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This paper studies a weakly and asymmetrically coupled three-lane driven diffusive system. A
non-monotonically changing density profile in the middle lane has been observed. When the extreme value
of the density profile reaches r50.5, a bulk induced phase transition occurs which exhibits a shock and a
continuously and smoothly decreasing density profile which crosses r 50.5 upstream or downstream of the
shock. The existence of double shocks has also been observed. A mean-field approach has been used to
interpret the numerical results obtained by Monte Carlo simulations. The current minimization principle
has excluded the occurrence of two or more bulk induced shocks in the general case of nonzero lane changing
rates.

D
riven diffusive system is a rewarding research topic in recent decades, which exhibits non-vanishing
current even in the steady state and has served as fruitful testing grounds for fundamental research in
non-equilibrium physics1–5. The driven diffusive systems exhibit many surprising or counterintuitive

features, given our experiences with equilibrium systems, e.g., spontaneous symmetry breaking, phase separation,
etc.6–10.

The boundary induced phase transition is another non-equilibrium phenomenon11–14. For the case of vanishing
right boundary density, Krug postulated a rather general maximal-current principle that the system tries to
maximize its stationary current11. The maximal-current principle has later been generalized to the extremal
current principle12,13

q~
max q(r), r{wrz

min q(r), r{vrz

�
ð1Þ

Here r2(r1) is the constant effective density of the left (right) reservoir from which particles are flowing into (out
of) the system and r is system density, which is defined as the occupancy probability of sites. The microscopic
details of the system only determine the functional form of the current q(r) and the effective boundary densities.

Motivated by facts such as the unidirectional motion of many motor proteins along cytoskeletal filaments, in
which motors advance along the filament while attachment and detachment of motors between the cytoplasm
and the filament occur, the constraint of the conserved dynamics in the bulk in the driven diffusive system has
been relaxed to consider random particle attachments and detachments in the bulk15. The resulting dynamics
leads to a phase coexistence of low and high density regions separated by a shock.

The driven diffusive systems have also been extended to include the possibility of transport on multiple parallel
lanes to describe phenomena such as the extraction of membrane tubes by molecular motors, macroscopic
clustering phenomena, car traffic and so on (see e.g. Refs. [16–29] and references therein), in which the boundary
induced phase transitions still could be observed.

This paper studies a weakly and asymmetrically coupled three-lane totally asymmetric simple exclusion
process (TASEP), and reports a bulk induced phase transition. Our model is defined in a three-lane lattice of
N33 sites, where N is the length of a lane (see Fig. 1). For each time step, a site is chosen at random. A particle at
site i and lane j can jump with rate 1 to site i 1 1 if it is unoccupied. Otherwise, if site i 1 1 is occupied, the particle
jumps to site i on lane j 1 1 with rate vA and to site i on lane j21 with rate vB (vB?vA), provided the target site is
unoccupied. Obviously, vB50 for lane 1 and vA50 for lane 3. We use this rule to mimic the feature of cars, since
cars usually will not change lane when unhindered. The model was also stimulated by fast and strong motor
proteins, like kinesins, which do not change lines frequently. However, these details do not change the physics of
the observed phenomena. Without this rule (i.e., a particle can change lanes provided the target site is empty) the
system dynamics do not qualitatively change.
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The asymmetric coupling makes the middle lane different from
two other lanes, and bulk induced phase transition occurs on this
lane. At the boundaries, a particle enters from the left boundary with
rate a, and is removed from the right boundary with rate b. As in
previous studies, a weakly coupling is considered in which vAN5VA

and vBN5VB are kept constant. We have studied the model using
both mean-field calculation (see section Method) and Monte Carlo
simulations.

Results
Figure 2 shows a typical phase diagram of a three-lane system, in
which an asymmetrical set of parameters VA510 and VB50.1 is
adopted. In the phase diagram, XYZ stands for the state of the three
lanes. L(H) means that the corresponding lane j is in low (high)
density phase rj,0.5 (rj.0.5), S means that there is a shock on
the lane (shocks S1 and S2 denote bulk induced shocks as discussed
below), D means that there are two shocks on the lane, C means that
the density profile is a continuously and smoothly decreasing one
and crosses the density r50.5. The transitions among LLL, LLS, LSS,
LLH, LSH, LHH, SSH, SHH, HHH can be easily understood as
boundary induced phase transitions, see e.g., Refs. [19,20]. For
instance, when r3(1), the density at the right end on lane 3, increases
to min (b, 1/2) in the LLL phase, a shock is induced from the right
boundary on this lane and thus the LLL phase transits into LLS phase.
Fig. 3 shows the typical density profiles of these states.

We focus on the density profiles in the LLS state. Fig. 4(a) shows
several typical density profiles with the fixed value b50.276. Note
that in the LLS state, due to existence of a shock on the third lane, the
density profile is not smooth in the middle lane at the shock location,

which separates the density profile into two parts. When a is left to
the dotted line in the phase diagram, the density profile in the down-
stream part is increasing with x. With the increase of a, the shock
moves left, so that the downstream part expands. Across the dotted
line, the density profile in the downstream part becomes non-mono-
tonically changing. This is because (J1R2 1 J3R2)2(J2R1 1 J2R3)
begins to change sign with x in the downstream part. Here JkRj

means flow from lane k to lane j. In the LLH state, the shock has
been expelled out from the left end, and the density profile is always
monotonically changing. On the boundary between LLH and LS1H,
the extreme value of the density profile on lane 2 reached r50.5. As a
result, a bulk induced phase transition occurs, which exhibits a shock
(S1) as well as a continuous and smooth density profile that crosses
r50.5 downstream of the shock. Note that when r250.5, the coef-
ficient (1–2r2) in eq.(11) equals zero. Consequently, the mean field
equations (10)–(12) cannot be used to solve the density profile in the
vicinity of r250.5, because the numerical solution diverges. We have
used equations (7)–(9) instead.

Similarly, in the SHH state, the density profile located in the
upstream part of the middle lane gradually becomes non-monoton-
ically changing when (a, b) approaches the corresponding dotted
line. Across the boundary between LHH and LS2H, a bulk induced
shock (S2) as well as a continuous and smooth density profile that
crosses r50.5 upstream of the shock appears, see Fig. 4(b).

Here we call ‘‘bulk induced’’ phase transition because the shock
emerges in the bulk. Note that there is another viewpoint, in which
lanes 1 and 3 are regarded as heterogeneous reservoirs for lane 2.
Since the heterogeneity on lanes 1 and 3 comes from boundaries, and
thus the phase transitions are regarded as intrinsically induced by
boundaries.

We study the density profiles in the LS1H state. Fig. 5(a) shows
several density profiles with b50.296 is fixed. With the increase of a,
the shock gradually moves left. Across the boundary between LS1H
and LCH, the shock is expelled out from the left end, and only the
continuous and smooth density profile is left in the middle lane.
Similarly, the shock is expelled out from the right end in the LS2H
phase when across the boundary between LS2H and LCH, see
Fig. 5(b).

Figs. 6 (a) and (b) show the density profiles in the LSH phase, in
which (a, b) changes along dashed lines 1 and 2 in the phase diagram,
respectively. When (a, b) is left of the dotted line, the density profile
is increasing both upstream and downstream of the shock. However,
when across the dotted line, the density profile becomes non-mono-
tonic upstream (downstream) of the shock. On the boundary
between LSH and LDH, the maximum (minimum) of density profile
reaches r50.5. When across the boundary, the bulk induced shock
appears upstream (downstream) of the first shock and thus two
shocks exist simultaneously in the middle lane.

Figs. 6(c) and (d) show the density profiles in the LS1H and LS2H
phase, in which (a, b) changes along dashed lines 3 and 4, respect-
ively. On approaching the boundary between LS1H (LS2H) and LDH,
r2(1) (r2(0)) gradually approaches b ((12a)). Across the boundary,
a shock is induced from the right (left) boundary, thus, double shocks
emerge.

Finally, in the LDH phase, when (a, b) changes along dashed line
5, the left shock moves toward left and the right shock moves right.
On the boundary between the LDH phase and the LCH phase, the
two shocks are expelled from the system, simultaneously, see Fig. 7.

Discussion
Now we interpret why only one bulk induced shock is triggered.
Suppose there are two bulk induced shocks. As a result, the density
profile crosses r50.5 twice, i.e., there are two locations x1 and x2

(x1,x2) at which r250.5. Note that for the double shocks in the LDH
state, the density profile crosses r50.5 only once. Thus, the double
shocks can exist.

Figure 1 | Sketch of the three-lane TASEP. The arrow shows allowed

hopping and the cross shows prohibited hopping.

Figure 2 | Phase diagram of the three-lane TASEP obtained from mean-
field calculation. The parameters VA510and VB50.1. Details about the

dotted lines and the dashed lines 1–5 are in the text.
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Now, we have the following equation at the two locations accord-
ing to the current conservation principle

r1(1{r1)zr3(1{r3)~c ð2Þ

where 0 # c # 0.5 stands for a constant. Substituting r250.5 into
eq.(11), we have

{VA(1{r3)z2VBr3
2{VB(1{r1)z2VAr1

2~0 ð3Þ

at locations x1 and x2. Suppose VA.VB, then one has r1,0.5 and
r3.0.5 at the two locations. Thus, from eq.(2), r3 can be solved

r3~
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4½c{r1(1{r1)�

p
2

ð4Þ

Figure 3 | Typical density profiles. (a) LLL, (b) LLS, (c) LSS, (d) LLH, (e) LSH, (f) LHH, (g) SSH, (h) SHH, (i) HHH. The scatter data are simulation

results, and the dashed lines are mean field results. (a, b)5(0.1, 0.25), (0.1, 0.15), (0.074, 0.087), (0.268, 0.286), (0.2, 0.18), (0.278, 0.166), (0.15, 0.098),

(0.45, 0.11), (0.45, 0.09) in (a) – (i), respectively. In the simulation, the system size N 520000.

Figure 4 | The density profiles of the middle lane (mean-field results). (a)

System transits from LLS to LS1H. Parameters are b50.276, a50.14, 0.15,

0.163, 0.17, 0.229, 0.29, 0.308 for curves from bottom to top. (b) System

transits from SHH to LS2H. Parameters area50.31, b50.088, 0.098, 0.108,

0.128, 0.152, 0.189, 0.206 for curves from top to bottom.

Figure 5 | The density profiles of the middle lane (mean-field results). (a)

System transits from LS1H to LCH. The parameter b50.296. (b) System

transits from LS2H to LCH. The parameter a50.358.
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Substituting eq.(4) into (3), one has

f (r1):{VA 1{
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4½c{r1(1{r1)�

p
2

( )

z2VB
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4½c{r1(1{r1)�

p
2

( )2

{VB(1{r1)z2VAr
2
1~0

ð5Þ

Taking derivative to r1, we obtain

Lf
Lr1

~
(1{2r1)½VAz2VB(1zd)�

d
z4VAr1zVB ð6Þ

where d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4½c{r1(1{r1)�

p
. Since r1,0.5,

Lf
Lr1

w0 is always

satisfied. This means that eq.(5) has at most one solution.
Therefore, r1(x1)5r1(x2) and r3(x1)5r3(x2). When one lane-chan-
ging parameter equals 0, both r1(x) and r3(x) are monotonically
changing with x. Therefore, r1(x1)5r1(x2) and r3(x1)5r3(x2) can-
not be satisfied.

In the general situation that neither VA nor VB equals to 0, the
section x # x1 and the section x $ x2 can match each other and
constitute a shortened system with length 12(x22x1), in which only
one bulk induced shock exists. The mean-field analysis has shown
that given the same values of a and b, the flow rate in a shortened
system is larger than that in the original system, provided there exists
one bulk induced shock in both systems. Thus, we argue that the
current minimization principle excludes the occurrence of two or
more bulk induced shocks.

Hinsch and Frey have studied a periodic one-dimensional exclu-
sion process composed of a driven and a diffusive part, and identified
bulk-driven phase transitions in a mesoscopic limit where both
dynamics compete30. Nevertheless, the system can be regarded as
two sub-systems connecting together. Therefore, the bulk-driven
phase transitions are essentially boundary induced ones.

In our system, we can also treat the location where the density
profile crosses r50.5 as a virtual boundary, which separates the
system into two sub-systems. For the left sub-system, the effective
exit rate for the middle lane is b2,eff50.5. For the right one, the
effective entrance rate for the middle lane is a2,eff50.5.
Nevertheless, instead of a static boundary, the location of the virtual
boundary in our system is self-tuned and determined by the values of
the kinetic rates.

We also would like to point out that the existence of double shocks
has been demonstrated when considering detachment and attach-
ment of particles in the Katz-Lebowitz-Spohn process31. However,
different from the double shocks in LDH state in our model, both
shocks are boundary induced ones in Ref. [31].

Also note that, as pointed out in Ref. [16], when the minima of the
current can be realized by several different densities simultaneously,
multiple shocks can be observed, which separate the density profile
into several flat segments with different densities corresponding to
the minima. Nevertheless, the multiple shocks always emerge and
disappear simultaneously. This is different from the double shocks in
the present paper.

This paper only focuses on the three-lane TASEP. When the num-
ber of lanes further increases, the phase diagram will become much
more complicated. The questions such as whether two or more bulk
induced shocks could be observed simultaneously in a lane, whether
bulk induced shocks can be observed simultaneously in different
lanes, need to be investigated in the future work.

Methods
The hydrodynamic mean field equations of the system could be written as

Lr1

Lt
~{(1{2r1)

Lr1

Lx
{VAr1

2(1{r2)zVBr2
2(1{r1) ð7Þ

Lr2

Lt
~{(1{2r2)

Lr2

Lx
{VAr2

2(1{r3)zVBr3
2(1{r2)

{VBr2
2(1{r1)zVAr1

2(1{r2)

ð8Þ

Lr3

Lt
~{(1{2r3)

Lr3

Lx
{VBr3

2(1{r2)zVAr2
2(1{r3) ð9Þ

Figure 6 | The density profiles of the middle lane (mean-field results). (a)

shows the transition from LSH to LDH along dashed line 1. Parameters are

(a, b)5 (0.154, 0.173), (0.178, 0.180), (0.190, 0.184), (0.211, 0.190),

(0.241, 0.198) and (0.268, 0.206) for curves from bottom to top at x50. (b)

shows the transition along dashed line 2. Parameters are (a, b)5 (0.182,

0.128), (0.200, 0.145), (0.218, 0.161), (0.234, 0.175) and (0.268, 0.206) for

curves from top to bottom at x51. (c) shows the transition from LS1H to

LDH along dashed line 3. The parameter a50.305. (d) shows the transition

from LS2H to LDH along dashed line 4. The parameter a50.318.

Figure 7 | The density profiles of the middle lane (mean-field results).
System transits from LDH state to LCH state along dashed line 5.
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In the steady state, one has

(1{2r1)
dr1

dx
~{VAr1

2 1{r2ð ÞzVBr2
2(1{r1) ð10Þ

(1{2r2)
dr2

dx
~{VAr2

2(1{r3)zVBr3
2(1{r2){VBr2

2(1{r1)zVAr1
2(1{r2)

ð11Þ

(1{2r3)
dr3

dx
~{VBr3

2(1{r2)zVAr2
2(1{r3) ð12Þ

Here rj denotes the density on lane j. Via rescaling the total length to unity (i.e., x5i/
L), the boundary conditions rj(0)5min (a, 1/2) and rj(1)5max (12b, 1/2) should be
imposed properly, depending on the specific state of the system. Via numerical
solving equations (10) – (12) and/or equations (7) – (9), we can obtain the density
profiles of the three lanes. Specifically,

In the LLL phase, one has rj(0)5min(a,1/2) (j51,2,3). Thus the density profiles of
the three lanes can be obtained by numerical solving equations (10) – (12) from x50
to x51.

In the HHH phase, one has rj(1)5max (12b, 1/2) (j51,2,3). Thus the density
profiles of the three lanes can be obtained by numerical solving equations (10) – (12)
from x51 to x50.

In the LLS phase, one still has rj(0)5min (a, 1/2). In this case, one needs to assume
the location of the shock on lane 3, denoted as xs. Then one numerically solves
equations (10) – (12) from x50 to x5xs. Denote the density on lane 3 at x5xs as
r3(xs). One needs to change the density on lane 3 from r3(xs) to 12r3(xs) and then
continues to numerically solve equations (10) – (12) from x5xs to x51. If the choice
of xs is correct, then one would have r3(1)5max (12b, 1/2).

Similarly, in the LSS phase, one still has rj(0)5min (a, 1/2) and needs to assume the
locations of the shocks on both lanes 2 and 3 to match r2(1)5r3 (1)5max (12b, 1/2).

In the LLH phase, one has r1(0)5r2(0)5min (a, 1/2) and needs to assume the
value of r3(0) to match r3(1)5max (12b, 1/2).

In the LSH phase, one has r1(0)5r2(0)5min (a, 1/2) and needs to assume the
location of the shock on lane 2 and the value of r3(0) to match r2(1)5 r3(1)5max
(12b, 1/2).

In the SHH phase, one has rj(1)5max(12b, 1/2) and needs to assume the location
of the shock on lane 1 to match r1(0)5min(a, 1/2).

In the SSH phase, one still has rj(1)5max(12b, 1/2) and needs to assume the
locations of the shocks on both lanes 1 and 2 to match r1(0)5r2(0)5min (a, 1/2).

In the LHH phase, one has r2(1)5r3(1)5max (12b, 1/2) and needs to assume the
value of r1(1) to match r1(0)5min (a, 1/2).

In the LCH phase, one has r1(0)5min (a, 1/2) and needs to assume the values of
r2(0) and r3(0) to match r3(1)5max (12b, 1/2). Note that the solution is not unique.
Due to current minimization principle, the solution corresponding to the minimum
current is the correct one.

In the LDH phase, one has r1(0)5r2(0)5min (a, 1/2) and needs to assume the two
locations of the double shocks on lane 2 and the value of r3(0) to match r2(1)5
r3(1)5max (12b, 1/2). Still the solution is not unique and the current minimization
principle determines the correct one.
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