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SUMMARY

Cancer and cardiovascular disease (CVD) are the leading causes of death world-
wide. Numerous overlapping pathophysiologic mechanisms have been hypothe-
sized to drive the development of both diseases. Further investigation of these
common pathways could allow for the identification of mutually detrimental
processes and therapeutic targeting to derive mutual benefit. In this study, we
intersect transcriptomic datasets correlated with disease severity or patient out-
comes for both cancer and atherosclerotic CVD. These analyses confirmed
numerous pathways known to underlie both diseases, such as inflammation and
hypoxia, but also identified several novel shared pathways. We used these to
explore common translational targets by applying the drug prediction software,
OCTAD, to identify compounds that simultaneously reverse the gene expression
signature for both diseases. These analyses suggest that certain tumor-specific
therapeutic approaches may be implemented so that they avoid cardiovascular
consequences, and in some cases may even be used to simultaneously target
co-prevalent cancer and atherosclerosis.

INTRODUCTION

Cancer and the complications of atherosclerotic cardiovascular disease (CVD) make up nearly half of all

deaths in the US. Despite knowing a great deal about each of these diseases individually, surprisingly little

is known about how these diseases interact within patients or the common dysregulated genes and path-

ways that these diseases share. It has long been recognized that patients with either cancer or CVD share

numerous risk factors.1 Consequently, these diseases often occur in the same patient population and many

times occur simultaneously in the same patients. Further, preclinical studies have demonstrated that both

diseases can be driven through similar processes. For example, surgical occlusion of coronary arteries in

mice exacerbates atherosclerosis formation,2 and recently has been shown to exacerbate breast cancer re-

sulting in larger, more metastatic tumors.3 In a similar manner, hyperlipidemia, the primary stimulus to

induce atherogenesis in mice, has been shown to intensify tumor growth in mice injected with several

different tumor cell lines.4 One explanation for the shared risk factors and pathogenic drivers is the

numerous shared dysregulated processes that are known to contribute to the pathogenesis of both

diseases.

There are now multiple clinical studies demonstrating mutual benefit when shared pathogenic pathways

are targeted. For example, the CANTOS trial tested a neutralizing IL1b antibody in high-risk patients

and found not only a significant reduction in major adverse cardiovascular events, but also a reduction

in cancer mortality, which was driven by a benefit in lung cancer.5,6 However, several dedicated cancer trials

have thus far failed to show similar benefits, which may be due to differences in patient characteristics and

cancer stage.7 A recent study from our lab demonstrated for the first time in humans that inhibiting CD47, a

‘don’t eat me’ signal known to be an effective target for multiple cancers, also had a significant beneficial

impact on vascular inflammation.8 Immune checkpoint inhibitors, which have rapidly revolutionized the

treatment of numerous cancers,9 provide additional clinical rationale for comparative studies of atheroscle-

rosis and cancer. Indeed, the profound benefits that ICIs have had on themanagement of cancer have been

somewhat offset by a significant increase in CVDwhich appears to be driven in part by exacerbating athero-

sclerosis.10–12 Taken together, these data support careful identification and targeting of shared pathogenic

features of both diseases.
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To date, studies investigating the interface between cancer and atherosclerosis have come from the field of

cardio-oncology where, motivated by the increased cardiovascular risk among cancer patients, the cardi-

otoxic effects of cancer therapeutics have been characterized andmanaged. However, this has resulted in a

largely reactionary approach to managing cardiovascular risk in cancer patients and have not included ef-

forts to proactively manage co-prevalent disease. In this study, we take an innovative strategy to compare

the pathogenic pathways of atherosclerosis and numerous common cancer subtypes, to identify key shared

processes that could be targeted to derive mutual benefit. We then leverage the drug prediction software,

OCTAD, to identify compounds that target these pathways.

RESULTS

Leveraging transcriptomic data to characterize genes and pathways associated with cancer

and atherosclerotic CVD severity

To better understand shared disease mechanisms between atherosclerosis and cancer, we used transcrip-

tomic data that could be correlated with patient outcomes or disease severity (Figure 1A). For The Cancer

Genome Atlas (TCGA) data, tumor gene expression has been correlated with patient survival. To interro-

gate atherosclerotic CVD in a similar manner, we primarily used data from STARNET,13 which has accumu-

lated RNA-seq data from the atherosclerotic aortic root taken from �600 patients during coronary artery

bypass grafting. Transcriptomic data from the atherosclerotic aortic wall were correlated with two angio-

graphic parameters that describe disease severity including the DUKE CAD severity score14 and the angio-

graphic CAD SYNTAX score.15 To compare healthy versus diseased tissue, we compared RNA-seq data

derived from the non-atherosclerotic mammary artery with that patient’s atherosclerotic aortic root. As a

validation dataset, we incorporated the publicly available data from the Biobank of Karolinska Endarterec-

tomy (BiKE) data, which had performed transcriptomic analyses on carotid plaques from 126 patients and

then monitored for subsequent ischemic events (MI or stroke).16 At 44 months follow up, 25 patients had

experienced an ischemic event and were termed symptomatic while the remaining 101 patients remained

asymptomatic. We performed Cox regression to correlate the transcriptomic information with disease

severity/survival. For simplicity, we have referred to the correlation of transcriptomic and disease informa-

tion as the ‘‘transcriptional risk profile’’.

Comparison of transcriptional risk profile for atherosclerotic CVD and all TCGA cancer

subtypes reveals several important pathogenic commonalities including metabolism,

stemness, and EMT

To understand the shared pathways that mediate risk for both diseases, we performed Hallmark pathway

enrichment on the transcriptional risk profiles for cancer and atherosclerosis and plotted the results on

opposing axes such that mutually detrimental pathways occupied quadrant 1, while those in quadrant 3

would be mutually beneficial. Quadrants 2 and 4 would highlight pathways that have the opposite effect

on the diseases (e.g., worse for CVD but better for cancer; see schematic in Figure 1B).

When all cancers and atherosclerotic CVD were analyzed together, several consistent trends emerged

including increased risk with increased glycolysis and reduced oxidative phosphorylation and fatty acid

metabolism, which is consistent with the Warburg effect in cancer and has recently been suggested as a

marker of high-risk atherosclerotic plaques (Figure 1B).17 Interestingly, quadrant 1 was also dominated

by pathways mediating cellular stemness including WNT, Notch, and Hedgehog signaling and cellular po-

larity including apical surface and junction, suggesting that an increased stem-like signature is mutually

detrimental in both diseases. Finally, epithelial-to-mesenchymal transitions (EMT) and TGFb signaling,

the key regulator of EMT, were found to be mutually detrimental. This process is known to play a critical

role in tumor metastasis, however in atherosclerosis TGFb has traditionally been viewed as a plaque stabi-

lizing pathway by increasing collagen deposition by vascular smooth muscle in the fibrous cap. Interest-

ingly, a process which is genetically similar to EMT, endothelial to mesenchymal transition (EndoMT),

has recently been shown to correlate with reduced atherosclerotic plaque stability in humans,18,19 suggest-

ing that TGFb can have protective or detrimental effects depending on the stage of the lesions and cellular

respondents.20 The fact that our prediction shows an overall detrimental impact of TGFb signaling may

suggest that the stage of lesion development from patients in STARNET and BiKE may have had patho-

genic EndoMT as the predominate effect of TGFb signaling. However, this remains an active area of

research that will require additional inquiry.
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Figure 1. Comparison of transcriptional risk profile for atherosclerosis and all TCGA cancer subtypes

(A) Schematic describing the generation of transcriptomic risk profiles for atherosclerosis and cancer, which were then plotted on opposing axes to reveal

shared biology.

(B) Hallmark pathway analysis with disease severity for atherosclerosis (X axis) and cancer (Y axis). Importantly, both diseases were exacerbated by a

glycolytically skewed metabolism and improved by a metabolism enriched for oxidative phosphorylation and fatty acid utilization. Numerous pathways that

regulate cellular plasticity and differentiation were mutually detrimental for cancer and atherosclerosis. Finally, epithelial to mesenchymal transitions and its

key regulatory pathway, TGFb signaling, were also mutually detrimental. The box plot overlaid on the scatter dots represents the IQR (interquartile range)

with whiskers that extend 1.5 times the IQR from the box edges.
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Clustering transcriptional risk profiles based on pathway enrichment reveals that certain

cancers are more transcriptionally similar to atherosclerotic CVD

To assist in visualizing the data, we plotted Hallmark pathway enrichment for the transcriptional risk profile of

eachof thedatasets usingaheatmap (Figure 2A) and thedimensionality reductionalgorithm,UMAP (Figure 2B;

abbreviations for each cancer can be found in Figure S1).21 Reassuringly, this revealed tight clustering of the

atherosclerosis datasets (i.e., STARNET andBiKE).We hypothesized that the transcriptional risk profiles of can-

cer andatherosclerotic CVDwouldbe largely distinct and result in clear separationbetween cancer andathero-

sclerosis datasets. However, contrary to our hypothesis, we observed that cancer and atherosclerosis could not

bedistinguishedbasedon their transcriptional riskprofiles.Certain cancers clustered tightlywith theCADdata-

sets while others clustered more distantly, which we refer to as athero-similar and athero-dissimilar cancers,

respectively (Figure 2B). Interestingly, there were no obvious features distinguishing the two groups of cancers

(e.g., cell type of origin, tissue type, smoking association). To determine if differences in the abundance of im-

mune cell populations drove the transcriptional differences between the two groups of cancers, the Gene Set

Cancer Analysis (GSCA) immune cell toolwas applied to the cancer datasets. The abundanceof each individual

immune cell population predicted byGSCAwas then averaged and comparedbetween the athero-similar and

dissimilar cancers. Although variation in immune cell abundance was apparent when individual cancers were

compared, therewas no significant difference in the abundanceof individual immune cell populations between

the athero-similar and -dissimilar cancers (Figures S2A andB). Thesedata suggest that thedifferences between

athero-similar and -dissimilar cancers are not simply driven by differences in immune cell recruitment.

Pro-atherogenic inflammatory pathways are detrimental in athero-similar cancers but

beneficial in athero-dissimilar cancers

Next, the athero-similar and -dissimilar cancers were analyzed separately to see which pathways were diver-

gent between them (individual pathways highlighted in Figure 2C; full plots in Figure S3). When athero-similar

cancers were plotted against the atherosclerotic CVD datasets, many of the mutually detrimental pathways

were inflammatory or immunomodulatory. For example, multiple cytokine signaling pathways including IL2,

IL6, IFNg, and TNFa were observed as well the general inflammatory response pathway. The complement

pathway was also differentially enriched, components of which have recently been shown to promote athero-

sclerosis. Specifically, C3 expression by clonally proliferating SMC has been shown to worsen atherosclerosis

by desensitizing them to phagocytic clearence.22 The role for complement in cancer has been studied exten-

sively and, interestingly, C3 knockout mice are largely protected from orthotopic tumor formation.23 In stark

contrast, these same inflammatory pathways appear to have a protective role in the athero-dissimilar cancers,

an observation that may have important clinical relevance. To see if differences in the role of these immune

pathways corresponded to differential susceptibilities to immune checkpoint inhibitors (ICIs), we tabulated

FDA approvals for each of the ICI therapeutics for each of the cancers and interestingly there were relatively

more approvals for the athero-dissimilar cancers, suggesting that stimulating these immune pathways may

indeed be more beneficial in the athero-dissimilar cancers (Figure S4). We also observed several other differ-

ences between athero-similar and dissimilar cancers including DNA repair, cell cycle regulatory pathways, and

transcription factors MYC and E2F (Figure 2C). Notably, the athero-dissimilar cancers had significantly worse

survival compared to athero-similar cancers (Figure 2D).

Using the drug prediction software, OCTAD, to analyze transcriptional risk profiles reveals

numerous well characterized drugs, which may be able to simultaneously treat cancer and

atherosclerotic CVD

Having characterized the pathogenic similarities between atherosclerosis and cancer, we sought to

leverage this information by using the drug repurposing algorithm, OCTAD, to identify potential drugs

that could theoretically provide benefit to both cancer and atherosclerosis (Figure 3A).24 In brief, reverse

gene expression scores (RGES) were calculated based on how effectively disease gene expression signa-

tures could be ‘‘reversed’’ by transcriptional changes induced by the thousands of compounds found in the

Library of Integrated Network-Based Cellular Signatures (LINCS).25 Compounds with negative RGES values

are predicted to reverse the disease signature and thus may be useful putative therapies.

OCTAD was originally built to use a disease gene expression signature derived from the comparison of

diseased tissue with neighboring healthy tissue. To repurpose this strategy in a more clinically useful

manner, we generated disease gene expression scores comparing tumors with good or bad prognoses.

In a similar manner, we generated atherosclerosis disease gene expression scores by comparing the two

extremes of the atherosclerotic CVD risk axes (e.g., non-atherosclerotic mammary artery versus diseased
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Figure 2. Clustering of cancers based on Hallmark pathway enrichment suggests that certain cancers are more

transcriptionally similar to atherosclerosis

(A) Heatmap of Hallmark pathway enrichment (cancer abbreviations can be found in Figure S1).

(B) UMAP of atherosclerosis and cancer datasets with clustering revealing that certain cancers cluster closely with the

atherosclerosis datasets (highlighted in orange), which were termed athero-similar (highlighted in green) and athero-

dissimilar (highlighted in blue).

(C) Highlights of important differences between the two groups of cancers including in inflammatory pathways, response

to DNA damage, cell cycle regulation, and gene targets of MYC and E2F and cell differentiation signaling. For full

pathway quadrant plots, refer to Figure S3.

(D) Kaplan-Meier graph of aggregate patient survival in the athero-similar and -dissimilar cancer groups showing a

significantly worse survival in patients with athero-dissimilar cancers in the unadjusted model.
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aortic sinus or low-versus high- DUKE scores). Of the 1,719 compounds, 510 had an RGES with an unad-

justed p value of <0.05 in one of the CAD datasets however none of them were significant by multiple com-

parisons (Holm’s correction), which was thought to be due to limitations in matching LINCS cell lines with

in vivo atherosclerotic lesions. Therefore, the OCTAD predictions are exploratory and hypothesis gener-

ating. Despite these limitations, OCTAD correctly predicted numerous well-known cardioprotective med-

ications. For example, among the compounds with p < 0.05 in one of the atherosclerosis datasets were

many well-documented cardioprotective medications including several statins (atorvastatin, lovastatin,

and simvastatin), carvedilol, losartan, and hydrochlorothiazide.

The top performing medications predicted to improve atherosclerosis are largely still in clinical trials. The

top performer, PD0325901, was 1 of 3 MEK inhibitors found in the top 45 medications (Figure 3B). Interest-

ingly treatment with a MEK inhibitor has previously been shown to reduce atherosclerosis development in

ApoE�/� mice when also administered with an LXR agonist, which was thought to be mediated by

enhanced inflammation resolution by macrophages.26,27 Given that this strategy only interrogates the tran-

scriptome of the atherosclerotic lesion itself and therefore would miss any extra-lesional processes that

contribute to cardiovascular events (e.g., coagulation cascade), it is not surprising that some medications

with known pro-atherogenic influence (e.g., celecoxib and cholic acid) were also found on the list. Despite

this limitation, however, there were many compounds that match preclinical observations. For example,

several vitamin A analogs were found in the list, which have been shown to exert anti-atherosclerotic prop-

erties in murine atherosclerosis.28,29 Other examples of preclinical benefit include the p38 inhibitor

(SB-239063),30 the HSP90 inhibitor (geldanamycin),31 the factor Xa inhibitor (rivaroxaban),32 the SYK inhib-

itor (fostamatinib),33 the tyrosine kinase inhibitor (dasatinib),34 and the GPx1 mimetic (ebselen).35

Figure 3. Leveraging transcriptomic risk profiles to identify compounds that may yield benefit in atherosclerosis and cancer

(A) Schematic demonstrating the integration of transcriptomic risk profiles and the Library of Integrated Network-based Cellular Signatures (LINCS) using

the OCTAD algorithm to identify compounds predicted to reverse pathogenic transcriptional signatures.

(B) A heatmap of the top 45 compounds predicted to benefit the atherosclerosis datasets. Those with negative Z scores (red) are predicted to be beneficial.

Notably, there are numerous compounds predicted to benefit atherosclerosis and individual cancers. These drugs may represent novel compounds that

could provide mutual benefit across both diseases. *: adjusted p value <0.1. +: adjusted p value <0.5.
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In addition, there were numerous medications predicted to be beneficial for atherosclerosis and certain

cancers. For example, the MEK inhibitor (PD0325901) was predicted to be beneficial in atherosclerosis

as well as lung adenocarcinoma (LUAD) and hepatocellular carcinoma (LIHC). This same compound was

recently shown to improve the efficacy of PD-1 inhibitors in non-small cell lung cancer36 and has been

shown to reduce HCC tumor growth in murine models.37 Tretinoin (also known as all-trans retinoic acid)

was predicted to be beneficial in 3 out of the 4 atherosclerosis datasets and the algorithm predicts it to

be beneficial in acute myeloid leukemia (LAML). Notably, all-trans retinoic acid is the first line treatment

for a subtype of LAML, acute promyelocytic leukemia. Taken together, these data suggest that using tran-

scriptomic data correlated with disease severity can be a useful strategy to identify therapeutic targets for

both atherosclerosis and cancer (see full list of compounds and predictions in Table S1).

DISCUSSION

Cancer and atherosclerosis have many overlapping features. While it has been recognized that both dis-

eases share risk factors and pathogenic drivers, a comprehensive analysis of shared dysregulated pro-

cesses that drive both diseases has never been performed. In this hypothesis-generating manuscript, we

sought to exploit the substantial progress that has been made in understanding the transcriptomics of

both diseases, and then to use this knowledge to define and prioritize shared pathways for translational

targeting. In doing so, we have made several important observations: First, when the transcriptional pro-

files of all cancers are compared with atherosclerosis, multiple commonly dysregulated pathways were

identified which appeared to exacerbate both conditions including glycolytic metabolism, hypoxia, and

EMT. Second, we show that certain cancers are indistinguishable from atherosclerosis based on their

transcriptional risk profiles, meaning that the same transcriptional pathways correlate with disease

severity/survival in these particular malignancies. Third, we identify key differences between athero-similar

and -dissimilar cancers with important implications including that athero-promoting inflammatory path-

ways are also detrimental in athero-similar but protective in athero-dissimilar cancers. Fourth, we leverage

the drug repurposing algorithm, OCTAD, to identify compounds that are predicted to reverse the disease

gene expression score for both atherosclerosis and cancer, highlighting potential opportunities for the re-

purposing of drugs across each disease state.

Scientists and clinicians have contemplated the similarities between cancer and atherosclerosis for de-

cades.38 For example, both diseases have common heritable genetic factors which predispose to disease

development. Interestingly, the top GWAS hit for CAD at 9p21 is found at a locus which encodes for the key

tumor suppressor gene, CDKN2B. Both diseases share lengthy incubation periods and can recur many

years after their initial clinical manifestation. The similarities are particularly striking at a cellular level.

Indeed, the lexicon used to describe the microenvironments of a tumor and an atheroma include similar

phrases like plasticity, inflammation, cell cycle dysregulation, andmetabolic disarray.39,40 Both have a path-

ogenic macrophage population (tumor associated macrophages versus foam cells), a critical reliance on

extracellular matrix deposition (tumor microenvironment versus fibrous cap), necrotic foci (tumor necrosis

versus necrotic core), a clonal origin (tumor cells versus SMC clonal expansion), and both are chronic non-

resolving cellular stress characterized by a diverse set of cell populations.

We have previously investigated the genetic overlap of cancer and CAD by testing the hypothesis that their

similarities are mediated, in part, through shared genetic predisposition.41 To our surprise, we found that

the majority of cancers had no genetic correlation with CAD. This suggests that the similarities observed in

the current report are more likely mediated by shared dysregulated processes which occur at the transcrip-

tional level and beyond. The question remains whether the shared pathogenic processes could allow for

the existence of one of these pathogenic states to exacerbate the development or complications of the

other. Interestingly, there is now emerging evidence to suggest that those patients with CVD are at higher

risk for cancer development even after controlling for their shared risk factors.42 It has been posited that

secreted factors including extracellular vesicles, circulating immune populations, or substrate availability

could mediate this pathogenic communication. These unanswered questions remain the focus of intense

pre-clinical evaluation.

In conclusion, this study intersects transcriptomic datasets from human cancer and cardiovascular patients

to uncover shared pathogenic features of both diseases. Future studiesmay be able to leverage these com-

monalities to prioritize translational targets to usher in a new frontier for cardio-oncology, where mutual

benefit across both disease states is the goal.
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Limitations of the study

There are several notable limitations of our study. First, this study was made possible by the pioneering

efforts of the STARNET and BiKE datasets and, despite being industry-leading, they are dwarfed in statis-

tical power by those in the cancer field. Second, unlike the endpoint of mortality that has been used in

TCGA, we are forced to use less rigid endpoints like disease-severity scores, healthy-versus-diseased

tissue, and prospective MACE rates when studying cardiovascular outcomes. Third, due to our focus on

transcriptomic changes of the atherosclerotic lesion, we have a myopic view of the processes involved in

CVD and are unable to account for other important factors like cardiomyocyte health, electrophysiologic

impacts, and the coagulation cascade, all of which are known to be critically important in assessing the car-

diotoxic effects of cancer therapeutics.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study populations

The Cancer Genome Atlas (TCGA) has accumulated genomic and transcriptomic data from over 11,000 tu-

mors and 33 cancer types.49 Importantly, the database also includes patient survival data such that tumor

gene expression can be correlated with survival. The Stockholm-Tartu Atherosclerosis Reverse Networks

Engineering Task (STARNET) dataset includes RNA sequencing data on 600 patients from tissue collected

at the time of coronary artery bypass. Relevant data to this study includes atherosclerotic aortic root (AOR)

and disease-free internal mammary artery (MAM).50 The Biobank of Karolinska Endarterectomies (BiKE) in-

cludes transcriptomic data from 126 carotid plaques removed during carotid endarterectomy.16 These

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R TCGAbiolinks package Colaprico et al.43 https://doi.org/10.18129/B9.bioc.

TCGAbiolinks

R survival package Therneau et al.44 https://github.com/therneau/survival

R clusterProfiler package Wu et al.45 https://doi.org/10.18129/B9.bioc.

clusterProfiler

R Seurat package Hao et al.46 https://github.com/satijalab/seurat

OCTAD algorithm Zeng24 https://github.com/Bin-Chen-Lab/octad

Other

TCGA Pan-Cancer gene expression profiles UCSC Xena47 https://xenabrowser.net/datapages/?

cohort=GDC%20Pan-Cancer%20(PANCAN)

BiKE dataset NCBI GEO (GSE21545) https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE21545

The association summary statistics for the gene

expression against the DUKE CAD Severity

Score or angiographic CAD SYNTAX Score

STARNET13

The differential expression summary statistics

for the mammary artery (non-atherosclerotic)

vs. aortic sinus (atherosclerotic)

STARNET13

LINCS L1000 mRNA profiling dataset Subramanian48 https://lincsportal.ccs.miami.edu/dcic-portal
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datasets have previously been published and include more detailed demographic breakdown, which can

be found in the references in the key resources table. All patient data used in this manuscript was provided

in a de-identified format without access to identification key and therefore was exempt from IRB review.

METHOD DETAILS

Survival and gene-set enrichment analyses

To correlate transcriptional data with survival, multivariate Cox regression was performed using the R sur-

vival package on the TCGA and BiKE datasets with gender and age at index as covariates.44 To improve

interpretation andmove from individual gene level to pathway level, hallmark gene set enrichment analysis

(GSEA)51 was performed on the summary statistics (Cox regression coefficient) using the R clusterProfiler

package.45 The STARNET datasets were shared as summary statistics and therefore GSEA was directly

applied using the correlation coefficient or the log2 fold change as input. The GSEA analysis provides a

normalized enrichment score (NES), which compares the sample to the mean enrichment of a random sam-

ple the same size and allows GSEA to determine significance. For this study, a positive NES indicates that

this particular pathway has more genes that correlated with worsening disease severity meaning it had a

positive Cox coefficient, positive correlation with the severity score (i.e., DUKE or SYNTAX), or positive

log2 fold change.

Identifying shared pathways between atherosclerosis and cancer

To understand the overall impact of a transcriptional pathway to atherosclerosis or cancer, the mean NES

was calculated for each disease. If the average NES for the disease was positive, that pathway was consid-

ered to be overall detrimental to the disease (positive on the X-axis for atherosclerosis or the Y-axis for can-

cer) whereas a negative average NES was beneficial (negative on the X-axis for atherosclerosis or Y-axis for

cancer). The same logic was applied to the athero-similar and -dissimilar plots in Figure S3.

Clustering individual disease datasets

To understand the relationship of the correlation of transcriptomic pathways and disease severity between

the datasets, each individual dataset was plotted on a UMAP based on their NESmatrix. The shared nearest

neighbor clustering algorithm from the R Seurat package46 was then applied to identify potential clusters

using the following parameters (npcs 20, n.neighbors 5, k.param 5, and resolution 0.4), which resolved two

clusters (one which included all of the atherosclerosis datasets [termed athero-similar] and another that did

not include any atherosclerosis datasets [termed athero-dissimilar]).

Estimating immune cell investment

To determine if differences in the abundance of immune cell populations could be driving the transcrip-

tional differences observed between athero-similar and -dissimilar cancers, the ImmuCellAI52 estimates

for immune cell infiltration in the TCGA tumor samples were obtained from the Gene Set Cancer Analysis

(GSCA) website,53 aggregated to the mean values across each cancer type, and then compared between

the two clusters of cancers by t-test.

Tabulating ICI FDA approval history by cancer

To determine the frequency of immune checkpoint inhibitor FDA approvals for each of the cancers, each of

the immune checkpoint therapies where queried using Drugs.com that provides high quality reporting of

FDA approvals for each medication. To determine if there was a significant difference in the number of ap-

provals between athero-similar and -dissimilar cancers, a Fisher’s exact test was performed comparing the

number of approvals to overall possible approvals.

In-silico drug screening to identify putative therapeutic compounds

To predict the ability of individual compounds to reverse the detrimental gene signature and therefore

identify putative therapeutics for cancer and atherosclerosis, a modified version of the OCTAD algorithm24

was utilized. This calculates a reverse gene expression score (RGES), ameasure of howwell each compound

reverses the detrimental gene signature and promotes the beneficial gene signature for each dataset. Spe-

cifically, it incorporates the Library of Integrated Network-Based Cellular Signatures (LINCS) dataset,48 a

library of disturbance expression profiles for 71 cell lines treated with 12,442 compounds. To improve

the predictions, only cell lines corresponding to the cancer type of interest or hematopoietic cell lines

(the best approximation for atherosclerosis) were taken into consideration. The RGES was defined as the
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difference between two distribution similarity statistics (the Kolmogorov-Smirnov (KS) statistics). The

first distribution included changes in detrimental genes and the second included changes in the

beneficial genes. Therefore, the ideal scenario would be that all the detrimental genes were inhibited by

the compound (i.e., all detrimental genes clustered to one tail of the drug distribution expression profiles

[KS / �1]) and all the beneficial genes were upregulated (i.e., clustered to the opposite side of the distri-

bution expression profile [KS / 1]), making the ideal final RGES value �2. A permutation procedure was

used to estimate an empirical P-value by randomly permutating the detrimental and beneficial gene list

10,000 times.

QUANTIFICATION AND STATISTICAL ANALYSIS

As described in the methods details section above, multivariate cox regression was utilized to correlate

transcriptomic data with patient information (i.e., survival, disease severity, etc.). The normalized enrich-

ment score (NES) output from GSEA was used to quantify the impact of each individual pathway. For

the clustering analysis in Figure 2B, the shared nearest neighbor clustering algorithm was used. The

mean immune cell infiltration for each group of cancers was compared via t-test. Fisher’s exact test was

used to compare the number of FDA approvals for ICI between athero-similar and -dissimilar. For the

drug prediction analyses, the reverse gene expression score was defined as the difference between two

distribution similarity statistics (the Kolmogorov-Smirnov statistics) and a permutation procedure was

used to estimate an empirical P-value by randomly permutating the detrimental and beneficial gene list

10,000 times.
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