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Individuals with sub-threshold autism spectrum disorder (ASD) are those

who have social communication difficulties but do not meet the full ASD

diagnostic criteria. ASD is associated with an atypical brain network; however,

no studies have focused on sub-threshold ASD. Here, we used the graph

approach to investigate alterations in the brain networks of children with sub-

threshold ASD, independent of a clinical diagnosis. Graph theory is an effective

approach for characterizing the properties of complex networks on a large

scale. Forty-six children with ASD and 31 typically developing children were

divided into three groups (i.e., ASD-Unlikely, ASD-Possible, and ASD-Probable

groups) according to their Social Responsiveness Scale scores. We quantified

magnetoencephalographic signals using a graph-theoretic index, the phase

lag index, for every frequency band. Resultantly, the ASD-Probable group had

significantly lower small-worldness (SW) in the delta, theta, and beta bands

than the ASD-Unlikely group. Notably, the ASD-Possible group exhibited

significantly higher SW than the ASD-Probable group and significantly lower

SW than the ASD-Unlikely group in the delta band only. To our knowledge,

this was the first report of the atypical brain network associated with sub-

threshold ASD. Our findings indicate that magnetoencephalographic signals

using graph theory may be useful in detecting sub-threshold ASD.

KEYWORDS

sub-threshold autism spectrum disorder, magnetoencephalography (MEG), social
responsiveness scale (SRS), graph theory, small-worldness
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by deficits in social cognition and
communication and repetitive/restrictive behaviors (1). These
autistic traits are distributed on a continuum from the typical
developmental range to the diagnostic range (2). As a result,
the wide variety of clinical presentations blurs the lines between
autistic and typically developing children (3, 4). As one might
infer, there are children who do not meet the full diagnostic
criteria but still experience difficulties related to autistic traits.
Since these problems can still significantly impair an individual’s
daily activities, they are referred to as “sub-threshold ASD”
(5). Evidence suggests that sub-threshold ASD tends to involve
difficulty in reciprocal communication, which could result in
maladjustment and increased risk of psychiatric disorders such
as depression and anxiety (6). In fact, Moriwaki and Kamio (7)
revealed that children with a higher level of autistic traits have
a greater risk of additional mental health problems even if they
do not meet the full diagnostic criteria of ASD (7). Therefore,
early detection and appropriate support for children who have
a certain level of autistic traits (i.e., sub-threshold ASD), but do
not fulfill the diagnostic criteria of ASD, is necessary to prevent
secondary disorders such as depression and anxiety. However,
no reliable biological marker currently exists for detecting sub-
threshold ASD.

Evidence suggests that ASD is a disorder of “brain
connectivity.” In terms of pair-wise brain connectivity, a
popular hypothesis is that ASD is characterized by long-range
underconnectivity combined with local overconnectivity [in
magnetoencephalography (MEG) or electroencephalography
(EEG), connectivity usually refers to how electromagnetic
signals from different brain regions are similar]. We know
that interactions between pairs of regions combine to make
a single, large network of the brain. In this context, a novel
way to study the brain is to analyze the macroscopic behavior
of the brain network as a whole instead of focusing on
the respective pair-wise connectivity. Graph theory effectively
describes the properties of complex networks on a large scale
(8). Using graph theory, we can express geometric features of
a given network in terms of numbers referred to as “graph
metrics.” Among these, “small-worldness” (SW) is considered
an index of optimal balance between integrated and segregated
information processing in the brain network. SW has been well-
reported for comparisons of brain networks of children with
typical development (TD) and ASD, and these studies have
almost consistently reported lower SW in children with ASD.
Particularly, the brain network of children with ASD shows
significantly lower SW than that of children with TD in the
delta (9), theta combined with alpha (10), and beta (11) bands
and every (i.e., delta, theta, alpha, beta, and gamma) frequency
band (12) [one exception is a higher SW in the gamma band
reported by (9)]. It is noteworthy that lower small worldness

in the beta band is reported to linearly correlate with severer
social impairment in children with ASD (11). Given the relation
between SW and ASD symptomatology, one might infer that it
would be possible to detect children with sub-threshold ASD
in early developmental stages using SW. However, no graph-
theoretical studies have focused on “sub-threshold ASD.”

For sub-threshold ASD, whether one fulfills the diagnostic
criteria of ASD would be less meaningful, as the definition
of sub-threshold ASD borderlines between ASD and typically
developing children. As such, children with a similar degree of
difficulty in communication could accidentally be diagnosed or
not with ASD. In this study, we recruited children, with ASD and
TD and classified them into three groups (ASD-Unlikely, ASD-
Possible, and ASD-Probable) in terms of difficulties both in
communication and repetitive restricted behaviors, rather than
them being formally diagnosed with ASD. We combined MEG
and graph theory to investigate the brain network of these three
groups. We hypothesized that children in the ASD-Possible
group would have atypical brain networks differing from those
in the ASD-Unlikely or ASD-Probable group. Specifically, we
hypothesized that there may be differences in SW in relation to
the degree of autistic traits.

Materials and methods

Participants

We enrolled 54 Japanese children with ASD (36 boys, 18
girls, aged 38–92 months) and 31 children with TD (26 boys,
5 girls, aged 53–89 months) from the Kanazawa University
hospital and affiliated hospitals. ASD was diagnosed following
the Diagnostic and Statistical Manual of Mental Disorders
(DSM) IV (1) using the Diagnostic Interview for Social and
Communication Disorders (13) or the Autism Diagnostic
Observation Schedule-Generic (14) and the Autism Diagnostic
Observation Schedule 2 (15). We excluded participants with
blindness, deafness, other neuropsychiatric disorders, and those
receiving an ongoing medication regimen. We assessed the
intelligence of the participants using the Japanese version
of the Kaufman Assessment Battery for Children (K-ABC)
(16) and excluded eight participants who scored <70 on the
Mental Processing Scale. Consequently, 46 children with ASD
(31 boys, 15 girls, aged 38–92 months) and 31 with TD (26
boys, 5 girls, aged 53–89 months) remained for analysis. The
Social Responsiveness Scale (SRS) (17) was used to assess
the participants’ autistic traits (a detailed explanation of the
SRS is available in the Supplementary Data). We separated
the participants into three groups in terms of the T-score of
the SRS according to a previous study (18); (i) ASD-Unlikely
group (children in the normal range, T-scores less than 59),
(ii) ASD-Possible group (children with less obvious autistic
traits corresponding to sub-threshold ASD, T-scores between 60
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and 75), and (iii) ASD-Probable group (children with obvious
autistic traits, T-scores greater than 76). The study was approved
by the Ethics Committee of Kanazawa University Hospital
and conducted following the Declaration of Helsinki. Written
informed consent was obtained from all parents.

Magnetoencephalography recordings

Magnetoencephalography data were recorded using a 151-
channel Superconducting Quantum Interference Device whole-
head coaxial gradiometer MEG system for children (PQ 1151
R; Yokogawa/KIT, Kanazawa, Japan) in a magnetically shielded
room (Daido Steel, Nagoya, Japan) installed at the MEG Center
of Ricoh Company, Ltd. (Kanazawa, Japan). The band-pass-
filtered MEG data (0.16–200 Hz) were collected at a sampling
rate of 2,000 Hz. We ensured that each child was motionless
during the recording (a detailed description of the recording
procedure is available in the Supplementary Data).

Co-registration of
magnetoencephalography on
substituted or participants magnetic
resonance image

A total of 25 participants were unable to remain motionless
during the magnetic resonance image (MRI) recordings. We
employed a suitable MRI brain template for each such
participant based on the individual head surface shapes using
an algorithm that we had developed for previous studies (see
details in Supplementary Data). To use a brain template, we
attached three coils at each bilateral mastoid process and the
nasion. The other 21 children underwent complete MRI. For
those, to use their own MRI image, we attached four coils at each
of the bilateral mastoid processes, midline frontal, and vertex. In
either case, in reference to the specific magnetic field generated
by the coils, we could ascertain the child’s head position within
the helmet. A detailed description of the procedure is available
in Supplementary Data.

Co-registration of
magnetoencephalography on
participant’s own magnetic resonance
image image

A newly developed silent mode MRI and a sequence allowed
us to capture the participants’ brain structure in less than
30 s (19). Consequently, with the help of an MRI-compatible
video presentation system and an MRI-compatible headphone
system, we were able to conduct MRI without sedation for
the other 21 children. The following methods for MR image

acquisition have been described before (11). A 1.5-T MRI
scanner (SIGNA Explorer; GE Healthcare, United States) was
used to collect structural brain images from all participants.
The three-dimensional high-resolution T1-weighted gradient-
echo and Silenz pulse sequence images were used as an
anatomical reference. The imaging parameters were as follows:
TR = 435.68 ms, TE = 0.024 ms, flip angle = 7◦, FOV = 220 mm,
matrix size = 256 × 256 pixels, slice thickness = 1.7 mm, total of
130 transaxial images.

For these 21 participants, we co-registered the MEG and
their own MR images following the marker locations. The
markers for MEG and MRI were the frontal midline, parietal,
and bilateral mastoid processes. For the MEG, we used four coils
to generate a magnetic field. For MRI, we used four pieces of
lipid capsule as markers. Furthermore, we identified points on
the mastoid processes, nasion, and skull surface visually on MRI.
Approximately 15–25 points were depicted for each participant.

Magnetoencephalography data
analyses

The MEG analyses were performed using Brainstorm.1 We
preprocessed the MEG data according to recommendations
of the Organization for Human Brain Mapping (20). Then,
we estimated the brain signal sources using an anatomically
constrained MEG approach. The signal sources were grouped
into 68 regions represented in the Desikan–Killiany atlas
using principal component analyses. The data were segmented
into 5-s epochs; then, each epoch was band-pass filtered
for the used frequency bands: delta (2–4 Hz), theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
60 Hz). This procedure was identical to those used in our
earlier studies (11, 21). The details regarding the procedure
(i.e., preprocessing, atlas-guided source reconstruction, and
segmenting) are available in the Supplementary Data.

The phase lag index (PLI) was used to measure the
functional connectivity between brain regions (a detailed
explanation is available in Supplementary Data). We chose the
PLI as it is insensitive to the field spread and has been widely
used to describe atypical brain networks in children with ASD
(9–12).

Graph construction and graph metrics

The basic topography of a network is represented by a graph
consisting of “nodes” and “edges” connecting pairs of nodes.
In this study, nodes corresponded to 68 brain regions of the
Desikan–Killiany atlas (22). We weighted the edges based on
the PLI values between pairs of brain regions. For each epoch,

1 https://neuroimage.usc.edu/brainstorm/Introduction
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we constructed an undirected weighted functional connectivity
matrix (68 × 68) based on the PLI for each frequency band (i.e.,
delta, theta, alpha, beta, and gamma). We averaged the matrices
of all epochs for each participant. For those averaged matrices,
weak connectivity may represent spurious connections. To
remove possible spurious connections, we binarized those
graphs through the application of a proportional weight
threshold. We set proportional threshold κ, the proportion of
total connections retained, as 0.2 (a κ of 0.2 indicates that the
strongest 20% of the connections were selected) in accordance
with earlier studies (6, 8). At present, however, there is no formal
consensus regarding the selection of a weight threshold. To
verify the stability of the results, we also investigated a range of
proportional thresholds κ from 0.1 to 0.3 at 0.02 increments.

In this manner, a complex brain network is expressed
as graphs in terms of binary matrices. The information
included in those graphs can be further summarized via
various measures. Well-established measures include the mean
clustering coefficient (C), average shortest path length (L),
and SW. C represents how clustered a graph’s nodes are and
is a commonly used measure of functional segregation. L is
the average shortest path length between all node pairs in
the network and is the most commonly used measure of
functional integration. Notably, human brain networks have
higher C and shorter L, which purportedly represents an
optimal balance between integration and segregation. Such
a network is called a small-world network. In this context,
SW, another graph metric, is the ratio of normalized C
and normalized L. As such, a graph with a high SW is a
network significantly more clustered than a random network
yet has approximately the same characteristic path length
(a detailed explanation is available in Supplementary Data).
In this study, we calculated each participant’s SW, C, and
L on each frequency band. In addition to these network-
level properties, we also investigated node-level properties
to locate regions with atypical properties. In particular, the
clustering coefficient and average shortest path length were
calculated at each node.

Statistical analysis

All statistical analyses were performed using Stata (ver.
16.1; Stata Corp., College Station, TX, United States). We used
Student’s t-test to compare differences in age and intelligence
quotient (IQ: the Mental Processing Scale scores in the K-ABC)
between children with ASD and those with TD. Sex differences
were examined via a chi-square test.

We used analysis of variance to compare the three groups
(ASD-Unlikely, ASD-Possible, and ASD-Probable groups) in
terms of age, sex, scores in the Mental Processing Scale and the
Achievement Scale of the K-ABC, and SRS total T-score).

Subsequently, to test the differences in network-level graph
metrics (C, L, and SW) among the three groups, we fitted

a generalized linear model with a gamma error distribution
with a log link (i.e., a gamma regression model). Particularly,
we predicted log-transformed graph metrics based on the
groups (treated as a categorical variable), age, sex, and Mental
Processing Scale of the K-ABC. As the test was repeated
three times for each frequency band (ASD-Unlikely vs. ASD-
Probable, ASD-Unlikely vs. ASD-Possible, ASD-Probable vs.
ASD-Possible), adjusted p-values were obtained using a false
discovery rate (FDR) approach (23) for three comparisons, and
significance was inferred for adjusted p-values of <0.05.

To test the differences in node-level graph metrics (C
and L) among the three groups, we similarly predicted
log-transformed graph metrics based on the groups, age,
sex, and Mental Processing Scale of the K-ABC. As the
test was repeated 3 (ASD-Unlikely vs. ASD-Probable, ASD-
Unlikely vs. ASD-Possible, ASD-Probable vs. ASD-Possible) ∗

68 (the number of nodes) = 204 times for each frequency
band, FDR-adjusted p-values (23) were calculated for 204
comparisons, and significance was inferred for adjusted
p-values of <0.05.

As our primary focus was SW, as exploratory analysis, we
investigated linear relations between SW in each frequency band
and the SRS scores. In particular, we predicted SW metrics based
on the SRS total T-scores.

Results

There were no significant differences in ages, sexes, and
K-ABC scores between children with ASD and TD. The
participant and group characteristics are shown in Tables 1, 2.

Group differences in network-level
graph metrics

We first investigated the network-level properties in each
frequency band setting κ at 0.2. Hereafter, adjusted p-values are
presented because statistical significance was inferred based on
the adjusted p-values.

Gamma regression models revealed that the ASD-Probable
group had significantly lower SW than the ASD-Unlikely
group in all frequency bands except for the alpha band. For
the delta band, significant differences were observed in all
three comparisons. In particular, the ASD-Probable group
had significantly lower SW in the delta band than the ASD-
Unlikely group (coefficient = −0.32, 95%CI: −0.49, −0.16,
p = 0.0001); they also had a significantly lower SW than
the ASD-Possible group (coefficient = −0.18, 95%CI: −0.34,
−0.01, p = 0.044). In addition, the ASD-Possible group had
a significantly lower SW in the delta band than the ASD-
Unlikely group (coefficient = −0.15, 95%CI: −0.29, −0.00,
p = 0.044). For the theta band, the ASD-Probable group
had significantly lower SW than the ASD-Unlikely group
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TABLE 1 Participants’ characteristics.

ASD
N = 46

TD
N = 31

χ2 or t p

Age in months 66.3 (12.00) 69.2 (9.73) 1.13 0.26

Sex (% Male) 67.3% 83.9% 2.62 0.11

K-ABC mental processing
scale

102.9 (15.30) 107.8 (12.62) 1.49 0.14

K-ABC achievement scale 100.4 (16.89) 103.0 (14.30) 0.71 0.48

SRS
total T-score

71.9 (10.46) 50.7 (7.76) −9.60 0.00**

Numbers are mean (standard deviation).
**represents a significant difference (p < 0.01).
ASD, autism spectrum disorder; K-ABC, Kaufman Assessment Battery for Children; SRS,
Social Responsiveness Scale; TD, typical development.

(coefficient = −0.26, 95%CI: −0.43, −0.08, p = 0.011). For
the beta band, the ASD-Probable group had significantly lower
SW than the ASD-Unlikely group (coefficient = −0.25, 95%CI:
−0.45, −0.06, p = 0.031). For the gamma band, the ASD-
Probable group had an almost significantly lower SW than
the ASD-Unlikely group (coefficient = −0.23, 95%CI: −0.41,
−0.04, p = 0.05). On the other hand, there were no significant
differences in C and L based on the groups. Only models
predicting SW had a significant main effect on group. Figure 1
and Table 3 summarize the differences in graph metrics among
the groups. FDR-corrected p-values are presented in Table 3.
The effect of other variables (i.e., age, sex, and scores on
the Mental Processing scale of the K-ABC) are provided in
Supplementary Table 1.

Similar patterns were observed for the other κ values.
The ASD-Unlikely group showed higher SW than the ASD-
Probable group, and the values for the ASD-Possible group
lied somewhere in between. The differences in SW between the
ASD-Unlikely and ASD-Probable groups were significant for
the delta, theta, and beta bands (the differences in the theta and
delta bands were significant for every κ from 0.10 to 0.30, and
the differences in the beta band were significant when κ was
set at 0.10–0.22). Supplementary Figure 1 and Supplementary
Table 2 present the relevant results.

Group differences in node-level graph
metrics

We first investigated the node-level properties in each
frequency band setting κ at 0.2. After multiple-testing
correction, node-level C was significantly different in the
nodes corresponding to the right fusiform, right superior
parietal (in the alpha band), right supramarginal (in
the theta band), and right transverse temporal (in the
beta band) areas. These node-level significant differences
were observed in the comparison between ASD-Possible
and ASD-Probable individuals, except for the right
superior parietal where the difference was significant
between the ASD-Unlikely and ASD-Probable groups.
These results highlight that the difference between
the ASD-Unlikely and ASD-Possible groups could not
have been detectable if we had only focused on the
node-level properties.

Afterward, we investigated the node-level properties for the
other κ values. Among the above regions, only the difference
in the right transverse temporal (in the beta band) remained
significant for the other κ values (when κ was set at 0.22–0.26).
These results indicate that the difference in node-level properties
per se could not explain the observed difference in network-level
properties. Supplementary Table 3 presents the relevant results.

Linear relation between
small-worldness and social
responsiveness scale total T-scores

Subsequently, we investigated the relationship of SW with
the SRS total T-scores using linear regression models. The
regression models showed that lower SW in the delta, theta, beta,
and gamma bands was significantly associated with higher SRS
total T-scores (t(75) = −4.02, p = 0.0001, t(75) = −3.04, p = 0.003,
t(75) = −2.57, p = 0.012, t(75) = −2.50, p = 0.015, respectively).
The relevant results are presented in Supplementary Figure 2
and Supplementary Table 4.

TABLE 2 Group characteristics.

ASD-Unlikely
N = 31

ASD-Possible
N = 29

ASD-Probable
N = 17

F p

Age in months 69.4 (10.27) 66.2 (10.39) 65.9 (13.90) 0.81 0.45

Sex (% Male) 80.6% 75.9% 64.7% 0.74 0.48

K-ABC mental processing scale 109.1 (12.87) 101.8 (15.57) 102.5 (13.91) 2.27 0.11

K-ABC achievement scale 104.0 (14.19) 97.1 (14.00) 104.2 (20.46) 1.77 0.18

SRS total T-score 49.3 (5.97) 67.0 (4.52) 82.8 (5.19) 230.57 0.00**

Numbers are mean (standard deviation).
**Represents a significant difference (p < 0.01).
ASD, autism spectrum disorder; K-ABC, Kaufman Assessment Battery for Children; SRS, Social Responsiveness Scale; TD, typical development.
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TABLE 3 Differences in graph metrics.

Comparison Frequency band Coefficient 95% CI p

Delta
ASD-Unlikely vs. ASD-Possible C

L
SW

−0.044
0.015

−0.146

−0.248
−0.037
−0.289

– 0.160
0.068

−0.004

0.675
0.781
0.044*

ASD-Unlikely vs. ASD-Probable C
L
SW

−0.271
−0.009
−0.322

−0.508
−0.069
−0.485

– −0.033
0.052

−0.158

0.077
0.781

0.000**
ASD-Possible vs. ASD-Probable C

L
SW

−0.227
−0.024
−0.175

−0.460
−0.084
−0.337

– 0.005
0.036

−0.014

0.083
0.781
0.044*

Theta
ASD-Unlikely vs. ASD-Possible C

L
SW

−0.036
0.000

−0.085

−0.227
−0.047
−0.236

– 0.155
0.048
0.066

0.715
0.984
0.270

ASD-Unlikely vs. ASD-Probable C
L
SW

−0.211
−0.023
−0.257

−0.433
−0.079
−0.430

– 0.010
0.032

−0.083

0.172
0.613
0.011*

ASD-Possible vs. ASD-Probable C
L
SW

−0.176
−0.024
−0.172

−0.394
−0.079
−0.342

– 0.043
0.031

−0.001

0.172
0.613
0.072

Alpha
ASD-Unlikely vs. ASD-Possible C

L
SW

0.022
−0.001
−0.039

−0.144
−0.043
−0.206

– 0.188
0.041
0.128

0.798
0.968
0.648

ASD-Unlikely vs. ASD-Probable C
L
SW

−0.135
−0.022
−0.184

−0.327
−0.071
−0.376

– 0.058
0.027
0.009

0.256
0.597
0.184

ASD-Possible vs. ASD-Probable C
L
SW

−0.156
−0.021
−0.145

−0.346
−0.069
−0.333

– 0.033
0.027
0.044

0.256
0.597
0.198

Beta
ASD-Unlikely vs. ASD-Possible C

L
SW

−0.010
0.005

−0.099

−0.199
−0.034
−0.267

– 0.178
0.045
0.070

0.914
0.785
0.251

ASD-Unlikely vs. ASD-Probable C
L
SW

−0.152
−0.012
−0.254

−0.371
−0.058
−0.448

– 0.067
0.034

−0.060

0.297
0.785
0.031*

ASD-Possible vs. ASD-Probable C
L
SW

−0.141
−0.018
−0.156

−0.356
−0.063
−0.346

– 0.073
0.028
0.036

0.297
0.785
0.167

Gamma
ASD-Unlikely vs. ASD-Possible C

L
SW

−0.026
0.008

−0.083

−0.202
−0.033
−0.243

– 0.150
0.049
0.077

0.771
0.704
0.310

ASD-Unlikely vs. ASD-Probable C
L
SW

−0.094
−0.031
−0.227

−0.300
−0.078
−0.412

– 0.114
0.016

−0.041

0.762
0.294

0.0498*
ASD-Possible vs. ASD-Probable C

L
SW

−0.068
−0.040
−0.144

−0.270
−0.086
−0.325

– 0.134
0.008
0.038

0.762
0.294
0.182

All p-values are false discovery rate corrected.
*represents a significant difference (p < 0.05), **represents a significant difference (p < 0.01).
ASD, autism spectrum disorder; C, mean clustering coefficient; L, average shortest path length; SW, small-worldness.

Discussion

To our knowledge, this is the first graph-theoretical study
focusing on “sub-threshold ASD.” Our results revealed that each

group—ASD-Unlikely, ASD-Possible, and ASD-Probable—as
determined based on the SRS, has peculiar brain networks in
terms of SW, a measure of optimal balance between functional
integration and segregation. Particularly, the ASD-Probable
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FIGURE 1

Boxplot of small-worldness (SW) in each frequency band. The panels present the phase lag index values of SW among the three groups for each
frequency band (mean ± SD). Post-hoc comparisons between the autism spectrum disorder (ASD)-Probable and ASD-Unlikely, ASD-Probable
and ASD-Possible, and ASD-Possible and ASD-Unlikely groups: ∗p < 0.05, ∗∗p < 0.000.

group showed significantly lower SW than the ASD-Unlikely
group in the delta, theta, and beta bands. These results suggest
that the brain network of ASD-Probable individuals deviates
from an unaffected brain’s small-world properties, and the
brain network of ASD-Possible individuals falls somewhere
in between those of the ASD-Probable and the ASD-Unlikely
groups. The differences between the ASD-Possible group and
the other two groups were significant even in the delta band.

Among the previous graph-theoretical studies of children
with ASD, lower SW was almost consistently reported in various
frequency bands [delta (9), theta combined with alpha (10),
beta (11), and all frequency bands (12)]. We used the same
connectivity measure (i.e., the PLI) as those studies (9–12)
and confirmed the lower SW in ASD-Probable individuals.
Considering the substantial methodological differences, such
as the varying properties of the graphs [weighted (10, 12) vs.
binary graphs (9, 11)], electromagnetic field measures [EEG
(10, 12) vs. MEG (9, 11)], analytic spaces [sensor space (9, 10,
12) vs. source space (11)], and recording conditions [e.g., the
presence of visual stimulation (9, 10), fixation cross (11), or
natural environment (12)], it is surprising that lower SW is
almost consistently reported. Notably, studies with relatively
small sample sizes [i.e., the number of children with ASD vs.
those with TD was 24 vs. 24 in (9), 12 vs. 19 in (10), and
20 vs. 25 in (11)] have reported inconsistent results across the
frequency bands, whereas studies with larger sample sizes [80
vs. 106 in (12) and 46 vs. 31 in this study] have reported

lower SWs for ASD/ASD-Probable children across the frequency
bands. Combining the existing evidence, the ASD brain may be
considered to exhibit lower SW in every frequency band, but
the difference is not as large as those reported by studies with
small sample sizes. In this context, our study’s results reinforce
the notion that there is atypical information processing in the
autistic brain and further support the usefulness and robustness
of graph theory to describe the differences in network structures.
In particular, using a combination of MEG/EEG and the graph
theoretical approach, one would be able to effectively detect a
characteristic of the ASD brain (e.g., lower SW in the delta band)
regardless of some methodological differences (e.g., measures
for the electromagnetic field and recording conditions).

This study was the first to show that an atypical brain
network (i.e., lower SW in the delta band) is detectable even
in individuals with less evident autistic traits (i.e., ASD-Possible
individuals). It is noteworthy that the difference in node-
level properties could not by itself explain this network-level
difference. More importantly, we could not find a significant
difference between the ASD-Possible and ASD-Unlikely groups
in terms of node-level properties. These findings suggest that
(i) the less evident autistic traits might not arise from atypical
local information processing and may rather reflect atypical
information processing at the network level and (ii) node-
level properties might be insufficient to distinguish individuals
with less evident autistic traits from the general population.
In this sense, this study highlights the possible usefulness
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of graph theory for the detection of individuals with sub-
threshold ASD, which could not be achieved using traditional
approaches such as area by area comparisons. This particular
application may be attractive from a clinical perspective because
sub-threshold ASD is often overlooked, although the affected
individuals tend to experience difficulties in social adaptation,
and thus need support, as do children who meet the diagnostic
criteria for ASD.

Finally, in the exploratory analysis of the linear relation
between SW and the SRS scores, we found significant
associations between these two metrics in all frequency bands
except alpha. In this context, we reconfirmed the previously
reported association for the beta band (11) and extended the
previous findings in that the relation between SW and autistic
symptoms could be observable in the other frequency bands.

This study had several limitations. First, the sample size was
too small. Studies with a larger sample are needed to verify
the neural bases of the brain networks in sub-threshold ASD.
Second, all participants were young children. It is necessary to
include adolescents and adult individuals with sub-threshold
ASD to generalize the results. Third, the children remained
motionless in the MEG system with the aid of visual attention
(e.g., showing a video program). Because of this, the MEG
data were recorded with eyes open under visual stimulation.
As a result, the observed brain activity needs to be clearly
distinguished from “resting” brain activity. Studies under
controlled conditions of attention may provide more reliable
evidence; however, these conditions would be difficult to apply
to young children.

In conclusion, our results revealed varying atypical neural
network properties according to the degree of autistic traits. Our
findings highlight a theory of altered brain connectivity in ASD,
which focuses on atypical SW network properties assessed using
graph theory. Our results indicate that SW derived from graph
theory, when applied to a MEG signal, may help characterize the
neural basis of sub-threshold ASD.
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