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Abstract: B-lineage acute lymphocytic leukemia (B-ALL) is characterized by different genetic aber-
rations at a chromosomal and gene level which are very crucial for diagnosis, prognosis and risk
assessment of the disease. However, there is still controversial arguments in regard to disease
outcomes in specific genetic abnormalities, e.g., 9p-deletion. Moreover, in absence of cytogenetic
abnormalities it is difficult to predict B-ALL progression. Here, we use the advantage of Next-
generation sequencing (NGS) technology to study the mutation landscape of 12 patients with B-ALL
using Comprehensive Cancer Panel (CCP) which covers the most common mutated cancer genes.
Our results describe new mutations in CSF3R gene including S661N, S557G, and Q170X which might
be associated with disease progression.
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1. Introduction

B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of child-
hood malignancy. It originates from B-cell progenitors in the bone marrow [1]. Risk assess-
ment and classification of B-ALL is based on different criteria including age, white blood
cell (WBC) count, central nervous system (CNS) involvement, and chromosomal aberration.
Cytogenetic and molecular assessment of B-ALL provides significant insight into risk
stratification, treatment response and prognosis. Conventional karyotyping, fluorescence
in situ hybridization (FISH), comparative genomic hybridization (CGH), and molecular
methods such as polymerase chain reaction (PCR) or reverse transcript quantitative PCR
(RT-qPCR) are used for molecular characterization of leukemia [2–8]. ETV6–RUNX1 rear-
rangement is the most common genetic subtype of childhood B-ALL and is associated with
good prognosis. However, other subtypes such as BCR–ABL1, BCR–ABL1 like, KMT2A
rearrangement, and hypodiploidy are associated with a less favorable outcome [6,9,10].

The impact of chromosome 9p deletion as an independent adverse prognostic marker
in B-ALL is debatable. Chromosome 9p abnormalities were associated with a higher risk
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of treatment failure in childhood B-ALL in an early report by a children’s cancer group
and also in adult B-ALL [11]. However, MRC UKALL X in childhood B-ALL did not show
prognostic value of del (9p) [12]. To the contrary, MRC UKALLXII/ECOG 2993 trial in
adult ALL showed an association between del (9p) and improved outcomes [13]. The vari-
ability between these studies could be explained by co-existing cytogenetic abnormalities
or the need to take into consideration the minimal residual disease (MRD) assessment
early in the treatment course. There are cases with normal karyotypes but still with a
relapsed condition.

In this study we are reporting on B-ALL patients, few of which are normal cytogeneti-
cally but still showed relapsed. We utilized the Ion AmpliSeq Comprehensive Cancer Panel
(CCP) target panel which covers 409 oncogenes and tumor suppressor genes to define the
mutational landscape of 12 pediatric patients with B-ALL.

2. Materials and Methods
2.1. Patients

Bone marrow (BM) aspirates from 12 children diagnosed with B-ALL (see Table 1)
were collected at the pediatric hematology/oncology department at King Abdullah Special-
ized Children’s hospital and King Abdulaziz Medical City-Riyadh after getting informed
consent for genetic studies and after ethical approval from our IRB (RC-16-157-R).

Table 1. Clinical Characteristics of the 12 B-ALL Patients Studied in this Manuscript.

Case
Age at

Diagnosis
(Years)/Sex

WBC Blast Cytogenetic FISH Progression

1628 4/F 27.1 32% 46,XX,i(22)(?q10)(3)/46,XX(19)

nuc ish(P16x0,9cenx2),
(BCRx4,ABL1x2)(61/200)/
(BCRx3,ABL1x2)(37/200),
(P53x2,D17Z1x3)(34/200)/

(P53,D17Z1)x3(20/200)

Relapse

1720 6/M 1.4 60% NA Nuc
ish(p16x0,9cenx2,D17Z1x3)(17/200) Remission

1726 12/M 6.3 30% 44-46,XY,del(2)(p?22),?dic(9;17)(p?13;p?11.2),?
der(14;17)(?p11.2;?p13),+mar,inc(cp3) 9p deletion Remission

1727 3/M 10.5 85% 46,XY,del(11)(q13q23),inc(19)/46,XY
(2)

9p, MLL deletion and TEL/AML
fusion Remission

1728 8/M 9.5 13% 52-55,XY,+X,+X,+4,+6,+8,dic(9;17)t(?p22;q10),
+14,+18,+21,+21,inc(cp12)/46,XY(5) 9p deletion and hyperdiploidy Remission

2106 * 8/M N.P 80% 46,XY(18) NA Relapsed

2109 8/M 5.2 3% 46,XY,del(9)(p21)(8)/46,XY(12) 9p deletion Relapsed

2110 * 10/M 7.9 80% 46,XY(20) TEL/AML positive Relapsed

2112 * 3/M 16.5 84% 46,XY(20) Negative Relapsed

2902435 11/M 1.09 4% 46,XY(18) 9p21,extra copy of aml1 Relapsed

2906773 15/M 10 19% 46,XY,del(9)(q21),del(13)(q21)(17) P16 gene deletion Remission

2900530 20/M 2.8 30% NA P16 gene deletion Remission

* These cases are bearing CSF3R mutations; NA, not available.

2.2. Karyotyping and FISH

Conventional karyotyping and FISH were performed for all of the patients using
sodium heparinized bone marrow samples following classical protocol. FISH was done
for B-ALL panel probes to assess the presence and absence of BCR/ABL, PML/RARA,
TEL/AML, P16, 9Pdeletion, all used probes from VYSIS and process according to the
manufacturer’s protocol.

2.3. DNA Isolation and Target Sequencing

DNA was extracted from bone marrow samples using a QIAampDNA mini kit from
QIAGEN according to the manufacturer’s protocol. DNA quantity and integrity were
evaluated using NanoDrop 2000 (Thermo-fisher Scientific, Waltham, MA, USA) and Qubit®
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3.0 Fluorometer (Thermo-fisher Scientific) following the manufacturer’s protocol. An Ion
Torrent adapter-ligated library was generated following the manufacturer’s protocol (Ion
AmpliSeq™ CCP kit PIv3, Rev. A.0; MAN0010084; Thermo Fisher Scientific, Inc.). Briefly,
100 ng high-quality genomic DNA was used to construct a library using the Ion AmpliSeq™
Library Kit 2.0. Pooled amplicons were end-repaired, and Ion Torrent adapters and am-
plicons were ligated with DNA ligase. Following AMPure bead purification (Beckman
Coulter, Inc., Brea, CA, USA), the concentration and size of the library were determined us-
ing the Applied Biosystems® StepOne™ Real-Time PCR system and Ion Library TaqMan®

Quantitation kit (both from Thermo Fisher Scientific, Inc.). Sample emulsion PCR, emulsion
breaking, and enrichment were performed using the Ion PI™ Hi-Q™ Chef 200 kit (Thermo
Fisher Scientific, Inc.), according to the manufacturer’s instructions. An input concentration
of one DNA template copy per ion sphere particle (ISPs) was added to the emulsion PCR
master mix and the emulsion was generated using the Ion Chef™ System (Thermo Fisher
Scientific, Inc.). Template-positive ISPs were enriched, sequencing was performed using
Ion PI™ Chip kit v3 chips on the Ion Torrent Proton, and barcoding was performed using
the Ion DNA Barcoding kit (Thermo Fisher Scientific, Inc.).

2.4. Comprehensive Cancer Panel

A pre-designed comprehensive cancer panel (CCP) from Ion AmpliSeq™ (Life Tech-
nologies, Carlsbad, CA, USA) was used, with four pools of primers comprised of
16,000 primer pairs of 409 genes that cover 15,749 somatic mutations in the catalogue
of somatic mutation (COSMIC) database.

2.5. Sequence Alignment and Variant Calling

Data from Ion Proton were processed using Torrent Suite Software (v5.0.2) for Bioin-
formatics base calling, removal of low-quality reads, adapter trimming, and alignment
against the human reference genome hg19 build (GRCh37-hg19) using the Torrent Map-
ping Alignment Program (TMAP). Variant calling was conducted using the Torrent Variant
Caller (TVC) plugin (v5.0). Read mapping and the aligned sequence was automatically
transferred into the Ion Reporter Server (v5.0) to identify SNV (Single Nucleotide Variation),
MNV (Multi-nucleotide Variation), and InDel (Insertion Deletion).

2.6. Variant Annotation

Web ANNOVAR (wANNOVAR) [14] was used for annotation of the variants including
gene-based, region-based and filter-based annotations on a variant call format (VCF) file
generated from Ion Reporter Server.

2.7. Exploration of B-ALL Mutation Data Using Maftools

Analysis of a large volume of cancer genomics data needs numerous independent
statistical and computational tools to identify driver gene(s), pathways, enrichments, gene
signatures, and associated prognostic factors of the cancer under study. Maftools [15], an R
package, provides a one-stop-shop, facilitating all such analyses on the large-scale cancer
genomics dataset. In this manuscript we used Maftools to analyze somatic mutations (SNV,
MNV, and InDels) identified by panel sequencing of 12 B-ALL patients. Maftools require
variants in the Mutation Annotation Format (MAF). Since annotations were conducted
using wANNOVAR, the output format was not compatible to Maftools. Therefore, the
“annovarToMaf” function (in-built in Maftools) was used to convert the annovar output
table file into a MAF file. MAF file was then imported by the “read.maf” function to obtain
a MAF object compatible for all downstream analyses by Maftools.

3. Results

A comprehensive cancer panel was used to evaluate somatic mutations in 12 children
with B-ALL from King Abdulaziz Medical City (KAMC); clinical characteristics are shown
in Table 1. An average of 9,736,469 reads were generated for each sample with a mean
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coverage depth of 464.8752. The total number of mutations in 12 samples is 32,179. How-
ever, the unique number of mutations across all the samples came to be 11,007. We filtered
out the variants based on allele frequency from the 1000 genome dataset; 22,373 variants
were below or equal to the allele frequency of 0.1. The rationale behind this filtering was
to enrich the variants for somatic mutations, i.e., polymorphism was removed from our
dataset. The unique number of mutations turned out to be 9085 across all samples.

3.1. Mutational Landscape of B-ALL

We analyzed the variant data using “Maftools”. We used 22,373 variants set to process
further with Maftools. During preprocessing, 4541 and 6765 (total 11,306) variants were
removed as duplicated and silent variants, respectively. Therefore, only 11,067 somatic
variants (22,373–11,306) were considered by Maftools for further analysis and reporting.
Figure 1 illustrates the summary of genetic variants found in 12 B-ALL patients.
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the most frequently mutated genes have been shown across the cohort (f).

Summary: Figure 1 describes the general features of the mutations across the B-ALL
patients; variant classification shows the most abundant is missense mutations. The single
nucleotide variant (SNV) is the most abundant type. Among the SNV class, transitions
are more abundant than transversions. Median number of variants per sample is ~320.
We observed that three samples have very high mutational load. The bottom right panel
in Figure 1 shows the barplot of top 10 genes in our patient cohort with high number of
mutations. Each bar represents the number of mutations (on x-axis) for each gene and the
stacked color indicates variant classification. The number on top of the bar represents the
percentage of samples with mutation(s) in that particular gene.

The oncoplot in Figure 2 represents the top 20 mutated genes across the 12 samples.
An oncoplot is a combination of gene level summary, sample level summary, and the
patient clinical information providing substrates for the selection of potential oncogenes in
the cancer cohort. The most frequently mutated genes in our B-ALL patients were PDE4DIP,
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TET2, KMT2C, CBL, NOTCH4, FGFR3, KMT2D, SYNE1, NIN, and CHEK1. Excluding the
SYNE1, NOTCH4, and CHEK1 genes, all others are well known leukemia/lymphoma
cancer genes with a tier 1 category in the Cancer Gene Census database. Therefore, 7/10 of
the top frequently mutated genes in our B-ALL cohort are known cancer genes.
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X-axis shows different samples and the Y-axis shows thetop 20 genes. CHEK1, KMT2C, NIN, and PDE4DIP genes harbor
mutations across all tumor samples (100%) showing their importance in oncogenesis.

3.2. Comparison with TCGA Signature

We also compared the mutational load of the B-ALL samples with that of the other
TCGA (The Cancer Genome Atlas) datasets (Figure 3). Our B-ALL dataset has high
mutational load second largest to the skin cutaneous melanoma (SKMC), but close to the
Diffuse Large B-cell Lymphoma (DLBC) in TCGA dataset. Therefore, the mutational load of
our B-ALL dataset in is concordance with that of the TCGA dataset, with slight deviation.

3.3. Signature Pathways across B-ALL Samples

The pathway analysis revealed some signature pathways in the B-ALL patients studied
in this manuscript. Among the top affected pathways were RTK-RAS, PI3K, NOTCH,
Cell_cycle, TP53, etc. which are affected across a substantial number of B-ALL samples
(Figure 4). The Ras pathway, Notch pathway, epigenetic modification, and cell-cycle
regulation are already known for their involvement in childhood ALL [16]. Therefore,
the most affected pathways discovered in our B-ALL cohort were in agreement with
previous findings.
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3.4. Somatic Interaction of Mutations

Mutually exclusive or co-occurring mutational events are very important in cancer
biology. To analyze such events, a Pair-wise Fisher’s Exact test was used. TET2 with FGFR3
and NOTCH4, and NOTCH4 with FGFR3 showed significant co-occurring mutations
(Figure 5). This interplay of genetic mutations in TET2, FGFR3, and NOTCH4 genes could
potentially be indicative of B-ALL pathogenesis.
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3.5. Potential Cancer Driver Genes in B-ALL

The gene(s), when mutated, provide selective growth advantages to tumor cells and
are defined as cancer driver gene(s). These driver mutations/genes are positively selected
during clonal evolution of tumors. To identify potential cancer driver genes we applied the
algorithm called “oncodrive” within Maftools. Oncodrive is based on the OncodriveCLUST
algorithm [17], which leverages the observation that most of the activating mutations within
oncogenes are clustered around mutational hotspots. We could not find any cancer driver
genes statistically significant in our B-ALL dataset (Figure 6). However, when we sorted
the output of the oncodrive algorithm on the “number of mutations in clusters” we did see
a lot of oncogenes on the top of the list (Supplementary Data S1). This list included TP53,
APC, PTEN, EGFR, VHL, PDE4DIP, CDKN2A, TET2, PIK3CA, KIT, etc. Similarly, the list
when sorted out on the “fraction of mutations in clusters” contained important oncogenes
in leukemia CTNNB1, CEBPA, SOCS1, NRAS, IDH1, NPM1, PPP2R1A, PTPRT, MYD88,
and IDH2. The result of the “oncodrive” turned out to be statistically insignificant due to
very small number of samples (i.e., 12).

3.6. CSF3R Mutations

CSF3R’s recently emerging role in leukemia [18–21] prompted us to investigate the
genetic alterations of this gene in our B-ALL cohort. Surprisingly, we found three nonsyn-
onymous (S661N, S557G, D320N) and one stopgain (Q170X) mutation (Figure 7) in addition
to various other non-exonic mutations in the CSF3R gene (Supplementary Data S2). Out of
these four mutations, only one (D320N) is known in the dbSNP database with rs3918018
(probably a polymorphism), and the other three are novel somatic mutations. Moreover, the
D320N is also reported to be a confirmed somatic mutation in the COSMIC database. These
four potentially activating mutations occur exclusivity in four different B-ALL patients.
S661N, S557G, and Q170X CSF3R mutations occurred in patients 2106, 2110 and 2112,
respectively, who showed relapses, while patients bearing the D320N mutation showed
remission (Figure 2). These three patients (2106, 2110, 2112) were normal in the cytogenetic
and FISH assay without 9-p deletion. Therefore, we hypothesize that these nonsynonymous
potential activating CSF3R mutations could explain the pathogenesis of a few of the B-cell
acute lymphoblastic leukemia patients. Membrane proximal mutations (such as S661N and
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S557G in this current study) in CSF3R were reported to operate through the JAK/STAT
signaling pathway and truncation mutation (such as Q170X) through SFK-TNK2 signaling
pathways [21].
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Genetic alterations in the CSF3R gene have been reported recently in different leukemias
of myeloid and lymphoid origin. In Chronic Neutrophilic Leukemia (CNL) and atypical
Chronic Myeloid Leukemia (CML), many CSF3R oncogenic mutations have been reported
to segregate to two distinct regions of CSF3R, leading to preferential downstream signaling
pathways through the SRC family–TNK2 or JAK kinases [21]. A patient with CNL carrying
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the JAK-activating CSF3R mutation improved significantly after administration of JAK1/2
inhibitor ruxolitinib. Large-scale studies to calculate the incidence of CSF3R mutations in
AML and ALL showed that these are not common mutations but are often associated with
genetic alterations in core-binding factor gene abnormalities [19]. Prognostic impacts of
CSF3R mutations have been studied in a large number of patients (>2000) with pediatric
AML, and have shown that CSF3R truncation mutation is rare in pediatric AML [18].
Very recently, a truncation mutation in CSF3R in a patient with B-cell acute lymphoblas-
tic leukemia was reported, and the patient was shown to have a favorable response to
chemotherapy plus dasatinib [20]. This study is supportive of our finding of a truncation
mutation Q170X in the CSF3R gene in B-ALL patient. Conclusively, we report novel and
known genetic variants of CSF3R in patients with B-ALL in our study. The functional
implications of these CSF3R mutations require further characterization of a large number
of B-ALL patients and their samples.

4. Conclusions

CCP resulted in a mutational landscape of B-ALL patients with 9-p deletion and/or
negative cytogenetic or FISH examination. The analysis of these mutational landscapes
identified both novel and known somatic mutations in known cancer genes and also in
novel genes such as CSF3R in B-ALL patients. We observed two types of mutations in the
CSF3R gene (reported in literature): the first type of mutations lie in membrane proximal
regions (D320N, S557G, S661N) and the second type is a truncation or nonsense mutation
(Q170X). Although Q170X leads to a truncated protein product, further functional valida-
tion is required to understand its mechanism of activation of the downstream signaling
pathway. Mutations in the CSF3R gene could potentially explain the relapse of the three pa-
tients with normal cytogenetic and FISH results. Therefore, we conclude that the cytokine
receptor family, e.g., CSF3R, should be explored for its oncogenic potential in B-ALL.

Moreover, this study has some inherent limitations, such as a small sample size, lack
of functional validation and characterization, etc. The functional validation of identified
somatic mutations in CSF3R would be very useful, and we are working along this line.
Availability of large number of samples under a multi-center program/consortium to
overcome the difficulty of sample recruitment would lead to validation of our findings and
association studies with the clinical data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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