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The supernumerary B chromosome of maize is dispensable, containing no
vital genes, and thus is variable in number and presence in lines of maize.
In order to be maintained in populations, it has a drive mechanism consist-
ing of nondisjunction at the pollen mitosis that produces the two sperm cells,
and then the sperm with the two B chromosomes has a preference for ferti-
lizing the egg as opposed to the central cell in the process of double
fertilization. The sequence of the B chromosome coupled with B chromo-
somal aberrations has localized features involved with nondisjunction and
preferential fertilization, which are present at the centromeric region.
The predicted genes from the sequence have paralogues dispersed across
all A chromosomes and have widely different divergence times suggesting
that they have transposed to the B chromosome over evolutionary time
followed by degradation or have been co-opted for the selfish functions of
the supernumerary chromosome.
1. Introduction
Thousands of plants and animals have extra dispensable chromosomes called
supernumerary or B chromosomes [1]. They typically do not associate with
the normal set during meiosis and are of variable number between members
of a population. It is assumed that they possess properties to maintain them-
selves despite being nonvital, although this has only been investigated in a
few examples, which do indeed have drive mechanisms. The drive mechanisms
of different B chromosomes are varied and can operate pre-meiotically,
meiotically or post-meiotically, but all place more copies of themselves into
the next generation than present in the previous generation. Thus, while B
chromosomes are not needed, they maintain themselves in populations by
these non-Mendelian mechanisms.

One of the most thoroughly studied B chromosomes is the one present in
maize [2,3]. The supernumerary B chromosome of maize (figure 1) has several
properties to perpetuate itself [2,3]. In most lines, the presence of the B is not
detrimental to plant growth or development unless at high copy numbers
beyond about 15 [4]. The B chromosome has a drive mechanism consisting of
nondisjunction at the second pollen mitosis [5–7], which produces the two
sperm cells, and then the B containing sperm preferentially fertilizes the egg
in the process of double fertilization [8] (figure 2). The B chromosome modu-
lates gene expression across the genome [9,10] and increases the rate of
meiotic recombination on all chromosomes, particularly in heterochromatic
regions and especially in male meiosis [11–18]. This process would foster the
transmission of the B chromosome itself by insuring recombination in this
largely heterochromatic chromosome, which would aid its own meiotic trans-
mission [19]. The B chromosome has also evolved a mechanism to prevent its
loss as a univalent in meiosis [20–22]. The nondisjunction mechanism requires
two components: the centromere of the B [23], which has an additional specific
repeat [24–26], and at least two trans-acting factors present at different sites on
the chromosome [5,27–29]. The trans-acting factors are thought to delay further
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Figure 1. The maize B chromosome. (a) Mitotic metaphase spread of a line
with seven B chromosomes (magenta). The magenta signal identifies the
ZmBs (B specific repeat) in the centromere and short arm with a minor repre-
sentative at the distal tip of the B long arm. Green signal identifies two
chromosomal features, namely the CentC centromeric satellite and TAG micro-
satellite clusters. The green signal on the B chromosome represents CentC
clusters, which have no centromere activity [26]. DAPI stains the chromo-
somes (blue). (b) Schematic view of the acrocentric maize B chromosome
at pachynema of meiosis. The chromosome is divided into the B short
arm (S), B centromere (C), centromeric knob (CK), proximal euchromatin
(PE1-2), four blocks of distal heterochromatin (DH1-4) and the distal euchro-
matin (DE). Four representative repeats on the B chromosome including the
B-specific repeat ZmBs, knob-180, CL-repeat and Stark repeat cluster are
colour coded along with the length of the chromosome. Knob is present
in the centromeric knob region. CL repeat is present at DH1, 2 and 3. The
Stark repeat is present in most of DH3 and the distal portion of DH4.
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Figure 2. Components of the B drive mechanism. (a) Diagram of nondisjunc-
tion of the B chromosome in maize. The B chromosome (blue with a
magenta centromere) is shown in the generative nucleus (G) after the first
pollen mitosis. After replication, the two chromatids proceed to the same
pole (red arrow) at the second pollen mitosis in the vast majority of divisions.
Thus, most mature pollen grains contain two sperm cells (S) with only one
containing the B chromosomes. (b) Depiction of preferential fertilization. For
most lines of maize, the sperm with the two B chromosomes will preferen-
tially fertilize the egg (E), as compared with the central cell (C) in the process
of double fertilization. The fertilized egg develops into the next generation
embryo and the fertilized central cell develops into the endosperm.
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the replication of heterochromatin at the second pollen
mitosis beyond its usual late duplication [30]. Thus, the B
chromosome has manipulated cellular processes to ensure
proper segregation in male meiosis by increasing recombina-
tion in heterochromatin, by ensuring its transmission if it is in
a univalent state, by delaying replication of the centromere
at the one mitosis that produces the two sperm and by
mediating fertilization of the egg by the B containing sperm.
2. B-A translocations: genetic tools for
maize

The property of the B chromosome to undergo nondisjunction
at the very mitosis that produced the two maize sperm cells
has been capitalized upon bymaize researchers. Many features
of the B chromosome have been deciphered using B-A translo-
cations (figure 3), which add various genetic markers to the
chromosome. A large collection of translocations between the
B chromosome and A chromosomes has been induced [31,32].
Distal portions of A chromosome arms are joined with the B
centromere. Thus, the A portion is also changed in dosage in
the sperm and will lead to zygotes with different numbers of
the respective chromosome arm. Of particular note and an
exceptional advantage to maize is that heterozygous
deficiencies can be produced because the nondisjunction
occurs at the mitosis that produces the male gametes. Thus,
extra or missing chromosome arms can be present in the male
gametes at the endpoint of the haploid gametophyte generation
that typically would abort if a large deletion were present.
Because nondisjunction is not always 100%, some balanced
gametes are also produced to generate a dosage series of 1, 2
and 3 copies in the resulting zygotes. B-A translocations have
been used for uncovering recessive mutations [31], for numer-
ous types of dosage studies [33–40], for understanding
centromere structure [23,25,26,41–44], for examining the
nature of the breakage–fusion–bridge (BFB) cycle [45,46], for
the discovery of parental imprinting [47] aswell as contributing
to understanding the B chromosome itself.
3. Structure of the B chromosome
The B chromosome is nearly telocentric consisting mainly of a
long arm and a minute short arm. It is highly heterochromatic.
Beyond the centromere, it has a proximal euchromatic portion,
followed by several large blocks of heterochromatin and termi-
nating the long armwith a short euchromatic region (figure 1).
The B chromosome contains a number of B specific repeats.
One of these is located in and around the centromere with
minor representations near the distal end of the chromosome
[24]. The Stark repeat is present in two blocks of heterochroma-
tin [48,49] and the CL repeat is present at several sites along the
chromosome, primarily in the heterochromatic blocks [50–54].
The B specific repeat is related on the sequence level to knob
heterochromatin present in the normal A chromosomes
[24,55]. Knobs are repeated units at high copy number that
stain deeply with chromatin stains. There are two major



hyperploid heterozygote
(trisomy)

C2
C2

meiosis
1 and 2

1st pollen
mitosis

seldom
transmitted

G G

S

S

endosperm

embryo

chromosome 4 B chromosome
pollen grain embryo sac kernel

B-4Lb4Lb-B

V: vegetative cell
G: generative cell
S: sperm
E: egg

C: central cell

dominant C2 gene

recessive C2 gene

hypoploid
heterozygote
(monosomy)

euploid
heterozygote

hyperploid
heterozygote

(trisomy)

E

C

c2

c2

c2

Figure 3. Diagram of the behaviour of a B-A translocation using TB-4Lb as an example. Hyperploid heterozygote (trisomy; 4 4Lb-B B-4Lb B-4Lb) containing a
dominant C2 anthocyanin gene on the B-4Lb was crossed to a female c2 tester, which has no colour (yellow) in the kernel due to the blockage of anthocyanin
pathway by the c2 mutation located on 4L. During meiosis, the TB-4Lb trisomy will produce two kinds of microspores, 4 B-4Lb and 4Lb-B B-4Lb. The 4 B-4Lb pollen
have two copies of 4L and cannot compete with balanced 4Lb-B B-4Lb during pollen tube growth leading to only the latter being transmitted. During the second
pollen mitosis, the nondisjunction of B-4Lb produces one sperm cell with two copies of B-4Lb and the other has zero copies of B-4Lb. Both sperm cells have the
4Lb-B chromosome. After double fertilization, the kernel would show coloured ( purple) embryo and colourless endosperm (trisomy), or coloured endosperm and
colourless embryo (monosomy). If the B-4Lb disjoins normally (right middle row), the kernel would show full colour ( purple embryo and purple endosperm, euploid
heterozygote). The copy number of 4L in monosomy, euploid and trisomy should be 1, 2 and 3 copies, respectively. The B portion is shown as blue with a magenta
centromere and chromosome 4 is shown as dark red with a green centromere.
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types inmaize. The 180 bp knob repeat was the first recognized
[56]. As its name implies, it consists of tandem repeats of 180
base pairs. These are typically present at interstitial sites on
maize chromosomes [57,58], although a minor representation
is present at the ends of all chromosomes [59], which is poten-
tially the progenitor position given this is the place where they
reside in relatives of maize such as Zea luxurians and Tripsacum
species [60]. The second type of knob repeat is the TR1 repeat
that is 350 bp in unit length but is related on the sequence
level to the 180 bp repeat [61]. A 180 bp knob is present on
the B chromosome in close proximity to the centromere.

As noted, the B specific centromeric repeat is related to
the knob180 and TR1 heterochromatin repeats [24,55],
especially to a portion of the knob sequence of highest evol-
utionary conservation [62]. Also, Cent4 is a repeat cluster
found in all maize lines near the centromere of chromosome
4 [60] that is similar to the B repeat, having been isolated
based on that homology [63]. Cent4, however, does not
undergo nondisjunction in the presence of B chromosomes
so there must be some distinction between the B repeat and
the Cent4 array.
4. Sequence of the B chromosome
A high-quality sequence of the maize B chromosome has
been produced [64]. There are 758 predicted protein-encoding
genes. Paralogues in the A chromosome have widely distinct
divergence estimates and genomic locations, suggesting that
these predicted B genes have transposed to the supernumer-
ary chromosome over evolutionary time [64]. Core genes in
the grass family show evidence of synteny but none can be
recognized with the B chromosome [64]. Synteny would be
predicted whether the origin of the B chromosome occurred
within a species or as detritus from a wide cross between
species. However, whatever was the ultimate progenitor,
the sequences have degenerated beyond recognition. This
result suggests that the drive mechanism has propelled the
chromosome through millions of years of evolution as a self-
ish entity. The maize B chromosome is a natural laboratory
for transposed duplicate genes that are freed of purifying
selection and linkage drag to evolve various selfish functions
co-opted from normal. The maize B chromosome has recently
been shown to contain active genes [9,10,49,64] and be
capable of impacting the expression of genes from the A
chromosomes [9,10].

An extensive collection of B centromere misdivision
derivatives and other breaks in the surrounding region
[44,65,66] made it possible to assemble 543 kb of the B centro-
mere and order the scaffolds in relation to the chromosome,
including the knob adjacent to the centromere. This length
is close to a fiberFISH estimate of the core region of the B
centromere [25]. The B chromosome centromere is very simi-
lar in repeat composition and organization to those on the A
chromosomes with the exception of the interspersion of the B
specific repeat throughout and flanking the core region.
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5. Cis factors for nondisjunction
The B chromosome undergoes nondisjunction mainly at the
second pollen mitosis, but there is also a low frequency of non-
disjunction that occurs at the first pollen mitosis [5,7]. Further,
there is a very low level of nondisjunction in the endosperm
[41,67] and in the tapetum [68]. With copy numbers starting
at about 6, and accelerating with increasing numbers, there is
evidence for nondisjunction in sporophytic root tip cells [69].
The high copy number of the B chromosome appears to
foster the nondisjunction property in a tissue where it does
not otherwise occur at a detectable frequency.

Multiple investigators have examined replication of
chromosomes in root tips and found that the 180 bp knobs
were late replicating, as was the centromeric region of the B
chromosome [30,70–72]. There is a knob near the B centro-
mere, so Pryor et al. [30] postulated that this knob mediated
the nondisjunction. This idea creates a conundrum because
the knobs on A chromosomes in most backgrounds do not
cause nondisjunction or chromosomal breakage. It was not
until years later that the B centromere-specific repeat was dis-
covered [24]. It surrounds and is interspersed in the
centromere, and also surrounds the centromere-proximal
knob [26]. Minichromosomes derived from the full B chromo-
some that are missing the knob are still capable of
undergoing nondisjunction in the presence of the trans-
acting factor containing portions of the B [73]. Thus, while
the centromere proximal knob might contribute to nondis-
junction, it is not solely responsible and the B specific
repeat is implicated [64]. Indeed, the B specific repeat is
more closely related to the TR1 heterochromatic knob
repeat [55]. Wear et al. [72] found that the TR1 repeat was
the most enriched in the late replicating sequences, despite
its underrepresentation compared to the 180 bp knob [60],
suggesting that it is the last or one of the last types of
sequences replicated in maize S phase. Together the results
imply that the B specific repeat region is very late replicating.

The activity of the B centromere is not needed for the B
repeat to mediate nondisjunction. Han et al. [66] recovered
an inactive B centromere present on the tip of the short arm
of chromosome 9 (9S). It is attached to the normal chromo-
some 9 centromere so it is inherited through the life cycle
and across generations. It is perfectly stable on its own. How-
ever, when full B chromosomes, which supply the trans-
acting factors, are added to the genotype, this chromosome
is induced to undergo nondisjunction at the second pollen
mitosis or more frequently to break and set up a BFB cycle
[74] in the subsequent endosperm development after fertiliza-
tion. This is evidenced by a mosaic pattern for the
anthocyanin, C1, marker gene on the 9S chromosome when
crossed as a male to the recessive tester female stock. These
results indicate that the hypothesized B repeat involvement
in nondisjunction is independent of centromere function.
Numerous lines of evidence point to a delayed or stalled
replication of the B repeat cluster, and cytological visualiza-
tion at the second pollen mitosis indicates that the B repeat
array is the site of adherence of the inactive B centromere
on separated chromosomes 9 [66].

A series of B chromosome centromere misdivision deriva-
tives were found by Carlson [41]. These different derivatives
have different rates of nondisjunction. The amount of the B
specific centromere repeat was quantified in this series of
chromosomes and the amount was correlated with the rate
of nondisjunction [43,64]. These observations provide further
evidence that the B specific repeat array is the sight mediating
nondisjunction and that the rate of nondisjunction is related
to the quantity present around the centromere.
6. Trans-acting factors for nondisjunction
One of the factors that operates in trans and that is required
for nondisjunction (figure 3a) is present near the end of the
long arm of the chromosome [5,27,29]. A second is present
in the proximal euchromatin [28]. The most distal breakpoint
of B-A translocations localized on the B chromosome
sequence is that of TB-3Sb [64]. The B-3S chromosome con-
tains most of the B chromosome except the very distal tip.
This chromosome alone is incapable of nondisjunction at
the second pollen mitosis [75]. Thus, the trans-acting factor
#1 must reside in the small portion of the B translocated to
the short arm of chromosome 3. This region of the sequence
has 34 predicted protein-encoding genes [64].
7. Preferential fertilization
Preferential fertilization is the second aspect of the B
chromosome drive mechanism and is determined by the
female parent (figure 2b). In most maize lines, the preference
for the egg versus the central cell is 2 : 1. However, some
maize varieties do not allow preferential fertilization
[76–80]. Multiple researchers [21,76–81] have found lines of
maize in which there is a lack of preferential fertilization
such that fertilization of the egg or the central cell by the B
chromosome containing sperm is random rather than being
skewed towards the egg, suggesting that there is a variation
for this trait in maize populations. In Argentine maize var-
ieties, there is evidence that this difference is controlled by
a single gene [21]. Moreover, Carlson [77] has observed
lines that, when used as a female parent for B-A transloca-
tions, show a reversal of preferential fertilization such that
the polar nuclei are now favoured. Carlson [77] also found
that adding several normal B chromosomes to the genotype
would eliminate the reversal and change it to a random ferti-
lization for the B-A translocation, when there is no difference
between the two sperm for B centromere presence. Preferen-
tial fertilization of the egg in most lines is also eliminated by
adding B chromosomes to the genotype to eliminate a differ-
ence between the two sperm [76]. At a low frequency in
maize, two pollen tubes are involved with the fertilization
of an embryo sac, a process called heterofertilization. Carlson
[82] used this phenomenon to test whether preferential
fertilization would follow the same frequency if both the
egg and the polar nuclei were given a choice of sperm. The
result was that preferential fertilization of the egg was at
the usual skewed frequency in favour of the inclusion of
the B centromere on a B-A translocation.

The most proximally broken B-A translocation when
compared to the B sequence is TB-8Lc [64]. Its breakpoint is
very near to the centromere [64]. Because this chromosome
exhibits preferential fertilization, the difference between the
two sperm cells after nondisjunction would essentially be
the centromere. The implication is that the centromere or
some associated protein, or modification of an associated
protein, mediates preferential fertilization. Taken all together,
it is probable that the B specific repeat cluster not only
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mediates nondisjunction at the second pollen mitosis but is
also involved with preferential fertilization. At the very
least, the two sites on the B chromosome that are involved
with the drive mechanism are in very close proximity [64].
ietypublishing.org/journal/rsob
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8. Effect on recombination
It has long been known that the presence of B chromosomes
will increase the frequency of chiasmata visualized in meiosis
across the genome [11]. As noted above, numerous subsequent
studies showed that crossing over in the A chromosomes was
enhanced by B chromosomes, particularly in centromeric het-
erochromatic regions where it is usually low. Rhoades [12]
described a transposed segment of chromosome arm 3L into
9S, which normally has very low rates of crossing over, but
showed a dramatic increase in the 3L region in the presence
of B chromosomes.

Regions of the B chromosome have been assayed for the
responsible segments involved in this modulation of genomic
recombination. These studies have implicated the proximal
euchromatin but there is also some evidence that the distal
heterochromatin might have an effect as well [15,18]. The
distal euchromatic tip has been definitively eliminated so
this property of the B chromosome is distinct from the
distal trans-acting factor required for nondisjunction [27].
Interestingly, the enhancement of recombination is typically
greater on the male side than the female [13,14,17]. Thus,
the B chromosome has modified the recombination process
to favour its own crossing over, which has been shown to
occur [83], in male meiosis to insure its faithful segregation
and accurate distribution to all spores, which, of course,
immediately precedes the other processes of its drive mech-
anism of nondisjunction and preferential fertilization. The B
chromosome itself is highly heterochromatic so it has been
postulated that this modulation of recombination is an evol-
utionary adaptation to help foster the orderly segregation of
the supernumerary chromosome and hence its transmission
to the next generation [19].
9. Stabilization of univalent transmission
An additional property of the B chromosome that fosters its
transmission is its stabilization as a univalent in meiosis
(figure 4a) [20,22]. Often, chromosomes as a singleton will
lag in meiosis I anaphase and get lost, thus failing to be
included in the products of meiosis. B chromosomes, because
of their drive mechanism, can find themselves in odd numbers
in meiosis. These multimers can take on bizarre associations
[24,57,84], but usually the centromeres are in pairs and segre-
gation proceeds. However, when univalent B chromosomes
are present, they have been observed to proceed to the poles
in meiotic anaphase I ahead of the regular chromosomes
[20,22,57]. In some respects, this behaviour is analogous to
the behaviour of neocentromere formation of knob heterochro-
matin in the presence of Abnormal chromosome 10 (Ab10) [85]
but is clearly distinct [22]. Indeed, González-Sánchez et al. [22]
presented evidence that the small distal array of B repeats were
involved in this process despite it having no detectable CENH3
[26]. This observationmight suggest that a polewardmigration
occurs that is independent of a normal kinetochore as occurs
with Ab10 [86].
There are two systems of neocentromere formation associ-
ated with Ab10—one for knob180 and one for TR1 knobs
[87]. They both involve neomorphic forms of kinesin motor
proteins. In these cases, there is no involvement of CENH3,
the histone variant typical of active centromeres, as a foun-
dation for a kinetochore but nevertheless an attachment and
movement occurs on the meiotic spindle. It is thus conceiva-
ble that the B chromosome has evolved a co-opted related
mechanism in which univalents can attach to the spindle
and proceed ahead of the normal chromosomes to the poles
in meiotic anaphase I. The B specific repeat array has only
a small portion of it that shows any association with
CENH3 on a normal chromosome [26], but the whole array
could act as a neocentromere in meiosis.

Carlson & Roseman [20] localized a B distal heterochro-
matic region required for the precocious progression of the
B specific repeat array to the anaphase I poles of meiosis. If
the centromere itself is subject to a novel meiotic progression,
it would not result in meiotic drive as occurs with Ab10,
which relies on recombination between centromeres and the
sites of alternative sizes of knob heterochromatin for drive
to occur. Instead, a similar process for the B centromere
insures that univalents can succeed in passing through meio-
sis. The sequence of the B chromosome [64] indicates that it is
not related at all to chromosome 10.

While it might seem counterintuitive to suggest that a
centromere sequence would acquire neocentromere activity,
there are data in the literature to suggest that is the case.
Images of B chromosomes in meiosis have long shown that
univalents in meiotic anaphase I progress to a pole before
the normal chromosomes (e.g. [57]). Carlson & Roseman
[20] studied this feature in detail and found that an intact
centromeric region was necessary and that the distal hetero-
chromatin appeared to control this activity. We now
understand that the chromosomes that Carlson & Roseman
analysed were reduced in the amount of centromeric
B-specific repeat [26,43,44]. The B centromere alone does not
exhibit this behaviour [85], supporting the claim for a trans-
acting factor, which would be analogous to neocentromere
formation by Ab10 [86,87].
10. Impact on the A chromosome integrity
Rhoades & Dempsey [88,89] discovered a line of maize
(called High Loss (HL)) in which the presence of at least
two B chromosomes in a microspore (3 or more per plant)
would cause the heterochromatic knobs on the A chromo-
somes to break at the second pollen mitosis, the same
mitosis at which the B chromosome centromere remains
adhered during anaphase to produce nondisjunction
(figure 4b,c). The line with B chromosomes also produced
an unusual frequency of trisomies and triploids when used
as a male. They noted that transmission of an extra chromo-
some through the male is unlikely and that triploid plants
are highly sterile so they must arise anew. It seems that the
HL characteristic in fact causes nondisjunction of A chromo-
somes at the second pollen mitosis in order to obtain such
individuals in the progeny, although whether this is con-
ditioned by the unreplicated knobs or A centromeric
heterochromatin is unresolved. In an attempt to test whether
the B chromosomes originally in this line were unique, they
introgressed B chromosomes from other lines, which they
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remain attached at the anaphase of the second pollen mitosis, whereas the centromere of chromosome 3 proceeds towards opposite poles. This process fractures 3L.
The pollen grain will have one sperm cell with a truncated chromosome 3 and the normal chromosome 3 in the other sperm cell. In some cases, the knob region
can divide before the fracture of 3L and both sperm cells have one copy of an intact chromosome 3. Note that the assortment of the nondisjoined B chromosomes is
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found were also effective. Their results indicate that the effect
occurs in the gametophyte generation but also that there is a
single major gene difference between ‘HL’ and other lines
harbouring B chromosomes, although there were also numer-
ous modifiers that would affect the severity, as is true of
almost any quantitative characteristic. In the HL line, the
delay of replication of heterochromatin is so severe as to
cause fracture of many chromosomes in the genome and
apparent nondisjunction of normal chromosomes [88,89].
The B chromosome relies on this delay for its perpetuation
but the normal genome can be severely damaged if it is
too late.
11. Conflict between the B and A
chromosomes

The B chromosome is widespread in Mexican teosintes, the
wild maize relative, as are the major knob positions that
have descended into maize [57]. However, multiple investi-
gators have noted that in landraces of maize, there is a
negative correlation between the presence of B chromosomes
and of many knobs [90,91]. The combination of these studies
suggests that teosinte and most maize lines have variants that
prevent the HL syndrome from occurring. However, the land-
races in which the B chromosomes are prevalent but not
knobs might have variants that allow the HL delay of knob
replication to occur.
12. Use of the B chromosome as a
platform for engineered
minichromosomes

Because of its dispensable nature, the B chromosome could
serve as a platform to develop engineered minichromosomes.
Centromeres in plants are epigenetically based [92] and thus
do not rely on DNA sequence for function. Thus, the baker’s
yeast example of producing artificial chromosomes by assem-
bling centromeres, telomeres and marker genes in vitro with
reintroduction to cells will not work in plant species. To over-
come this issue, telomere-mediated chromosomal truncation
was used to remove the ends of chromosomes and simul-
taneously place genes at the tip [93]. The B chromosome of
maize was an initial target although the procedure can be
applied to other chromosomes [94]. The truncation event
for the B chromosome removes the terminal trans-acting
factor that is needed for nondisjunction, so the engineered
minichromosomes disjoin normally at the second pollen mito-
sis. However, in the presence of full-sized B chromosomes that
provide the trans-acting functions, the minichromosomes will
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undergo nondisjunction [73]. Various applications of B derived
engineered minichromosomes have been described [95].
oyalsocietypublishing.org/journal/rsob
Open

Biol.11:21
13. More to learn
The B chromosome is a mysterious chromosome. Genes that
transpose to the B will degenerate unless they contribute
in some way to the perpetuation of the chromosome in the
multitude of ways described above. This seems to have
occurred to great effect. The B chromosome uses a unique
repetitive sequence in and around the centromere to cause
nondisjunction at the one mitosis giving rise to the male
gametes. There are trans-acting factors that mediate this
effect on the repetitive array. How this occurs remains
a mystery and is an interesting avenue for further study.
Then, the sperm that has the nondisjoined chromosomes
somehow preferentially joins with the egg as opposed to
the central cell in the process of double fertilization—again
by an unknown process. Still further, the B chromosome
has manipulated the meiotic recombination process to foster
crossing over in its heterochromatic structure and brought
an increase in proximal regions across the genome. Increasing
recombination between paired B chromosomes would foster
faithful distribution into the resulting spores from meiosis
and eventual transmission to the next generation. However,
if the B chromosome is present as a univalent, it has also
developed a mechanism that can foster its transmission in
this state, apparently by a distinct mechanism from normal
centromere functions. This amazing array of properties illus-
trates how selfish entities can acquire a multitude of
characteristics to propel themselves into future generations
when uncoupled from normal chromosomes and having no
vital functions.
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