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Abstract: Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum, has
seen a resurgence over the past years. T. pallidum is capable of early dissemination and immune
evasion, and the disease continues to be a global healthcare burden. The purpose of this study
was to design a multi-epitope immunogen through an immunoinformatics-based approach. Multi-
epitope immunogens constitute carefully selected epitopes belonging to conserved and essential
bacterial proteins. Several physico-chemical characteristics, such as antigenicity, allergenicity, and
stability, were determined. Further, molecular docking and dynamics simulations were performed,
ensuring binding affinity and stability between the immunogen and TLR-2. An in silico cloning was
performed using the pET-28a(+) vector and codon adaptation for E. coli. Finally, an in silico immune
simulation was performed. The in silico predictions obtained in this work indicate that this construct
would be capable of inducing the requisite immune response to elicit protection against T. pallidum.
Through this methodology we have designed a promising potential vaccine candidate for syphilis,
namely Tpme-VAC/LGCM-2022. However, it is necessary to validate these findings in in vitro and
in vivo assays.

Keywords: Treponema pallidum; sexually transmitted infection; syphilis; chimeric multi-epitope
vaccine; immunoinformatics

1. Introduction

Syphilis is a sexually transmitted infection (STI) caused by Treponema pallidum sub-
species pallidum, which belongs to the genus Treponema. Other pathogens from the genus
cause various other non-venereal infections, such as endemic syphilis (T. pallidum subsp.
endemicum), yaws (T. pallidum subsp. pertenue), and pinta (T. carateum) [1]. T. pallidum subsp.
pallidum is a spiral-shaped, slow-growing, obligate human pathogen with a genome size of
approximately 1.14 Mb, a protein count of 967, and a GC% content of 52.8%. Long term
culture methods for cultivating T. pallidum have only recently been developed, and require
co-culture with Sf1Ep cottontail rabbit epithelial cells [2]. The disease occurs in three stages:
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primary (First two to three weeks, chancres at site of infection), secondary (lesions and
rashes throughout body, can take months to resolve), and tertiary (long term neural and
cardiovascular complications), alternated with a latent stage (asymptomatic), which can
occur at any point of the infection [3]. Treponema pallidum subsp. pallidum can also cause
congenital syphilis in infants through vertical transmission, known as mother-to-child
transmission (MTCT). The infection occurs during gestation and can lead to fatal infections
in neonates [3].

Syphilis continues to be a worldwide healthcare burden. Even though the infection is
easily identifiable and treatable, it is endemic in developing countries and on the rise within
selected populations, specifically, men who have sex with men (MSM) and female sex
workers (FSW), particularly within the HIV-positive population in developed countries [4].
According to the World Health Organization (WHO), six million people are infected with
syphilis each year, and 2.5 million cases of yaws, bejel, and pinta are reported each year [3,5].

Currently, Africa, the Americas, and the Western Pacific are the regions most afflicted
by incident cases [5]. Of those, an exceptional burden is on populations of pregnant women.
Untreated syphilis in pregnancy is a leading cause of fetal and antenatal morbidity and
mortality, resulting in high numbers of stillbirths, preterm infants, and cases of congenital
syphilis [4]. According to the WHO, syphilis causes about 200,000 fetal and neonatal deaths
each year, and about 215,000 infants are placed at risk of early death [5]. Gay men and
sex workers are two other populations at-risk, with a high prevalence of STIs such as
syphilis [5].

While syphilis can still be treated with penicillin with no occurrence of penicillin-resistant
strains, there have been cases of macrolide-resistant strains, such as Azithromycin [6]. The
disease’s prevalence in spite of the pathogen’s sensitivity to penicillin indicates the pathogen
is unlikely to be controlled through screening and treatment alone [7]. Despite concerted
efforts from the WHO to contain congenital syphilis and joint efforts to halt the spread of
sexually transmitted syphilis, it remains a challenging disease to tackle as a result of various
limiting factors [8]. Among said limiting factors, the pathogen’s difficulty to cultivate and
study, the social stigma associated with the disease, its comorbidity with HIV, and the absence
of a vaccine are of note [8].

Proof-of-principle for successful syphilis vaccination in the rabbit model was estab-
lished in 1973, indicating development of a T. pallidum vaccine could be viable, but the
immunization procedure demonstrated then was untenable for human application [9].
Attempts to develop a syphilis vaccine have since focused on the targeting of the bac-
terium’s outer membrane proteins (OMPs), of which there are few, and the few that are
known are difficult to isolate [7,9]. Certain OMPs had limited potential in eliciting a
protective response, suggesting that no single protein will confer full protective immu-
nity against T. pallidum [10]. In this study, we sought to tackle the limitations to syphilis
vaccine design through the use of computational biology and using an immunoinformatics-
based approach.

Modern computational biology techniques, such as reverse vaccinology (RV) and
immunoinformatics, have proven to be powerful tools for reducing resources and min-
imising the time typically spent in developing vaccines [11]. The usage of RV allows us
to identify potential vaccine targets of interest in the pathogen’s genome while ensuring
that no host-homologous sequences are in use. Immunoinformatics allows us to filter
epitopes of the target protein according to their capacity to induce an immune response in
the host [12]. It has been used to identify vaccine targets and drive vaccine development
for a number of bacteria, viruses, parasites, fungi, as well as for cancers [13].

2. Materials and Methods
2.1. Selection of Target Antigenic Proteins

In order to search for and determine epitopes capable of eliciting an immune response
from the host, 15 proteins, previously determined to be potential vaccine targets through
reverse vaccinology, were selected from the work of Jaiswal et al. 2017 [14]. Their analysis
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of the Pan-genome of all available T. pallidum genomes identified potential vaccine targets
in the core genome of T. pallidum sequences. Since these are core proteins, which are present
in all T. pallidum strains, and were predicted to be surface-exposed, they are likely to have
high expression levels across multiple strains and high immunogenic potential [14]. In
addition, the proteins are non-homologous to the host, likely essential to the pathogen,
and were predicted to be potential antigens [14]. Three other proteins considered to
be immunogenic in previous in vivo studies using the outbred rabbit model were also
added [15–17]. The amino-acid sequences for each protein, used as the database for this
search, were retrieved from the National Center for Biotechnology Information (NCBI)
Database. Eighteen proteins were selected for analysis (Table S1).

2.2. Prediction of MHC-I Allele Binding CTL Epitopes

For the cytotoxic T lymphocyte (CTL) epitope prediction, in an effort to improve the
confidence in the selected epitopes, two different platforms were used, both of which were
used to predict nine amino-acid residue long sequences. The Immune Epitope Database
and Analysis Resource (IEDB-AR) is robust and has multiple epitope prediction tools [18].
The major histocompatibility complex I (MHC-I) binding epitope prediction tool was
used to identify CTL epitopes in the target proteins. In order to design an immunogen
capable of inciting a response in a wide range of population worldwide, a reference set of
27 MHC-I alleles, which has a high frequency in the global population, was selected for
epitope binding [19]. The IEDB-AR recommended 2020.09 (NetMHCpan EL 4.1) prediction
method was used. Only epitopes having a percentile rank of <1% and an IC50 of <500 nM
were selected.

We also applied a tool to assess antigenic processing and transportation. This tool,
NETCTL-1.2, uses the ANN and SMM methods to perform predictions. All of the allele
supertypes (A1, A2, A3, A24, A26, B7, B8, B44, and B58) [20], which were used in the
previous step and are available in this platform, were also used in this step.

2.3. Prediction of MHC-II Allele Binding HTL Epitopes

To predict MHC-II epitopes for binding to Helper T Lymphocytes (HTL), we used two
high-quality predictors [21] to identify the higher confidence epitopes, with a standard
sequence length of fifteen amino acid residues. The IEDB-AR MHC-II binding epitope [18]
and NETMHCII-2.3 [22] tools were used in combination. In this step, only IEDB-AR
epitopes with a percentile rank < 3% and IC50 < 1000 nM were kept in the study. The
platform NETMHCII-2.3 used an ANN with diverse epitope databases to perform the
predictions. High-frequency alleles described in Greenbaum et al., 2011 [19] were used in
the MHC-II prediction, both for the IEDB-AR and the NETMHCII 2.3 predictions.

2.4. Prediction of B-Cell Epitopes

We have used the ABCpred tool, an ANN-based tool for the prediction of linear B-cell
epitopes, using the default parameters [23].

2.5. Filtering Best Epitopes from Each Protein

We run an in-house python script to determine shared epitopes between the two
MHC-I and MHC-II prediction methods and select the predicted epitopes with high con-
fidence between the prediction methods. Finally, we run the script to select overlapping
epitopes between MHC-I and B epitopes and MHC-II and B epitopes, that is, epitopes
capable of inducing cellular and humoral immune responses. In this case, the window was
2–9 residues for CTL epitopes and 2–15 residues for HTL epitopes. Only the epitopes that
showed overlaps in the two cases were selected for further analysis. In order to filter down
the number of epitopes and carefully define the final structure, further filtering steps were
performed: MHC-II epitopes were filtered based on IC-50, keeping only epitopes with IC50
of up to 50 nM [24]. MHC-I epitopes were filtered using IEDB-AR’s immunogenicity tool
with a cut-off of 0.1, indicating a higher probability of selecting immunogenic epitopes [25].



Vaccines 2022, 10, 1019 4 of 18

Only overlapping CTL and HTL epitopes were selected. The remaining epitopes that
differed by only one or two residues were filtered, selecting only those with lower IC50 or
higher immunogenicity. The final epitopes were used to construct two different chimeric
proteins, which were compared in regards to the overall population coverage of the alleles
used in their construction [26], as well as their physico-chemical properties.

2.6. Construction of Multi-Epitope Immunogen Sequence

To determine the final sequence of the chimeric protein, the final epitopes were merged
using appropriate linker peptides, the purpose of which is to assist in protein folding and
processing. CTL epitopes were linked by AAY linkers, and MHC-II epitopes were joined
by GPGPG linkers [11]. The selected adjuvant was the cholera enterotoxin B-subunit
(ctxB) [27], linked to the rest of the sequence by the peptide linker EAAAK. Two separate
immunogens were constructed, and the immunogen with the higher overall population
coverage was selected.

2.7. Prediction of Antigenicity, IFN-γ Induction, Toxicity, and Allergenicity of the Multi-
Epitope Immunogen

The final chimeric protein structure was subjected to several analyses to answer im-
portant questions regarding its induction of immune response, allergic and toxic potential,
and physico-chemical properties. First, VaxiJen was used to assess the antigenic capacity of
the amino acid sequence through the automatic cross-covariance method, evaluating the
physico-chemical properties of the protein and predicting its immunogenicity without per-
forming alignments [28]. Epitopes capable of inducing IFN-γ production with consequent
TCD4+ lymphocyte activation were identified with the IFNepitope predictor, which uses
an SVM hybrid method based on protein motifs to perform prediction [29]. The protein
sequence was then evaluated for toxic potential by submitting it to Toxinpred [30]. In
addition, Allertop v.2.0 was used to evaluate the protein’s allergenic propensity based on
the amino acid chain structure [31].

2.8. Physico-Chemical Properties and Host and Microbiota Homology Analyses

The molecular mass, theoretical pI, extinction coefficient, aliphatic index, grand aver-
age of hydropathicity (GRAVY), estimated half-life for three model organisms (Escherichia
coli, yeast, and mammal cells), and instability index of the final protein sequence were
evaluated through the ProtParam tool [32]. The solubility index was measured through
the Protein-Sol tool [33], which evaluates the protein based on E. coli expression data. The
Pipeline Builder for Identification of drug targets for infectious diseases (PBIT) tool [34]
was used to search for homology between the chimeric protein and the proteome of the
host as well as the gut microbiota of the host.

2.9. Secondary Structure Prediction

The PSIPRED prediction tool was used to determine the secondary structure of the
final protein. This tool makes use of a complex ANN and Position-Specific Scoring Matrix
(PSSM) based approach to predict the structure and generate pictures [35]. The RaptorX
tool was used to provide the ratios of β-strands, α-helixes, and coils.

2.10. Tertiary Structure and Refinement

We used Phyre2 intensive model, RaptorX, and I-TASSER servers to select the best
structure for tertiary structure prediction. The Phyre2 intensive method consists of multiple
alignments of the sequence of interest with homologous sequences, followed by secondary
structure prediction with PSIPRED. Information from these two steps was combined to
determine a hidden Markov model. A search for this model was performed in an HMM
database of proteins with known structures, and the model with the best score was used
to determine modelling and correct errors [36]. RaptorX, which uses multiple-template
threading (MTT) and scoring methods to indicate the quality of the models [37]. Finally,
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I-TASSER constructed the model with an iterative method based on templates according to
fragment assembly simulations with further refinement [38]. Methods for the refinement
of amino acid side chains using light and aggressive relaxation were applied through the
GalaxyRefiner tool to improve model quality by enhancing the local and global structure
of the chimeric protein [39]. To check the quality of the refined structure, we used the
PROCHECK tool, available in the SAVES server V6.0, to generate the Ramachandran plot,
comparing the structure of the chimeric protein with the geometry of amino acid residues
resulting from high-quality structures [40].

2.11. Prediction of Conformational B Cell Epitopes

Conformational epitopes are indispensable in stimulating immune responses. The
refined structure was submitted to ElliPro to predict these discontinuous epitopes [41].

2.12. Molecular Docking between the Chimeric Protein and the TLR-2 Recepto

The Toll-like receptor 2 was identified as a vital receptor in detecting T. pallidum
infection and assembling an effective immune response against the pathogen [42]. We
retrieved the Toll-like receptor-2 (TLR-2) structure from RCSB: (PDB ID: 2z7x) database to
determine the interactions of the chimeric protein with this receptor. The structure was
edited with the Chimera visualization software, removing water molecules, ligands and
side chains [43]. In order to verify the interactions between the chimeric protein and the
TLR-2, molecular docking was performed using the Swarmdock server. The proteins were
subjected to blind docking, attempting to find the lowest energy conformations across the
whole protein. [44]. Hydrogen bonds and hydrophobic interactions were evaluated using
the LigPlot+ program [45]. The PDBePISA tool was used to calculate the solvation free
energy gain (∆iG) of the final selected complex [46].

2.13. Molecular Dynamics Simulation of the Receptor-Ligand Complex

We performed the molecular dynamics simulation using the Gromacs v5.0 program [47]
to enhance understanding of the microscopic structural properties of the interaction be-
tween the chimeric protein and the Toll-like receptor. To set simulation parameters, we
prepared the software in the following manner: To construct protein topology and in-
formation about bonded and non-bonded characteristics, pdb2gmx will be used. The
structure will be solvated in a cubic box of TIP3P water molecules. The complete system
simulation was performed with the GROMOS96 43A1 force field, and a concentration of
150 mM sodium chloride (NaCl) ions were introduced to neutralize the system. Energy
minimization was executed to ensure the quality of the system’s geometry and the absence
of steric clashes. For this purpose, the steepest descent algorithm was applied. Simulation
time was 90 ns.

2.14. In Silico Cloning

In silico cloning was performed to verify the capacity of cloning and expression of
the protein in an appropriate expression vector. For this, the codon usage of our peptide
sequence was adapted according to the codon usage of the E. coli expression system. For
this purpose, the JCat tool was used for reverse translation. From that cDNA sequence, the
codon optimisation for E. coli k12 was performed, returning the Codon Adaptation Index
(CAI), which must have a score higher than 0.8, and the GC content should be between
30–70% [48]. Simulation and visualization of the in silico cloning were performed through
the SnapGene® software (from Insightful Science, available at snapgene.com) accessed on
1 October 2021, where the sequence of the chimeric protein was inserted in the pET-28a(+)
plasmid with the help of Blpi and BamHI restriction enzymes.

2.15. Immune Simulation of Multi-Epitope Immunogen

We used the C-ImmSim server to run an immunological simulation to enhance the
description of the immune response outlined by the chimeric protein [49]. The in silico
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method uses PSSM for epitope prediction and machine learning to assess interactions. The
model also simulates the anatomical regions where crucial events of immunity occur: the
bone marrow, where the lymphoid and myeloid cells are produced; the thymus, where
the autoreactivity process happens; and the tertiary lymphatic organ, where antigenic
presentation occurs, which describes the immunogenic profile. Three injections containing
1000 immunogen proteins each were given at four-week intervals for the simulation. Time
steps were set at 1, 84, and 168 (each step representing eight real-life hours and time step
1 being injection time = 0). The total steps were modified to 1050, and other parameters
were kept at the default. To check the effectiveness of the selected epitopes, we used the C-
ImmSim tool again to simulate injections for only the adjuvant sequence while maintaining
parameters, as described above.

3. Results
3.1. Predicted CTL Epitopes

Epitopes were predicted using the IEDB-AR database, yielding epitopes that can be
recognized by MHC-I alleles with high frequency in the global population for all 18 proteins
under analysis. We also submitted these proteins to the NETCTL 1.2 server to improve the
confidence of the chosen epitopes. These epitopes had the size of nine amino acid residues.

3.2. Predicted HTL and B-Cell Epitopes

MHC-II epitopes were predicted through the IEDB-AR and netMHCII 2.3 tools. IEDB-
AR epitopes were predicted to bind to the most common MHC-II alleles, according to the
IEDB-AR database. These epitopes had a size of 15 amino acid residues.

The protein sequences were submitted to the ABCpred tool, and 16-mer epitopes, with
scores higher than 0.51, were predicted for all 18 proteins according to the ability to interact
with B lymphocyte receptors.

3.3. Overlapping Epitopes for Both Humoral and Cellular Responses

High confidence epitopes were selected based on their overlap between the two
methods for each category, MHC-I and MHC-II, for each protein at a time. Finally, epitopes
capable of inducing both humoral and cellular responses were selected according to the
overlap between each category and B epitopes. The number of overlapping MHC-I and
B epitopes was 729. The number of overlapping MHC-II and B epitopes was 521. These
epitopes were subjected to the next screening methods. After the IC-50 screening, 112 MHC-
II/B epitopes fit the new threshold. When the immunogenicity screening was applied,
269 MHC-I/B epitopes had scores higher than 0.1. The remaining epitopes were subjected
to a search for overlapping MHC-I and MHC-II epitopes, keeping 37 MHC-I epitopes and
presenting sequences overlapping with 32 MHC-II epitopes. These epitopes were used to
construct two different chimeric immunogens, which were then compared in regards to
their overall population coverage and physico-chemical properties. The chimeric protein
that was selected was composed of 11 MHC-I epitopes and 15 MHC-II epitopes belonging
to ten different proteins (Table 1). The final version of Tpme-VAC/LGCM-2022 had an
overall population coverage of 99.93% of HLA Alleles (Figure S1).

3.4. Constructed Multi-Epitope Vaccine Sequence (Tpme-VAC/LGCM-2022), and Host and
Microbiota Homology

The Treponema Pallidum Multi Epitope-Vaccine/Laboratory of Cellular and Molecular
Genetics-2022 (Tpme-VAC/LGCM-2022) is composed of the following sequences: the
cholera enterotoxin B subunit (ctxB) followed by the linker peptide EAAAK. Then, CTL
epitopes linked by AAY linker peptides, followed by HTL epitopes linked by GPGPG
linker peptides (Figure 1A). The chimeric protein was found to be non-host and non-gut-
microbiota homologous.
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Table 1. Final epitopes selected for immunogen construct. Highlighted in bold is the overlap between
MHC-I and MHC-II epitopes.

GENE
ID/NAME MHC EPITOPE PERCENTILE

RANK

1

TP_0049

I HLRTFLAAV 0.12

2 II CPSVCHLRTFLAAVR 0.9

3 I SVCGPDFLY 0.22

4

TP_0323

I ASVALFYAY 0.1

5 II VGMAVAASVALFYAY 1.1

6 II IELFSALPYALTVVV 0.6

7 II EGLMMFGAFSTATVT 0.7

8

TP_0335

I AAAVTEYAF 0.14

9 II VLHAAAAVTEYAFVL 0.8

10 I AVHALWNAY 0.05

11 I HALWNAYAI 0.21

12 II VHALWNAYAIAAAAR 0.25

13 I TLFAGAAGA 0.07

14 II RPAGSATLFAGAAGA 0.9

15

TP_0430/ntpK

I AAAAGADAL 0.59

16 II GRAAAAGADALAETG 0.25

17 I GMFGAAAVL 0.15

18 II GMFGAAAVLGISAVG 0.4

19 TP_0435/nlpE I YMGAPGAGK 0.11

20
TP_0557

I RAVRTLLII 0.72

21 II KRMWRAVRTLLIICA 0.5

22 TP_0733 II GGGGFHLGYEYFFTK 0.3

23 TP_0972/ftr1 II VGVFVAIRFLSVRLP 0.12

24
TP_0326/BamA

II GIVSFDFFFDAAMVY 0.12

25 II GQKWTYELYLEILQK 0.03

26 tprK II DYAQARAPAAGAKVS 1.1

3.5. Secondary and Tertiary Structural Properties of Tpme-VAC/LGCM-2022

The result of PSIPRED showed that, among the 558 residues of the sequence, there
was an arrangement of 48% α-helices, 15% β-strands, and 37% coil formation (Figure S2).

Three different prediction methods were applied to find the model with the best
structural quality. The highest quality model was constructed by the RaptorX server, the
Ramachandran plot of this model showing 92.9% of residues in most favored regions
(Figure S3). After structural refinement through the GalaxyRefiner tool, the highest quality
model had 94.9% amino acid residues in the most favored regions and only 0.2% in a
disallowed region (Figure 1B,C).

3.6. Antigenicity, IFN-γ Production, and Conformational B-Cell Epitopes in
Tpme-VAC/LGCM-2022

The chimeric protein sequence was determined as a probable antigen according to
the VaxiJen tool, with a score of 0.6852. The IFNepitope tool, using the SVM method,
predicted 230 epitopes with positive and negative scores. Among these, 69 epitopes had a
score greater than 1, considered more capable of inducing the production of this cytokine
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(Table S2). The final refined structure of the protein was submitted to ElliPro, and five
conformational epitopes with scores above 0.7 were predicted (Figure S4, Table S3).

Vaccines 2022, 10, 1019 8 of 18 
 

 

 
Figure 1. (A) Multi-epitope immunogen (Tpme-VAC/LGCM-2022) construct with highlighted pep-
tide linkers and epitopes. Sequence length is 558 amino acid residues. (B) Three-dimensional struc-
ture modelling of the chimeric protein after refinement by GalaxyRefiner. (C) Ramachandran plot 
for the model after refinement, showing 94.9% residues in most favored regions and 0.2% in disal-
lowed regions. 

3.6. Antigenicity, IFN-γ Production, and Conformational B-Cell Epitopes in  
Tpme-VAC/LGCM-2022 

The chimeric protein sequence was determined as a probable antigen according to 
the VaxiJen tool, with a score of 0.6852. The IFNepitope tool, using the SVM method, pre-
dicted 230 epitopes with positive and negative scores. Among these, 69 epitopes had a 
score greater than 1, considered more capable of inducing the production of this cytokine 
(Table S2). The final refined structure of the protein was submitted to ElliPro, and five 
conformational epitopes with scores above 0.7 were predicted (Figure S4, Table S3). 

  

Figure 1. (A) Multi-epitope immunogen (Tpme-VAC/LGCM-2022) construct with highlighted
peptide linkers and epitopes. Sequence length is 558 amino acid residues. (B) Three-dimensional
structure modelling of the chimeric protein after refinement by GalaxyRefiner. (C) Ramachandran
plot for the model after refinement, showing 94.9% residues in most favored regions and 0.2% in
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3.7. Physico-Chemical Properties, Toxicity, and Allergenicity of Tpme-VAC/LGCM-2022

According to the ProtParam web tool, the theoretical molecular mass of the protein
is 56,596.15 (56.59 Kd), and its isoelectric point (pI) is 9.03, indicating activity in a basic
environment. The Instability Index (II), which is related to the stability of the protein, is
29.92, characterizing it as stable. Its estimated half-life in in vitro mammalian reticulocytes
is 30 h, >20 h in in vivo yeast, and >10 h in in vivo E. coli. The protein’s aliphatic index,
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which is associated with stability in the face of temperature changes, was 83.89, the high
indexes indicating greater stability. The grand average of hydropathicity (GRAVY) is 0.398,
with positive values indicating hydrophobicity. According to Protein-Sol, the predicted
scaled solubility was 0.378, a score that is lower than the solubility threshold, which is 0.45,
related to solubility in E. coli, scores above it having higher solubility than the average.
The pI according to this predictor was 9.520. According to the AllerTOP and ToxinPred
tools, the chimeric protein sequence of the chimeric protein has shown no prospect of being
allergic or toxic to humans.

3.8. Tpme-VAC/LGCM-2022docks with the TLR2 Receptor

Docking results were evaluated according to binding energy, number of members in
a cluster, number of hydrogen bonds, and hydrophobic interactions. The binding energy
between the chimeric protein with the TLR-2 receptor was −65.97, comprising ten hydrogen
bonds. Three of the Tpme-VAC/LGCM-2022 residues involved in hydrogen bonds (Gln24,
Thr22, His20P) belong to the adjuvant, while the remainder of the residues (Asp147, Tyr150,
Ala185, Tyr189, Arg202) belong to the selected epitopes. These bonds were formed between
the vaccine construct and the extracellular portion of the TLR-2 chain. Moreover, 21 residues
were involved in hydrophobic interactions, of which 8 (Met1, Ile2, Lys5, Phe6, Gly7, Val8,
Phe9 and Gly21) belonged to the adjuvant, while the remainder (Ala128, Leu135, Ala139,
Val143, Leu149 Ala188, Phe192, Ala195, Ala199, Ala200, Ala203, Trp240 and Pro261) belong
to the selected epitopes (Figure 2). PDBePISA calculated the ∆iG of the complex to be
−20.6 kcal/mol. A negative ∆iG value corresponds to hydrophobic interfaces, or positive
protein affinity.

3.9. Tpme-VAC/LGCM-2022-TLR2 Complex Is Stable in Molecular Dynamics Simulation

The stability of the interaction between the best-docked complex was evaluated by
molecular dynamics using GROMACS 5.0. In MD simulation protocol, the energy min-
imized structure was carried out in phases: equilibration under a constant number of
particles, volume, and temperature (NVT) at 300 K, and a constant number of particles,
pressure, and temperature (NPT) at 1 bar, during which the protein atoms and the solvent
molecules were allowed to equilibrate around the protein molecule for 1 ns. The system
was analyzed using root-mean-square deviation (RMSD) and root-mean-square fluctua-
tion (RMSF). The pressure plot indicated a fluctuation around 0.5 bar within the 1000 ps
stabilization phase (Figure 3A). The temperature plot indicates the system maintained a
temperature of 300 K during the same interval (Figure 3B).

The interaction was analyzed by RMSD, which reflects the complex’s structural sta-
bility. The RMSD plot shows a fluctuation ranging from 0.13 nm to 1.6 nm after an 80 ns
time interval. This mild fluctuation indicates the stability of the complex during the tested
time interval. To reflect the fluctuation of amino acid side chains, RMSF was analyzed. The
RMSF plot shows mild fluctuations of RMSF values around 0.5, indicating uninterrupted
interactions between receptor and ligand, and higher peaks with RMSF values around 2.0,
indicating highly flexible loop regions in the complex (Figure 3C,D).

3.10. Codon Adaptation and in silico Cloning of Tpme-VAC/LGCM-2022

Using the JCat tool to perform E. coli k12 codon adaptation of the protein sequence, we
obtained the reverse translated sequence for the protein. The GC content of the sequence
was 56.45%, within the optimum range of 30–70%. The CAI index was 1.0 and within
the allowed range. Using the SnapGene tool, we created BlpI and BamHI restriction sites
to insert our Tpme-VAC/LGCM-2022 sequence into the pET-28a(+) plasmid vector. The
complete length of the insert was 1680 bp (Figure 4).
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Figure 2. Molecular docking of the Tpme-VAC/LGCM-2022 with the TLR-2 receptor structure
representing the interaction with the lowest energy score. 3D structure of the complex. In green, the
chimeric protein, and purple is the TLR-2. 3D structure of the complex, highlighting 2D representation
of the interactions between TLR 2 and the chimeric protein. The figure represents the residues of the
chimeric protein (Chain-B) and TLR2 receptor (Chain-A) with hydrogen bonds (green dotted lines).
The residues involved in hydrophobic interactions are shown (Red).

3.11. Tpme-VAC/LGCM-2022 Could Simulate Immune Response

The results provided by the C-ImmSim tool for immune response simulation were
compatible with and indicative of the development of immunity. Regarding the B cells
population, the simulation predicted an increase in memory cells throughout immunogen
injection points with a strong differentiation to the production of IgG and IgM and a
decrease in memory B cells. Further, a significant production of the IgM + IgG, IgG1,
and IgG1 + IgG2 immunoglobulins is noted over the injections, which are relevant to
complement fixation, induction of innate response, and Th1 cell activation (Figure 5A–C).
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due to the highly flexible loop regions in the complex.

In regards to T lymphocytes, an increase in T-helper populations with a strong Th1 dif-
ferentiation was observed. Th1 lymphocytes are major inducers of cytotoxic T lymphocyte
proliferation. They increase their cytotoxic capacity and stimulate the production of IFN-γ.
The results also indicate a growth in the active cytotoxic cell population, with a decrease
in the number of resting cells (Figure 5D–G). In regards to the innate immune system,
the results followed the expected response patterns for the activation and proliferation of
natural killer cells and macrophages.

In general, the immune simulation showed an increase, mainly during the secondary
and tertiary response in cell types and cytokines that are vital in sustaining effective
immune responses with clear peaks on injection days. There is also a clear decrease in the
level of active cells a few days after the third injection, which, together with the evidence
of the probable induction of the IL-10 and TGF-β cytokines, indicates an attempt by the
immune system to control the response and prevent exacerbation (Figure 5H).
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We compared the results from the simulation performed with those from our chimeric
protein simulation using only the adjuvant. The comparison revealed a less intense prolifer-
ation of B cells populations on the adjuvant simulation, indicating the effect of the selected
epitopes on the induction of B lymphocytes in silico. This pattern was not maintained
in relation to immunoglobulin production, indicating a better activation of the humoral
system by the adjuvant than the immunogen. The comparison of the simulations also
showed similar patterns for the induction of cytotoxic T cells and cytokine production
(Figures S5–S8). A simulation performed with only the epitopes showed similar patterns of
immune activation to the full immunogen simulation (Figures S9–S12), indicating that the
epitopes are responsible for the immune response elicited by the multi-epitope immunogen.
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4. Discussion

The application of current immunoinformatics approaches in the development of
multi-epitope immunogens has assisted in the acceleration of the slow and costly vaccine
development process, as it allows for the efficient screening of genome sets and identifi-
cation of candidates [13,50]. This class of vaccine is designed to trigger both the innate
and adaptive immune systems, generate protective memory, and reduce the chance of side
effects, as well as spontaneous reversions that occur in attenuated vaccines [50]. Peptide-
based vaccines are also cheaper and easier to produce on a large scale, can be easily stored
and transported due to freeze-drying, and do not require the cultivation of the infectious
bacterium [50]. The limitations associated with T. pallidum research have meant that there is
currently no clinical vaccine for syphilis. Some putative vaccine targets have been identified,
but so far have not been successful in eliciting an adequate protective response in vivo [7].

The constructed immunogen may be used as a peptide-based subunit vaccine, and
our in silico predictions indicate that it may be a strong candidate for protection against
T. pallidum. In addition, the immunogen may also be used in the research and development
of new diagnostic methods for syphilis [51].

The immunoinformatics strategy adopted in this study aimed to provide a multi-
epitope immunogen consisting of epitopes selected from the core genome of the pathogen,
thus ensuring its coverage of various strains and the scope of the displayed antigens.
These epitopes were derived from eighteen T. pallidum vaccine targets. The T. pallidum
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Outer Membrane Proteome (OMPome) are generally regarded as promising candidates
for vaccine targets in syphilis research [52]. Among the vaccine candidates selected for
the study, four proteins (TP0897, TP0126, TP0326 and TP0733) are part of the T. pallidum
OMPome [52].

During syphilis infection, the resolution of primary and secondary syphilitic le-
sions has generally been associated with cellular infiltrates of predominantly T-cells and
macrophages. Clearance of primary lesions in humans is associated with a strong CD4+

T-cell response, as well as the presence of macrophages and NK cells, whilst clearance of
secondary legions is associated with a higher abundance of CD8+ T-cells. The induction
of delayed-type hypersensitivity (DTH) and Th1-mediated opsonophagocitosis, which
is induced mainly by CD4+ T-cells, is thought to be the main mechanism of clearance in
syphilitic lesions. While this evidence points strongly to the importance of cell-mediated
immune response in the response to T. pallidum infection, there is also evidence pointing
that the humoral immune response is also essential. T. pallidum opsonophagocitosis has
been shown to be dependent on the presence of Immune Patient Serum, highlighting the
importance of the production of opsonic antibodies in the response to syphilis [10].

Aiming to design an immunogen capable of eliciting the desired response against the
bacterium, epitopes were selected for their ability to induce CTL, HTL, and B-cell responses
in various HLA supertypes, to stimulate both cellular and humoral immunity in a broad
range of the global population. This careful selection of epitopes also allowed for the
exclusion of potentially deleterious sequences for the construct, resulting in a multi-epitope
immunogen that is non-allergenic, non-toxic, and non-homologous to any host proteins.
One disadvantage of this approach is that, in contrast with whole pathogen vaccines,
multi-epitope immunogens lack some antigenic determinants, requiring the addition of
an enhancer as an adjuvant with strong antigenic properties [27]. The cholera enterotoxin
B-subunit (ctxB) protein was selected for this purpose.

The chimeric protein’s physico-chemical properties were determined to be within the
acceptable parameters for recombinant protein production and application as a sub-unit
vaccine. The sequence was optimized for expression in the E. coli K12 expression model
and cloned into an E. coli expression plasmid. Through modelling, molecular docking, and
molecular dynamics simulations, the multi-epitope immunogen was determined to be able
to form a strong, considerably stable binding to the TLR-2. TLR-2 is one of the main Toll-like
receptors involved in T. pallidum detection by the host, indicating its capacity to activate
the receptor. To enhance our understanding of the protein’s immunogenic capacity, an
immune simulation was performed. The results indicated it to be a putative inducer of both
the innate and adaptive immune systems, with wide differentiation of B-cell population,
antibody production, and high activation of Th1 Helper T-cells. Both types of responses are
vital to the clearance of active treponemes from syphilis wounds and limit the bacterium’s
ability to spread within the host [7]. The immunogen also induced both the differentiation
of immune memory-associated cells and the production of important cytokines to balance
the immune response.

5. Conclusions

In this study, a novel multi-epitope immunogen (Tpme-VAC/LGCM-2022), compris-
ing high-ranked epitopes from eighteen Treponema pallidum proteins, was constructed using
an immunoinformatics-based approach. Several criteria were applied to select epitopes
capable of inducing strong humoral and cellular responses while assessing the protein’s
allergenicity and toxicity to construct a safe immunogen. The designed immunogen has
suitable structural, physiochemical, and immunological properties that can successfully
elicit humoral and cellular immune responses against T. pallidum. Finally, the in silico
immune simulation enhanced our understanding of the capacity of the immunogen to
elicit an immune response, highlighting that it is capable of inducing both humoral and
cellular immune responses. This feature is vital in the development of a syphilis vaccine,
as both the clearance of active treponemes in infectious sites and prevention of its ability
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to spread within the host are key for effective syphilis prevention. Therefore, a promising
immunogen candidate for T. pallidum was designed, notwithstanding, to ensure immuno-
logic efficiency and memory development. Experimental validation must, however, be
performed in vitro and in vivo. Further validation of Tpme-VAC/LGCM-2022 may be
performed through the recombinant synthesis of the immunogen construct in a vector
expression system (pET-28a(+), for expression in E. coli). Once synthesized and purified,
the construct can then be used in in vitro and in vivo immunization assays in the rabbit
model before progressing to human studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines10071019/s1, Table S1. List of Treponema pallidum proteins selected for analysis.
Table S2. Predicted IFN-gamma inducing epitopes. 69 MHC-II epitopes capable to induce IFN-
gamma (positive) were predicted using the IFNepitope server hybrid method (MERCI and SVM)
default parameters. Table S3: Predicted conformational B-cell epitopes. The ElliPro server was
used to predict the conformational B cell binding epitopes via the 3D structure of the Mycoplasma
pneumoniae multi-epitope vaccine. Figure S1. Population coverage of the alleles used in the
construction of the final version of Tpme-VAC/LGCM-2022, with a total population coverage of
99.93%. Figure S2. Representation of the secondary structure of the chimeric protein. The results
showed an arrangement of alpha helices (48.0%), β-strand (15.0%), and coil formation (37.0%).
Figure S3. Three-dimensional structure modelling of the chimeric protein. (A) Model predicted by
RaptorX. (B) Ramachandran plot for the initial model, showing 92,9% residues in most favoured
regions and 0,7% in disallowed regions. Figure S4. Representation of B-lymphocyte conformational
epitopes with a score above 0.7 present in the chimeric protein sequence. (Red) 6 residue epitopes,
score: 0.969. (Green) 25 residue epitopes, score: 0.898. (Blue) 3 residue epitopes, score: 0.859. (Cyan)
85 residue epitopes, score: 0.745. (Purple) 107 residue epitopes, score: 0.741. Figure S5. Immuno
simulation results of only the adjuvant regarding B cell population. (A) B cell population per mm3 (B)
PLB cell population per mm3. Figure S6. Immuno simulation results of only the adjuvant regarding
immunoglobulin production. Figure S7. Immuno simulation results of only the adjuvant regarding
T lymphocyte populations. (A) Helper T-Cell population per state. (B) Helper T-Cell differentiation.
(C) Cytotoxic T-Cell population. (D) Cytotoxic T-Cell population per state. Figure S8. Immuno
simulation results of the chimeric protein regarding cytokine production. Figure S9. Immuno
simulation results of only the epitopes regarding B cell population. (A) B cell population per mm3 (B)
PLB cell population per mm3. Figure S10. Immuno simulation results of only the epitopes regarding
immunoglobulin production. Figure S11. Immuno simulation results of only the epitopes regarding
T lymphocyte populations. (A) Helper T-Cell population per state. (B) Helper T-Cell differentiation.
(C) Cytotoxic T-Cell population. (D) Cytotoxic T-Cell population per state. Figure S12. Immuno
simulation results of the chimeric protein regarding cytokine production.
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I Presented Peptides That Enhance Immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [CrossRef] [PubMed]

26. Bui, H.-H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting Population Coverage of T-Cell Epitope-Based
Diagnostics and Vaccines. BMC Bioinform. 2006, 7, 1–5. [CrossRef] [PubMed]

27. Nosrati, M.; Hajizade, A.; Nazarian, S.; Amani, J.; Namvar Vansofla, A.; Tarverdizadeh, Y. Designing a Multi-Epitope Vaccine
for Cross-Protection against Shigella Spp: An Immunoinformatics and Structural Vaccinology Study. Mol. Immunol. 2019, 116,
106–116. [CrossRef]

28. Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines.
BMC Bioinform. 2007, 8, 1–7. [CrossRef]

29. Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of Interferon-Gamma Inducing MHC Class-II Binders. Biol. Direct 2013, 8, 1–15.
[CrossRef]

30. Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Consortium, O.S.D.D.; Raghava, G.P.S. In Silico Approach for
Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [CrossRef]

31. Dimitrov, I.; Bangov, I.; Flower, D.; Doytchinova, I. AllerTOP v.2—A Server for in Silico Prediction of Allergens. J. Mol. Model
2014, 20, 1–6. [CrossRef]

32. Walker, J. The Proteomics Protocols Handbook; Springer Science and Business Media LLC: Totowa, NJ, USA, 2005. [CrossRef]
33. Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein–Sol: A Web Tool for Predicting Protein

Solubility from Sequence. Bioinformatics 2017, 33, 3098–3100. [CrossRef] [PubMed]
34. Shende, G.; Haldankar, H.; Barai, R.; Bharmal, M.; Shetty, V.; Idicula-Thomas, S. PBIT: Pipeline Builder for Identification of Drug

Targets for Infectious Diseases. Bioinformatics 2017, 33, 929–931. [CrossRef] [PubMed]
35. Jones, D. Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. J. Mol. Biol. 1999, 292, 195–202.

[CrossRef]
36. Kelley, L.; Mezulis, S.; Yates, C.; Wass, M.; Sternberg, M. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis.

Nat. Protoc. 2015, 10, 845–858. [CrossRef]
37. Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-Based Protein Structure Modeling Using the RaptorX

Web Server. Nat. Protoc. 2012, 7, 1511–1522. [CrossRef] [PubMed]
38. Yang, J.; Zhang, Y. Protein Structure and Function Prediction Using I-TASSER. Curr. Protoc. Bioinform. 2015, 52, 5.8.1–5.8.15.

[CrossRef]
39. Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB Server for Protein Structure Prediction and Refinement. Nucleic Acids Res. 2012, 40,

W294–W297. [CrossRef]
40. Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A Program to Check the Stereochemical Quality of

Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291. [CrossRef]
41. Ponomarenko, J.; Bui, H.; Li, W.; Fusseder, N.; Bourne, P.; Sette, A.; Peters, B. ElliPro: A New Structure-Based Tool for the

Prediction of Antibody Epitopes. BMC Bioinform. 2008, 9, 514. [CrossRef]
42. Marra, C.M.; Sahi, S.K.; Tantalo, L.C.; Ho, E.L.; Dunaway, S.B.; Jones, T.; Hawn, T.R. Toll-like Receptor Polymorphisms Are

Associated with Increased Neurosyphilis Risk. Sex Transm. Dis. 2014, 41, 440. [CrossRef]
43. Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.; Ferrin, T. UCSF Chimera–a Visualization System for

Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef] [PubMed]
44. Torchala, M.; Moal, I.; Chaleil, R.; Fernandez-Recio, J.; Bates, P. SwarmDock: A Server for Flexible Protein-Protein Docking.

Bioinformatics 2013, 29, 807–809. [CrossRef] [PubMed]
45. Laskowski, R.; Swindells, M. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model

2011, 51, 2778–2786. [CrossRef]
46. Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797.

[CrossRef] [PubMed]
47. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. GROMACS: High Performance Molecular

Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [CrossRef]
48. Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.; Jahn, D. JCat: A Novel Tool to Adapt Codon Usage of a

Target Gene to Its Potential Expression Host. Nucleic Acids Res. 2005, 33, W526–W531. [CrossRef]
49. Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools

for Molecular Binding in the Simulation of the Immune System. PLoS ONE 2010, 5, e9862. [CrossRef]
50. Moyle, P.; Toth, I. Modern Subunit Vaccines: Development, Components, and Research Opportunities. Chem. Med. Chem. 2013, 8,

360–376. [CrossRef]

http://doi.org/10.3390/ijms22063210
http://doi.org/10.1371/journal.pcbi.1006457
http://www.ncbi.nlm.nih.gov/pubmed/30408041
http://doi.org/10.1371/journal.pcbi.1003266
http://www.ncbi.nlm.nih.gov/pubmed/24204222
http://doi.org/10.1186/1471-2105-7-153
http://www.ncbi.nlm.nih.gov/pubmed/16545123
http://doi.org/10.1016/j.molimm.2019.09.018
http://doi.org/10.1186/1471-2105-8-4
http://doi.org/10.1186/1745-6150-8-30
http://doi.org/10.1371/journal.pone.0073957
http://doi.org/10.1007/s00894-014-2278-5
http://doi.org/10.1385/1592598900
http://doi.org/10.1093/bioinformatics/btx345
http://www.ncbi.nlm.nih.gov/pubmed/28575391
http://doi.org/10.1093/bioinformatics/btw760
http://www.ncbi.nlm.nih.gov/pubmed/28039165
http://doi.org/10.1006/jmbi.1999.3091
http://doi.org/10.1038/nprot.2015.053
http://doi.org/10.1038/nprot.2012.085
http://www.ncbi.nlm.nih.gov/pubmed/22814390
http://doi.org/10.1002/0471250953.bi0508s52
http://doi.org/10.1093/nar/gks493
http://doi.org/10.1107/S0021889892009944
http://doi.org/10.1186/1471-2105-9-514
http://doi.org/10.1097/OLQ.0000000000000149
http://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
http://doi.org/10.1093/bioinformatics/btt038
http://www.ncbi.nlm.nih.gov/pubmed/23343604
http://doi.org/10.1021/ci200227u
http://doi.org/10.1016/j.jmb.2007.05.022
http://www.ncbi.nlm.nih.gov/pubmed/17681537
http://doi.org/10.1016/j.softx.2015.06.001
http://doi.org/10.1093/nar/gki376
http://doi.org/10.1371/journal.pone.0009862
http://doi.org/10.1002/cmdc.201200487


Vaccines 2022, 10, 1019 18 of 18

51. Jameie, F.; Dalimi, A.; Pirestani, M.; Mohebali, M. Development of a Multi-Epitope Recombinant Protein for the Diagnosis of
Human Visceral Leishmaniasis. Iran. J. Parasitol. 2021, 16, 1–10. [CrossRef]

52. Radolf, J.D.; Kumar, S. The Treponema Pallidum Outer Membrane. Curr. Top. Microbiol. Immunol. 2017, 415, 1–38. [CrossRef]

http://doi.org/10.18502/ijpa.v16i1.5506
http://doi.org/10.1007/82_2017_44

	Introduction 
	Materials and Methods 
	Selection of Target Antigenic Proteins 
	Prediction of MHC-I Allele Binding CTL Epitopes 
	Prediction of MHC-II Allele Binding HTL Epitopes 
	Prediction of B-Cell Epitopes 
	Filtering Best Epitopes from Each Protein 
	Construction of Multi-Epitope Immunogen Sequence 
	Prediction of Antigenicity, IFN- Induction, Toxicity, and Allergenicity of the Multi- Epitope Immunogen 
	Physico-Chemical Properties and Host and Microbiota Homology Analyses 
	Secondary Structure Prediction 
	Tertiary Structure and Refinement 
	Prediction of Conformational B Cell Epitopes 
	Molecular Docking between the Chimeric Protein and the TLR-2 Recepto 
	Molecular Dynamics Simulation of the Receptor-Ligand Complex 
	In Silico Cloning 
	Immune Simulation of Multi-Epitope Immunogen 

	Results 
	Predicted CTL Epitopes 
	Predicted HTL and B-Cell Epitopes 
	Overlapping Epitopes for Both Humoral and Cellular Responses 
	Constructed Multi-Epitope Vaccine Sequence (Tpme-VAC/LGCM-2022), and Host and Microbiota Homology 
	Secondary and Tertiary Structural Properties of Tpme-VAC/LGCM-2022 
	Antigenicity, IFN- Production, and Conformational B-Cell Epitopes in Tpme-VAC/LGCM-2022 
	Physico-Chemical Properties, Toxicity, and Allergenicity of Tpme-VAC/LGCM-2022 
	Tpme-VAC/LGCM-2022docks with the TLR2 Receptor 
	Tpme-VAC/LGCM-2022-TLR2 Complex Is Stable in Molecular Dynamics Simulation 
	Codon Adaptation and in silico Cloning of Tpme-VAC/LGCM-2022 
	Tpme-VAC/LGCM-2022 Could Simulate Immune Response 

	Discussion 
	Conclusions 
	References

