
Quantitect Reverse Transcription Kit (QIAGEN) was used
to reverse-transcribe total RNA for the synthesis of cDNA,
in accordance with the manufacturer’s instructions. qRT-
PCR was used to determine the relative expression levels of
lncRNAs in triplicate using a StepOnePlus Real-Time PCR
System (Applied Biosystems). GAPDH was used as an inter-
nal control. The relative expression of each lncRNA was esti-
mated by the 2−ΔΔCt method. Primer sequences are listed in
the supplementary file (see Table S2 in the Supplementary
Material). In addition, a paired t-test was performed to
assess the difference in the expression levels of prognosis-
related FRLs in ESCC and corresponding paracancerous
tissues in the GSE53625 database.

2.9. Nomogram Development and Evaluation of Predictive
Performance. The current study performed univariate and
multivariate Cox regression analyses to identify independent
prognostic factors based on the patient’s clinical information
and risk score, providing clinicians with a more accurate
quantitative method for the prediction of OS in patients with
ESCC. We tested the proportional hazards assumption by
Schoenfeld residuals with the “RMS” R package. Subse-
quently, a nomogram was created using the survival rate
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and “RMS” R package, and a calibration curve was formu-
lated to assess the consistency between actual and predicted
survival rates. Discrimination was used to evaluate the pre-
dictive ability of the nomograms. We used likelihood ratio
tests to compare Cox proportional hazard models.

2.10. Analysis of Biological Properties and Pathways Related
to the Signatures. In the GSE53624 database, the gene set
enrichment analysis (GSEA) was used to analyze the poten-
tial biological activities and signal transduction pathways
associated with FRLs in the high- and low-risk categories
of patients with ESCC. The GSEA software was used. jNES
j > 1 and P < 0:05 were considered significant.

2.11. Immunogenomic Landscape Analyses between High-
Risk and Low-Risk Groups. A comprehensive analysis of
the immune cells and pathways was conducted using
ssGSEA between the high- and low-risk groups in the train-
ing cohort. Immune checkpoint gene expression levels were
compared between high-risk and low-risk groups to explore
the relationship between the risk score and immune check-
points. A two-sample Wilcoxon test was used to compare
differences between the two groups.

2.12. Analysis of FRL Signatures in Immunotherapy. The
data obtained from the IMvigor210 cohort were analyzed
to validate the predictive power of the risk score model for

immunotherapy. The present study evaluated the differences
between the high- and low-risk groups with regard to sur-
vival and treatment response. The ROC analysis was per-
formed to assess the prognostic ability of the risk model.
In addition, we performed a correlation analysis of the risk
score and infiltrating level of immune cells, neoantigen
(NEO), and tumor mutation burden (TMB).

2.13. Statistical Analysis. The present study employed Stu-
dent’s t-test to identify the differentially expressed FRGs
among different clusters and to analyze the differences
between high- and low-risk groups with regard to Immune-
Score, StromalScore, and ESTIMATEScore. Characteristics
pertaining to the risk groups were compared using chi-
square or Fisher’s exact tests. The Mann–Whitney test was
used to assess the difference between the high- and low-
risk groups with regard to the ssGSEA scores of immune
cells or pathways. All statistical analyses were performed
using R version 3.6.3 or GraphPad Prism version 8.0. All P
values were two-tailed. In the current study, a P value <
0.05 was considered statistically significant.

3. Results

The detailed workflow of this study is shown in Figure 1.
The current study involved 81 ESCC patients from TCGA-
ESCC database, 119 ESCC patients from the GSE53624

RNA-seq data and clinical data from TCGA-ESCC

Consensus clustering
& survival analysis

Evaluation of immune
cell abundance

Immune-related analysis

LncRNA (n = 10624)

GO & KEGG

Functional analysis

PDL1 association
analysis

Ferroptosis-related
genes (n = 225)

Ferroptosis-related
LncRNA (n = 752)

Cor > 0.3

COX model

Ferroptosis-related
LncRNA (n = 15)

Different analysis
(C1 vs. C2 vs. C3)

Lasso-COX regression

10 significant genes

Validation with
GSE53624 (n = 119)

Validation in qPCR

Tumor immune infiltration

Risk-score based subtyping

GSEA

Prognostic nomogram
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Evaluation in immunotherapy
with imvigor database

Ferroptosis-related
model for ESCC

Figure 1: Flowchart of the data collection and analysis.
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Figure 2: Continued.
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cohort, 179 cases from the GSE53625 cohort, and 348 cases
from the IMvigor210 cohort. TCGA-ESCC database was
considered as the training cohort, and the remaining data-
bases were considered validation cohorts with reference to
the prognosis predictive model, expression of FRLs, and sen-
sitivity to immunotherapy.

3.1. Identification of FRLs Associated with the Prognosis in
ESCC Patients. In this study, extracted 10,624 lncRNAs
using RNA sequencing data from TCGA-ESCC cohort,
and 225 ferroptosis-associated genes were retrieved from
the ferroptosis database. The FRLs were identified using
Pearson’s correlation analysis (correlation coefficient > 0:3
and P < 0:001). Subsequently, 752 FRLs were selected (see
Figure S1).

3.2. Classification of ESCC on the Basis of FRLs. In the pres-
ent study, 15 FRLs were selected on the basis of their signif-
icant prognostic value with regard to OS (P < 0:05) and
subjected to a consensus clustering analysis (see
Figure 2(a)). Samples from TCGA-ESCC database were
divided into three clusters using the “ConsensusClusterPlus”
R package. The optimal k value was determined using the
correlation coefficient. Subsequently, the optimal total clus-
ter number was set to k = 3 (with the three subclasses desig-
nated as clusters 1, 2, and 3; see Figures 2(b) and 2(c)). The
current study observed a significant difference among the

three clusters with regard to OS in TCGA cohort
(P = 0:039; see Figure 2(d)).

3.3. Differential Expression among Clusters and Functional
Enrichment Analysis. The “limma” R package with FDR <
0:05 and logFC > 1:0 was used to identify 29 mRNAs as sig-
nificant differentially expressed genes (DEGs) among the
three clusters, as shown in Figure 3(a). The volcano plot
shows the fold change and statistical significance of mRNA
expression among the three clusters (see Figures S2A-S2C
in the Supplementary Material). PD-L1 expression in
Cluster 1 was higher than that in Cluster 2 (P < 0:05) (see
Figure 3(b)). The relationship between PD-L1 expression
and the 29 DEGs is shown in Figure 3(c). The GO
functional analysis was conducted based on the DEGs. The
top eight biological processes-associated, cell component-
associated, and molecular function-associated categories
are shown in Figures 3(d)–3(f). The top eight categories of
KEGG functional analyses are shown in Figure 3(g).

3.4. Immune Infiltration between Subtypes. StromalScore,
ImmuneScore, and ESTIMATEScore were computed using
the “ESTIMATE” R package. In the current study, the
ImmuneScore was significantly higher in Cluster 1 than in
Cluster 2 (P < 0:05), whereas the ImmuneScore and ESTI-
MATEScore were higher in Cluster 2 than in Cluster 3
(P < 0:01) (see Figure 4(a)). In addition, ten immune cell
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Figure 2: Identification of ESCC subclasses using consensus clustering. (a) Univariate Cox regression analysis. Forest plot of 15 significant
FRLs associated with the overall survival in TCGA-ESCC cohort. (b) The patients were divided into clusters 1, 2, and 3 on the basis of 15
FRLs. (c) Empirical cumulative distribution function plot displaying consensus distributions for each k. (d) Survival analysis of the patients
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: (a) Identification of differentially expressed mRNAs among the clusters 1, 2, and 3 in TCGA-ESCC cohort. (b) Comparison of the
expression of PD-L1 among the three clusters. (c) The heat map shows the association between PD-L1 and differentially expressed mRNAs
among clusters. The Gene Ontology annotation of differentially expressed genes. The significantly associated canonical pathways are shown
as follows: (d) top eight related biological processes (BP), (e) cell component (CC), and (f) molecular function (MF). Results of pathway
enrichment for differentially expressed genes. (g) The top eight significantly altered canonical pathways are shown. Adjusted p values:
∗P < 0:05. NS (no significance): P > 0:05.
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Figure 4: Continued.
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scores were evaluated using the “MCPcounter” R package,
and the results revealed that the immune cell scores of
CD8+ T cells and natural killer cells were higher in Cluster
1 than in Cluster 2 (P < 0:05). Immune cell scores of cyto-
toxic lymphocytes and neutrophils were higher in Cluster 3
than in Cluster 2 (P < 0:01). Immune cell scores for T cells,
B lineage, and NK cells were higher in Cluster 1 than in
Cluster 3 (P < 0:05), while the scores for neutrophils were
higher in Cluster 3 than in Cluster 1 (P < 0:001) (see
Figure 4(b)). The results of ssGSEA analysis showed that
the immune scores of activated CD4 T cells, activated CD8
T cells, and central memory CD4 T cells were significantly
higher in Cluster 1 than in Cluster 2 (P < 0:05). The immune
scores of effector memory CD4 T cells, effector memory
CD8 T cells, and memory B cells were higher in Cluster 2
than in Cluster 3 (P < 0:05). The immune scores for acti-
vated CD4 T cells, activated CD8 T cells, central memory
CD4 T cells, effector memory CD8 T cells, immature B cells,
T follicular helper cells, type 1 T helper cells, MDSCs, and
natural killer T cells were higher in Cluster 1 than in Cluster
3 (P < 0:05) (see Figure 4(c)). A comparison of the three

immune scores pertaining to the molecular subtypes is
shown in Figure 4(d), using a heat map.

3.5. Identification of the Prognostic FRL Signature. In the
current study, the 15 FRL prognostic genes were subjected
to OS-based LASSO Cox regression model analysis (see
Figure S3A). The regression model attained optimal ability
after the identification of ten prognostic lncRNAs:
SNHG29, RB1-DT, MEG3, LOC100507144, LINC02269,
LINC01970, FAM13A-AS1, EBLN3P, CAHM, and
APOA1-AS (see Figure S3B). Kaplan–Meier curves of these
lncRNAs revealed a significant association with OS in
TCGA-ESCC cohort (see Figure S4 in the Supplementary
Material).

3.6. A Ferroptosis-Related Prognosis Model Construction in
TCGA Cohort. The following formula was used to generate
a hazard model through the linear mixing of ten FRLs
weighted by their coefficients from the multivariate Cox
analysis:

D
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Figure 4: (a) Comparison of StromalScore, ImmuneScore, and ESTIMATEScore among the three clusters in TCGA-ESCC cohort. (b)
Evaluation of the infiltrating scores of ten immune cells among the three clusters in TCGA-ESCC cohort. (c) Comparison of the ssGSEA
scores among the three clusters in TCGA cohort. (d) The heat map denotes the immune scores pertaining to the three clusters. Adjusted
P values: ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Risk score = ðESNHG29 × −0:71Þ + ðERB1−DT × −0:84Þ + ð
EMEG3 × −1:02Þ + ðELOC100507144 × 0:15Þ + ðELINC02269 × 0:45
Þ + ðELINC01970 × −0:71Þ + ðEFAM13A−AS1 × −0:34Þ + ðEEBLN3P
× 0:36Þ + ðE CAHM× −0:64Þ + ðE APOA1−AS × −0:68Þ:

ESNHG29 denotes the expression value of SNHG29, and
this applies to the rest of the acronyms in this formula.

The aforementioned approach was used to compute the
risk score for each sample. The patients in TCGA cohort
were divided into high-risk (n = 40) and low-risk (n = 41)
groups on the basis of the optimum cutoff value obtained
by means of the “survminer” R package. The risk scores,
OS of patients, and expression profiles of the ten FRLs are
presented in Figure 5(a). The ROC analysis results are
shown in Figure 5(b). The areas under the ROC curves for
the one-, three-, and five-year duration were 0.724, 0.693,
and 0.682, respectively. The high-risk group displayed worse
OS than the low-risk group (P = 0:009), as shown by the
Kaplan–Meier curves in Figure 5(c).

3.7. Validation of the Ten-Ferroptosis-lncRNA Signature
Using the Test Dataset. The predictive power of the model
was evaluated using the test dataset from the GSE53624
cohort (n = 119; 59 samples in the high-risk group and 60
in the low-risk group) using the same formula. The risk
scores, OS of the patients, and expression profiles of FRLs
are shown in Figure 5(d). The areas under the time-
dependent ROC curves pertaining to the one-, three-, and
five-year duration were 0.671, 0.634, and 0.619, respectively
(see Figure 5(e)). Patients in the high-risk group displayed
a worse survival rate than those in the low-risk group, which
is concurrent with previous findings (see Figure 5(f)).

We further access the model with the independent vali-
dation cohort collected form our own institution (n = 35;
17 samples in the high-risk group and 18 samples in the
low-risk group). The risk scores, OS of the patients, and
expression profiles of the FRLs are shown in Figure 5(g).
The areas under the time-dependent ROC curves pertaining
to the one-, three-, and five-year duration were 0.632 and
0.711, respectively (Figure 5(h)). The high-risk group dis-
played a strong tendency of worse OS, though it did not
reach the statistical difference (P = 0:091), as shown by the
Kaplan–Meier curves in Figure 5(i).

3.8. Correlation of the Prognostic Risk Score with Pathological
Features. The current study did not observe any significant
differences in risk score with reference to sex, age, grade, and
TNM stage of the disease (all P > 0:05) (see Figures S5A-S5D
in the Supplementary Material). However, the risk score in
Cluster 2 was higher than that in Cluster 1 (P = 0:035) (see
Figure S5E in the Supplementary Material).

3.9. Survival Analysis Using Prognostic Risk Scores in
Subgroups. The Kaplan–Meier analysis of the group of male
patients (P = 0:012) with age ≤ 65 years (P = 0:041), grades
3–4 (P = 0:013), and stage III or IV at the time of diagnosis
(P = 0:038) revealed that the high-risk group exhibited worse
OS than the low-risk group (see Figures S6A-S6D in the
Supplementary Material).

3.10. Univariate and Multivariate Cox Analyses of Prognostic
Risk Scores and Individualized Prognostic Prediction Models.
TCGA-ESCC database was used to perform univariate and
multivariate Cox regression analyses. Univariate Cox regres-
sion analysis revealed that risk scores and TNM stage were
closely related to OS (P < 0:10) (see Figure 6(a)). Multivari-
ate Cox regression analysis revealed that risk scores and
TNM stage were independent predictors of OS in patients
with ESCC (P < 0:05) (see Figure 6(b)). A global test of the
Schoenfeld residuals for the nomogram model showed a P
value of 0.287, and the P values of the Schoenfeld residual
test for stage and risk score were 0.327 and 0.270, respec-
tively (all P > 0:05) (see Figures S7A–S7B in the
Supplementary Material).

A nomogram was established based on TNM stage and
risk score through the synthesis of ten-FRL signatures to
predict the probability of one- and three-year OS. Several
factors were evaluated on the basis of the proportion of con-
tribution to the death risk, as shown in Figure 6(c). The
nomogram was an excellent predictive model, which was
superior to the risk score or TNM stage alone (see
Figure 6(d)). Furthermore, the calibration curve demon-
strated a high correlation between the predicted and actual
OS rates (see Figure 6(e)). A likelihood ratio test was applied
to compare the nomogram model, including stage and risk
score, with the stage model or risk score model. The result-
ing P values were 0.005 and 0.041, respectively, indicating
that combining the stage and risk scores significantly
improved the model fit (see Table S3 in the Supplementary
Material).

3.11. Validation of Expression of the Prognostic FRLs. The
qRT-PCR results revealed that the expression of
LOC100507144, LINC02269, and EBLN3P was upregulated,
whereas the expression of MEG3, SNHG29, RB1-DT,
LINC01970, FAM13A-AS1, and APOA1-AS was downregu-
lated in ESCC tissues compared to that in normal tissues.
However, the current study did not observe any significant
differences in the expression of FAM13A-AS1 and CAHM
(see Figures 7(a)–7(j)). In addition, the expression of these
10 FRLs in the GSE53625 cohort was assessed using a paired
t-test (see Figures 7(k)–7(t)). The results of qRT-PCR and
bioinformatics analyses revealed similar trends in
expression.

3.12. GSEA and Immune Infiltration between High- and
Low-Risk Groups. The current study identified 54 pathways
associated with ferroptosis-related lncRNAs (P < 0:05), and
five representative upregulated signals were selected, includ-
ing the VEGF signaling pathway, IL-17 signaling pathway,
ErbB signaling pathway in the high-risk group, and Wnt sig-
naling pathway and ferroptosis signaling pathway in the
low-risk group (see Figures S8A–S8E in the Supplementary
Material).

Comparative analysis of the immune cells and pathways
demonstrated the differences between high- and low-risk
groups with regard to CD8+ T cells, chemokine receptor
(CCR), checkpoint, dendritic cells (DCs), macrophages,
mast cells, MHC class I, neutrophils, and type II IFN
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Figure 5: Continued.
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Figure 5: Construction of the prognostic prediction model and model validation. (a, d, g) Risk score (top), overall survival (middle) of the
patients, and expression profiles of the 10 FRLs (bottom) in TCGA (training), GSE53624 (external validation) datasets, and independent
validation cohort. (b, e, h) The areas under the time-dependent ROC curves verified the prognostic performance of the risk scores in
TCGA, GSE53624 datasets, and independent validation cohort. (c, f, i) Kaplan–Meier curves for overall survival in the high- and low-
risk groups in TCGA, GSE53624 datasets, and independent validation cohort.
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response (P < 0:05) (see Figure 8(a)). The present study per-
formed further research regarding the difference between the
two groups in the expression of immune checkpoints on
account of the significance of checkpoint-based immuno-
therapy (see Figure 8(b)).

3.13. FRL Signatures in Immunotherapy. Data pertaining to
patients with advanced urothelial cancer who underwent
ICI therapy with anti-PD-L1 (IMvigor210 cohort) were used
to identify the predictive value of the ten-FRL-signature in
immunotherapy treatment. The subjects were classified into
high- and low-risk score subtypes based on their signature.
Kaplan–Meier curves demonstrated that patients with
higher risk scores displayed poorer OS than those in the
low-risk group (P = 0:032) (see Figure 8(c)). A higher com-
plete response rate was observed in the low-risk group
(P = 0:06) (see Figure 8(d)). The areas under the ROC curve
for NEO, TMB, risk score, and a combination of the above
were 0.745, 0.717, 0.638, and 0.751, respectively (see
Figure 8(e)). The correlation analysis of the risk score and
infiltrating levels of immune cells, NEO, and TMB is shown
in Figure 8(f).

4. Discussion

ESCC is one of the most common forms of malignancy and
is prevalent worldwide, especially in East Asia. In clinical
practice, the prognosis of patients with ESCC is assessed
according to the pathological stage of the disease. However,
the treatment efficacy differs among patients with identical
pathological stages and grades of the disease. In view of the
frequent application of clinical tumor sequencing, which is
becoming more common, biomarkers display promising
potential with reference to tumor detection and prognosis
prediction.

For patients with early ESCC, several biomarkers,
including PTEN, STMN1, and TNFAIP8, were screened

and showed a good ability to predict lymph node metastasis
after surgery [27–29]. In locally advanced ESCC, chemora-
diotherapy plays an important role in the treatment of
ESCC, regardless of neoadjuvant, postoperative adjuvant,
or radical treatment. Therefore, identifying reliable predic-
tive biomarkers for chemoradiation response is necessary.
A meta-analysis showed that TP53 allele loss is closely
related to poor response to chemotherapy [30]. The single
nucleotide polymorphism state of ERCC1, a DNA damage
repair gene, was reported to be a useful predictive genetic
biomarker for chemoradiation treatment outcomes in ESCC
[31]. A recent study reported that a seven-FRG signature
had a higher predictive value for ESCC than TNM stage
alone [32]. In terms of proteomics biomarkers, CEA, SCC,
and carbohydrate antigen 72-4 (CA 72-4) have been applied
in the cancer management and provides treatment guidance
for clinicians [33, 34]. Kim et al. developed new scores for ES
treatment response prediction. The tumor-derived fraction
of cell-free DNA (cfDNA) profiles was examined by whole
genome sequencing in blood samples of 30 ES cases, and
low scores were found to have a significant association with
better chemoradiotherapy response [35]. Noncoding RNAs,
including miRNAs and lncRNAs, play important roles in
various biological processes, such as tumor proliferation
[36], hypoxia [37], metabolism [6], methylation [38], apo-
ptosis [39], and autophagy [40], and have been investigated
as potential biomarkers or therapeutic targets in ESCC. A
study by Chen et al. found that high levels of miR-133a/b
were associated with significantly long OS in ESCC and were
an independent prognostic factor for these patients [36]. A
nine-autophagy-related lncRNA signature established by
Shi et al. showed a favorable treatment outcome prediction
value for ESCC [40]. Several recent studies have reported
that FRLs affect the development and progression of solid
tumors by serving as competing endogenous RNAs, such
as OIP5-AS1 in prostate cancer and MT1DP in non-small-
cell lung cancer [41, 42]. Additionally, literature has
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reported that regulation of the process of cell death by FRLs
improves therapeutic outcomes in tumors [43]. Thus, poten-
tial lncRNAs warrant further research, owing to the fact that
FRLs play an important role in malignancies, and the cur-
rent knowledge regarding the depth mechanism is limited.

The current study selected ten prognosis-related FRLs
and a signature that combined these lncRNAs displayed a
favorable survival prediction value in ESCC. A recent study
demonstrated that SNHG29 (small nucleolar RNA host gene
29) plays an important role in the invasion, migration, and
epithelial-to-mesenchymal transition of laryngeal cancer,
suggesting that SNHG29 is a potential therapeutic target
[44]. In addition, another study reported that the inhibition

of SNHG29 could improve antitumor immunity through the
activation of the YAP pathway in colorectal cancer [45].
Interventions involving SNHG29 may provide a synergistic
effect and promote the efficacy of immunotherapy in the
management of CRC. Moreover, MEG3 (maternally
expressed gene 3), which is expressed at a low level in ESCC,
has been reported to inhibit the proliferation, migration, and
apoptosis of ESCC cells in vitro and tumor development
in vivo [46, 47]. In addition, a previous study reported that
MEG3 regulates T cell differentiation and contributes to
immune escape in esophageal cancer [48]. Furthermore,
FAM13A-AS1 (FAM13A antisense RNA 1), which is associ-
ated with autophagy, is included in the lncRNA signature to
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Figure 8: (a) Immune infiltration analysis of the high- and low-risk groups in boxplots. (b) Expression of immune checkpoints between
high- and low-risk groups. (c) Kaplan–Meier curves of the overall survival in the high- and low-risk groups with IMvigor (external
validation) datasets. (d) Comparison of efficacy of immunotherapy in the high- and low-risk groups in the IMvigor cohort. (e) The areas
under the ROC curves verified the prognostic performance of the NEO, TMB, risk scores, and a combination of the above in the
IMvigor (external validation) datasets. (f) Analysis of the association between risk score and NEO, TMB, and immune infiltration cells.
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predict the prognosis of thyroid cancer and bladder urothe-
lial carcinoma [49, 50]. Xu et al. reported that EBLN3P
(endogenous bornavirus-like nucleoprotein 3, pseudogene)
promoted the development of colorectal cancer by regulat-
ing the expression of UHMK1 [51]. It has been reported that
DNMT1 suppresses colon adenocarcinoma hypermethyla-
tion (CAHM) and promotes tumor progression through
the SPAK/JNK pathway in glioma [52]. It is worth mention-
ing that the current study is the first to report the association
between ESCC prognosis and RB1-DT (RB1 divergent tran-
script), LOC100507144, LINC02269, LINC01970, and
APOA1-AS (APOA1 antisense RNA). In summary, three
of the FRLs (LOC100507144, LINC02269, and EBLN3P) in
the prognostic model were reported to be upregulated in
ESCC, in contrast to the remaining seven lncRNAs
(SNHG29, RB1-DT, MEG3, LINC01970, FAM13A-AS1,
CAHM, and APOA1-AS). Nevertheless, the underlying
mechanism, that is, whether these lncRNAs influence fer-
roptosis and affect the prognosis of patients with ESCC,
remains ambiguous owing to the limited number of previous
studies regarding the same.

Further investigation revealed that FRLs could dichoto-
mize ESCC patients into different risk groups for discern-
ment of OS. Functional analyses of FRLs in these
subgroups revealed significant differences in immune-
related pathways, including the MHC class II protein com-
plex and IL17 signaling pathways. These results warrant fur-
ther research on the underlying mechanisms associated with
immunity and ferroptosis in ESCC. The immune cell land-
scape in the TIME showed that the number of mast cells,
macrophages, and neutrophils was significantly higher, and
the number of CD8+ T cells was higher in the high-risk
group than in the low-risk group. Moreover, the current
study observed differences in ICIs, such as B and T lympho-
cyte associated (BTLA), CD200, CD48, CD27, and CD28.
These differences imply a sophisticated relationship between
ferroptosis and immunity.

Several studies have shown that increased numbers of
mast cells, macrophages, and neutrophils are associated with
poor prognosis in certain solid tumors, which is consistent
with the observations in the current study [53]. The present
study observed that the proportion of CD8+ T cells was high
in ESCC patients with a low risk. Studies have reported that
mast cells secrete angiogenic factors and proteases, which
stimulate angiogenesis and breakdown of the extracellular
matrix, thereby contributing to the invasion of tumor cells
[54]. A high density of mast cells in the tumor microenvi-
ronment is a predictor of poor survival in patients with
ESCC and is closely associated with tumor angiogenesis
and metastasis [55]. Interestingly, the number of activated
macrophages and CD8+ T cells in esophageal tissue is posi-
tively correlated with the level of IL-17-producing mast cells,
which indicates favorable clinical outcomes [56]. The func-
tion of mast cells in the tumor microenvironment of esoph-
ageal carcinoma remains unclear, and elucidation of the
specific underlying mechanism requires further investiga-
tion. M2 macrophages, which account for the majority of
tumor-associated macrophages in esophageal carcinoma tis-
sues, are strongly associated with angiogenesis and tumor

invasion, and the presence of these macrophages predicts
unfavorable outcomes concerning survival [57]. Macro-
phages can also be recruited into the TME to promote
immunocyte infiltration via the PD-1/PD-L2 pathway,
which may open a new avenue for anticancer immunother-
apy in the management of ESCC [58].

Recently, a multidisciplinary treatment strategy for ESCC
has been developed. However, the prognosis for this malig-
nancy remains poor. The outcomes of clinical trials in ESCC,
including ESCORT, KEYNOTE-181, and ATTRACTION-
03, imply that the inclusion of immunotherapy in the manage-
ment protocol could improve survival rates [59–61]. ICIs have
shown promising prospects in the treatment of ESCC. How-
ever, PD1/PDL-1 and CTL-4 remain the main targets for
immunotherapy, and more immune checkpoints and related
inhibitors must be identified and employed in the manage-
ment of malignancy. Furthermore, the current study observed
significant differences in immune checkpoints between high-
and low-risk ESCC patients. A recent study has confirmed that
BTLA can inhibit T cell activity and facilitate tumor evasion,
and high expression of BTLA is closely associated with poor
prognosis in solid tumors [62]. Tang et al. reported that sup-
pression of HVEM, a ligand for BTLA, inhibited the prolifer-
ation of renal cancer cells and slowed tumor growth in vivo
[63]. It may be considered that a combination of anti-PD1/
PDL1 and anti-BTLA in immunotherapy may further
improve tumor control. CD27 is another promising ICI. As
a key T cell costimulatory receptor, CD27 participates in the
proliferation and differentiation of T cells and plays an impor-
tant role in immunosuppression [64].Muth et al. reported that
inhibitor of CD27 on regulatory T cells and the application of
PD-1 inhibitors synergistically improve the infiltration and
functionality of CD8+ T cells in the tumor microenvironment
[65]. Thus, CD27 may serve as an effective target for antican-
cer immunotherapy in combination with PD-1/PD-L1 ICIs.

The current study has several limitations. First of all,
cluster identification, establishment of the prognostic model,
and validation were performed using retrospective data
obtained from a public database. Our own independent val-
idation database collected from our clinical situations has a
small sample sizes. Hence, large-scale database should be
collected and analyzed to test the effectiveness of our predic-
tion model in clinical scenarios. In addition, the public data-
bases provided limited data regarding significant clinical
characteristics, which might have reduced the efficiency of
the current prediction model regardless of the fact that the
present study endeavored to minimize the risk using multi-
variate Cox regression analyses. Second, only a limited num-
ber of FRGs were included in the present study. The
possibility that additional ferroptosis regulators may have
been identified is undeniable, owing to the rapid emergence
of new studies on ferroptosis. Third, the correlation between
risk and biological function of FRLs in ESCC warrant further
experimental investigations.

5. Conclusions

In summary, the current study observed that FRLs could be
used to classify patients with ESCC according to their
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respective clinical and molecular features. The novel prog-
nostic model with ten FRLs could independently predict
the risk associated with the survival of patients with ESCC
in the derivation and validation cohorts, which indicated a
strong predictive value. The potential mechanisms associ-
ated with FRLs and their biological functions in ESCC
remain unclear and warrant further research.
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