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In silico analysis highlights the frequency and
diversity of type 1 lantibiotic gene clusters in
genome sequenced bacteria
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Abstract

encoding gene clusters in genome sequenced bacteria.

Background: Lantibiotics are lanthionine-containing, post-translationally modified antimicrobial peptides. These
peptides have significant, but largely untapped, potential as preservatives and chemotherapeutic agents. Type 1
lantibiotics are those in which lanthionine residues are introduced into the structural peptide (LanA) through the
activity of separate lanthionine dehydratase (LanB) and lanthionine synthetase (LanC) enzymes. Here we take
advantage of the conserved nature of LanC enzymes to devise an in silico approach to identify potential lantibiotic-

Results: In total 49 novel type 1 lantibiotic clusters were identified which unexpectedly were associated with
species, genera and even phyla of bacteria which have not previously been associated with lantibiotic production.

Conclusions: Multiple type 1 lantibiotic gene clusters were identified at a frequency that suggests that these
antimicrobials are much more widespread than previously thought. These clusters represent a rich repository which
can yield a large number of valuable novel antimicrobials and biosynthetic enzymes.

Background

Bacteriocins are bacterially produced peptide antibiotics.
Two major classes of gram-positive bacteriocins have
been recognised, Class I undergo significant post-trans-
lationally modifications while the Class II are unmodi-
fied [1,2]. The majority of the class I bacteriocins are
lantibiotics; small peptides containing internal bridges
resulting from the formation of (3-methyl)lanthionine
residues. The structural gene encodes a ribosomally
synthesised precursor prepeptide which is generically
named LanA. This prepeptide contains a leader
sequence at the N-terminus, which is ultimately cleaved,
and a propeptide at the C-terminus. Many or all of the
serine and threonine residues within the propeptide are
dehydrated to form dehydroalanine (Dha) and dehydro-
butyrine (Dhb), respectively. When these modified resi-
dues interact with an intrapeptide cysteine, a thioether
bond is formed resulting in the formation of lanthionine
(Lan, from Dha) or B-methyl lanthionine (meLan, from
Dhb).
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The lantibiotics and lantipeptides (lanthionine con-
taining peptides which lack antimicrobial activity) can
be divided into four groups according to the nature of
the enzymes which catalyse (me)Lan formation [3]. In
the case of type 1 lantibiotics two enzymes are involved;
LanB, the lanthionine dehydratase which catalyses the
dehydration of the amino acids, and LanC, the lanthio-
nine synthetase which catalyses thioether formation.
Type 2 lantibiotics contain a single LanM enzyme which
performs both functions. Type 3 and 4 are lantipeptides
which are also catalysed by distinct enzymes such as the
RamC-like and LanL enzymes [4,5]. The type 1 and 2
lantibiotics can also be further subdivided on the basis
of the amino acid sequence of the unmodified propep-
tide. In the case of the type 1 lantibiotics, five such sub-
groups have been identified, each of which is named
after the corresponding prototypical lantibiotic; the
nisin-like, epidermin-like, Pep5-like, streptin-like and
planosporocin-like lantibiotic subgroups [2,6]. The
nisin-like group is named for nisin A, which is the most
extensively studied bacteriocin and is currently sold in
more than 50 countries as a food preservative [7]. In
addition to LanA, B and C, other proteins involved in
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the the production of nisin A and other type 1 lantibio-
tics include LanP, a serine protease that cleaves the lea-
der from the propeptide; LanT, an ABC transporter
responsible for the transport of the lantibiotic precursor
across the cell membrane; LanIEFG encode proteins
involved in immunity and; LanK, a histidine kinase and
LanR, a response regulator, that together operate as a
two-component regulatory system. LanD enzymes, such
as that responsible for the oxidative decarboxylation of
C-terminal cysteines in epidermin [8], are less common.

Given the broad antimicrobial spectrum of many lanti-
biotics, the possibility of applying lantibiotics in a med-
icinal capacity has become the subject of much
attention. This is supported by an enhanced understand-
ing of their mechanisms of action [9] and the dearth of
novel antibiotics. Of the type 1 lantibiotics, nisin, muta-
cin and planosporicin have been shown to be active
against multi-drug resistant gram-positive pathogens
[10-12], Pep5 and epidermin inhibit Staphylococcus epi-
dermidis adhesion to catheters [13] and epidermin and
gallidermin are active against Propionibacterium acnes
[14]. Other lantibiotics, or their producer strains, have
been used as food preservatives and as oral and gastro-
intestinal antimicrobials/probiotics [15-17]. As a conse-
quence of this increased interest in lantibiotics, a
concerted effort has taken place to identify new and
improved forms of these peptides. Culture based screen-
ing strategies have in the past been responsible for the
identification of lantibiotics produced by bacteria iso-
lated from diverse microbial niches including the oral
cavity, intestine, soil, kefir grains and milk [12,18-21].
Recently, an alternative means of identifying novel lanti-
biotics has emerged as a consequence of the increasing
generation and availability of genomic and metagenomic
sequence data. The availability of such information has
recently led to the identification of the type 1 epider-
min-like lantibiotic, Bsa [22] as well as type 2 lantibio-
tics such as haloduracin [23,24], licheniciden [25,26], as
well as a range of cyanobacteria-associated lantipeptides
[27]. This has prompted the development of on-line
tools and repositories such as BAGEL and BACTIBASE
to facilitate such screening strategies [28-31]. Notably,
although an in-silico screen for lanM genes has recently
resulted in the identification of 61 novel type 2 lantibio-
tic-like gene clusters [25], a corresponding screen for
type 1 lantibiotics has not yet been described. Here we
address this issue by screening for clusters containing
genes homologous to the nisin A biosynthetic genes
nisB (representing lanB) and nisC (representing lanC).
In each case, the regions flanking the newly identified
lanB/lanC genes were subjected to further in silico ana-
lysis to determine if they are potential lantibiotic/lanti-
peptide-associated gene clusters. This included a search
of nearby open reading frames (orfs) which might

Page 2 of 21

encode a corresponding LanA, defined as being of rela-
tively short length (approx 60 amino acids) and contain-
ing an uneven distribution of cysteine, threonine and
serine amino acids within the propeptide region. Using
this approach, 27 novel type 1 lantibiotic/lantipeptide-
encoding clusters were identified. Subsequent screening
using the newly identified LanA, B and C homologs as
driver sequences revealed a further 22 gene clusters,
resulting in a total of 49 putative novel type 1 lantibiotic
clusters. Significantly, many of these clusters are present
in species, genera and phyla not previously associated
with lantibiotic/lantipeptide production and are pre-
dicted to encode peptides which represent completely
new type 1 subclasses.

Results and Discussion

In silico screen for lanC genes

An in silico screen for LanC homologues, using the
NisC sequence as a driver, resulted in the identification
of 56 homologues. Of these 7 have previously been asso-
ciated with lantibiotic production, 11 were orphan
homologs (in that no other lantibiotic-associated genes
were identified in close association) (Table 1), 9 were
encoded within a cluster in which no lanA could be
detected (Table 2) and one cluster contained two LanCs
(but no structural peptide). The remaining 27 potential
lantibiotic/lantipeptide-encoding gene clusters all con-
tained putative lanA, B and C genes (Table 3). The
genes flanking the 27 novel lanC-like genes were sub-
jected to further bioinformatic analysis to determine the
presence of other orfs that share homology with genes
linked to lantibiotic production or immunity. While
these 27 clusters are the primary focus of this in silico
analysis, the sequences of the newly identified LanA,
B and C proteins associated with these clusters were in
turn used for further in silico screens. This approach
uncovered an additional 22 clusters (Table 4) that were
also predicted to be novel lantibiotic/lantipeptide-
encoding clusters, thereby yielding a total of 49 novel
type 1 clusters.

All except one of the 27 gene clusters revealed follow-
ing the initial screen were located within the genomes
of Firmicutes and Actinobacteria. The exception was
Chitinophaga pinensis DSM 2588 of the phylum Bacter-
oidetes. Of the other 26, the genera most commonly
associated with lantibiotic production were Bacillus,
Geobacillus, Clostridium, Enterococcus, Streptococcus,
Frankia and Streptomyces. In many cases the novel clus-
ters associated with a specific genus, such as those
found on the Streptomyces and Frankia genomes,
showed at least some similarity to each other. It was
also noted that several of the genomes in which a clus-
ter was located also contained an additional cluster(s)
(Table 3), or other genes predicted to encode additional
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Table 1 A selection of bacterial genomes in which isolated genes encoding LanA, LanB or LanC homologs were

identified
Clusterless Homologs Accession No. LanA only LanB only LanC only
Anoxybacillus flavithermus WK1 NC_011567 Aflv_2440

NZ_AAXV00000000
NZ_AARF00000000
NZ_ACOG00000000
NZ_ACKR00000000

Bacillus sp. B14905

Paenibacillus larvae subsp. larvae BRL-230010
Lactobacillus crispatus MV-1A-US
Lactobacillus crispatus JV-VO1

Haliangium ochraceum DSM 14365 NC_013440
Haliangium ochraceum DSM 14365 NC_013440
Haliangium ochraceum DSM 14365 NC_013440

Pedobacter sp. BAL39
Peptoniphilus lacrimalis 315-B

NZ_ABCM00000000

Peptoniphilus lacrimalis 315-B

Lactococcus lactis subsp. lactis KF147 NC_013656
Frankia alni ACN14a NC_008278
Frankia sp. Ccl3 NC_007777
Frankia sp. Ccl3 NC_007777

Peptoniphilus lacrimalis 315-B

Bifidobacterium longum subsp. infantis ATCC 15697 ~ NC_011593
Streptomyces sp. AA4 NZ_ACEV00000000
Streptococcus pneumoniae CGSP14 NC_010582

NZ_ABFV00000000
NZ_ABIBO0000000
NC_012891
NZ_AAWS00000000
NZ_AAWS00000000
NZ_AAWS00000000
NZ_AAWS00000000
NZ_AAWS00000000
NZ_ABJF0O0000000
NZ_ADDL00000000

Saccharopolyspora erythraea NRRL 2338
Kordia algicida OT-1

Streptococcus dysgalactiae GGS_124
Microscilla marina ATCC 23134
Microscilla marina ATCC 23134
Microscilla marina ATCC 23134
Microscilla marina ATCC 23134
Microscilla marina ATCC 23134
Streptomyces sp. Mg

Frankia sp. Eullc

Geobacillus sp. Y412MC52

Geobacillus sp. Y412MC61 NC_013411
Streptococcus pyogenes M1 GAS NC_002737
Streptomyces griseus subsp. griseus NBRC 13350 NC_010572
Clostridium kluyveri DSM 555 NC_009706
Spirosoma linguale DSM 74 NC_013730
Spirosoma linguale DSM 74 NC_013730

NZ_ADDO00000000
NZ_ADDO00000000

NZ_ADDO00000000

NZ_ACNMO00000000

BB14905_21668
Plarl_010100024193
HMPREF0507_00422
HMPREF0506_0642
Hoch_3102
Hoch_4144

Hoch_0066

PBAL39_02527

HMPREF0628_0526

HMPREF0628_0527

FRAAL2701
Francci3_0205
Francci3_3997
HMPREF0628_0527

SACE_4959
KAOT1_07113
SDEG_0295
M23134_07394
M23134_05752
M23134_07275
M23134_01545
M23134_07404

SSAG_05771
FraEullcDRAFT_6351
GYMC52DRAFT_3129
GYMC61_1158
SPy_1083
SGR_6574
CKL_3505
Slin_0903
Slin_2131

LanA, B or C proteins (Table 2), elsewhere in the gen-
ome. The 27 clusters are described below and are
grouped according to the phylum and genus of the asso-
ciated strain.

Type 1 lantibiotic gene clusters in Actinobacteria
Identification of novel Frankia-associated lantibiotic gene
clusters

The Frankia are nitrogen-fixing, root nodule-forming
filamentous Actinobacteria that live in symbiosis with
actinorhizal plants. All species of Frankia are closely
related [32]. To date, four Frankia genomes have been
sequenced, i.e. Frankia alni ACN14a, Frankia sp.

EANlpec, Frankia sp. Ccl3 and Frankia sp. EUllc, and
although no Frankia-associated bacteriocins have pre-
viously been reported, a number of predicted lantibiotic
clusters can be found in each case (Figure 1) in addition
to a number of apparently LanB- and LanC-encoding
genes which do not have an accompanying lanA (Table
2). This latter phenomenon could be a result of the fre-
quent rearrangements which occur in Frankia strains
[32]. Of the clusters identified, many resemble clusters
associated with another genus of Actinobacteria, the
Streptomyces.

Frankia alni ACN14a: The genome sequence of F. alni
ACN14a [32] contains one complete cluster, F. alni
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Table 2 Gene clusters encoding LanB and LanC, but not LanA, homologs
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Species (Cluster No.) Accession No. LanB LanC

Frankia alni ACN14a | NC_008278 FRAAL2701 FRAAL2700

Frankia sp. Ccl3 IV NC_007777 Francci3_2033 Francci3_2032
Frankia EANTpec Il NC_009921 Franean1_2799 Franean1_2800
Frankia sp. Eullc |l NZ_ADDL00000000 FraEul1cDRAFT_6786 FraEul1cDRAFT_6785
Bacillus clausii KSM-K16 NC_006582 ABC3559 ABC3558

Clostridium cellulovorans 743B

Bacillus cereus AH1273

Bacillus thuringiensis serovar berliner ATCC 10792
Bacillus thuringiensis 1BL 200

Streptococcus pyogenes MGAS9429
Catenulispora acidiphila DSM 44928

Frankia sp Cc13 V

Microscilla marina ATCC 23134

Staphylococcus capitis SK14

Streptomyces sp. Mg1 |

NZ_ACPD00000000
NZ_ACMT00000000
NZ_ACNFO0000000
NZ_ACNK00000000
NC_008021
NC_013131
NC_007777
NZ_AAWS00000000
NZ_ACFR00000000
NZ_ABJF00000000

ClocelDRAFT_0447
bcere0030_58380
bthur0008_53920
bthur0013_59170
MGAS9429_Spy0926
Mentioned; Caci_4205
Francci3_3530
M23134_05752
STACA0001_2327
SSAG_03540

ClocelDRAFT_0445/_0452
bcere0030_58400
bthur0008_53930
bthur0013_59180
MGAS9429_Spy0924
Caci_4204

Francci3_3531
M23134_05756
STACA0001_2326
SSAG_03541

Table 3 Bacterial genomes in which 27 uncharacterised
type 1 lantibiotic clusters were identified following a
NisC-led in silico screen

Accession No.

ACN14a II which includes the predicted LanA prepro-
peptide, FRAAL6345, FRAAL6344 and FRAAL6343
(encoding a putative LanB and LanC, respectively). The
LanA peptide does not resemble any of the previously
characterised type 1 lantibiotic propeptides but is 79%

Species (Cluster No.)

Frankia alni ACN14a (Il)
Frankia sp Cc13 (1)
Frankia sp Cc13 (Il)
Frankia sp Cc13 (Ill)
Frankia EANTpec (1)
Frankia EAN1pec (Ill)
Frankia sp. Eul1c (1)

(
(

Salinispora arenicola CNS-205*
Stackebrandtia nassauensis DSM 44728 (1)
Stackebrandtia nassauensis DSM 44728 (Il)
Streptomyces clavuligerus ATCC 27064 (1)
Streptomyces clavuligerus ATCC 27064 (Il)
Streptomyces coelicolor A3(2) (1)
Streptomyces coelicolor A3(2) (Il)
Streptomyces sp. Mg1 (Il)

Streptomyces griseoflavus Tu4000 (1)
Streptomyces griseoflavus Tu4000 (II)
Streptomyces griseoflavus Tu4000 (II1)
Bacillus cereus F65185

Bacillus mycoides DSM 2048

Clostridium perfringens CPE str. F4969
Enterococcus faecalis Fly1

Geobacillus kaustophilus HTA426
Geobacillus thermodenitrificans NG80-2
Geobacillus sp. G1TMC16

Streptococcus thermophilus LMG 18311*
Chitinophaga pinensis DSM 2588 |

NC_008278
NC_007777
NC_007777
NC_007777
NC_009921
NC_009921
NZ_ADDL00000000
NC_009953
NC_013947
NC_013947
NZ_ADGD00000000
NZ_ADGD00000000
NC_003888
NC_003888
NZ_ABJF0O0000000
NZ_ACFA00000000
NZ_ACFA00000000
NZ_ACFA00000000
NZ_ACMO00000000
NZ_ACMUO00000000
NZ_ABDX00000000
NZ_ACAR00000000
NC_006510
NC_009328
NZ_ABVH00000000
NC_006448
NC_013132

*The existence of a lantibiotic gene cluster within these strains has been

referred to briefly, [36] and [79,80] respectively, but
been the focus of a detailed bioinformatic analysis.

these clusters have not

Table 4 Bacterial genomes in which 22 additional type 1
lantibiotic gene clusters were identified following an in
silico screen using the LanA, B, and C homologs,
corresponding to the clusters referred to in Table 3, as

leader sequences

Species (Cluster No.)

Accession No.

Thermomonospora curvata DSM 43183
Frankia EAN1pec (IV)

Streptomyces viridochromogenes DSM 40736
Streptomyces sp. SPB74

Streptomyces lividans TK24

Catenulispora acidiphila DSM 44928
Streptomyces sp. Mg1 (Ill)

Nocardiopsis dassonvillei subsp. dassonvillei
DSM 43111

Micromonospora aurantiaca ATCC 27029 (1)
Micromonospora aurantiaca ATCC 27029 (1)
Bacillus cereus AH1272

Staphylococcus aureus subsp. aureus D139
Staphylococcus aureus subsp. aureus H19
Actinomyces sp. oral taxon 848
Parachlamydia acanthamoebae str. Hall's coccus
Corynebacterium lipophiloflavum DSM 44291
Staphylococcus aureus A9765

Chitinophaga pinensis DSM 2588 (Il)
Spirosoma linguale DSM 74

Pedobacter heparinus DSM 2366

Kordia algicida OT-1

Microscilla marina ATCC 23134

NC_013510
NC_009921
NZ_ACEZ00000000
NZ_ABJG00000000
NZ_ACEY00000000
NC_013131
NZ_ABJF00000000
NZ_ABUI00000000

NZ_ADBZ00000000
NZ_ADBZ00000000
NZ_ACMS00000000
NZ_ACSR00000000
NZ_ACSS00000000
NZ_ACUY00000000
NZ_ACZE00000000
NZ_ACHJ00000000
NZ_ACSN0O0000000
NC_013132
NC_013730
NC_013061
NZ_ABIBO0000000
NZ_AAWS00000000
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Figure 1 Diagramatic representation of the non-streptomyces Actinobacteria type 1 lantibiotic operons, found in the original NisC
screen, which contain genes predicted to encode a structrural peptide LanA, and the modification enzymes LanB and LanC.

identical to Franeanl_0057 of Frankia sp. EAN1pec (see
below). The LanB and LanC proteins resemble those
associated with other Frankia, as well as Streptomyces,
clusters. The LanC protein is also 62% identical to
Tcur_4648 of Thermomonospora curvata DSM 43183

(NC_013510), which itself appears to be encoded by an
orf within a novel lantibiotic gene cluster. The ACN14a
II cluster is also predicted to encode two proteins which
share homology with O-methyltransferases (FRAAL6342
and FRAAL6346). O-methyltransferases contribute to the
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production of a number of non-ribosomal antibiotics
[33,34] and catalyse the methylation of hydroxyl group(s)
on deoxysugar rings to protect the reactive hydroxyl
group from undesired modifications and can alter the
solubility and pharmacokinetic properties of the resulting
molecule [35]. Although O-methyltransferases have not
previously been associated with lantibiotic production,
this study reveals that many Actinobacteria-associated
type 1 clusters possess genes predicted to encode these
enzymes.

Frankia sp. Ccl13: The Frankia sp. Ccl3 genome [32]
contains three gene clusters of interest (Frankia sp.
Ccl3 I, Frankia sp. Cc13 II and Frankia sp. Cc13 III).
Two O-methyltransferase-encoding genes were identi-
fied in each case and it was noted that the associated
LanB and LanC proteins are similar to one another
and to numerous others predicted to be produced by
Frankia and Streptomyces species. In contrast, there is a
lack of homology between the three lanA genes. The
lanA gene from cluster I was not previously annotated
and was only identified following closer inspection of
the DNA sequence. The cluster II-associated LanA,
Francci3_1820, most closely resembles Frankia sp.
Eullc FraEullcDRAFT_6351 (69% identity) while the
third, and also previously unannotated LanA appears to
be one of an extended group of Frankia- and Strepto-
myces-associated LanAs that includes Frankia sp. Eullc
FraEul1cDRAFT_1582 (56% identity).

Frankia EAN1pec: The Frankia EAN1pec genome
[32] contains 4 putative LanB-encoding genes three of
which correspond to potential lantibiotic/lantipeptide-
associated gene clusters (Frankia EAN1pec 1, Frankia
EANIl1pec III and Frankia EAN1pec 1V) which again
resemble those of Streptomyces and other Frankia spe-
cies, and contain O-methyltransferase-encoding genes.
Within the first cluster, a putative LanA prepropeptide,
encoded by a previously unannotated orf located
between Franeanl 1331 and the LanB determinant, is
homologous to a number of other LanAs, including
Sare_0601 of Salinispora arenicola CNS-205 (55% iden-
tity). The cluster is also noteworthy be virtue of the pre-
sence of two LanC-encoding genes, Franeanl_1333 and
Franeanl_1336. Within Frankia EAN1pec III, the LanA
peptide, encoded by Franeanl_6756 is 42% identical to
FraEullcDRAFT_6351 of Frankia sp. Eullc while finally,
a screen using F. alni ACN14a FRAAL6345 as a driver
led to the identification of yet another cluster (consist-
ing of at least Franeanl_0057-0055) which closely
resembles cluster II of F. alni ACN14a IL

Frankia sp. Eullc: Frankia sp. Eullc contains a single
putative lantibiotic/lantipeptide gene cluster (Frankia sp.
Eullc I) which again contains LanB, C and O-methyltrans-
ferase genes typical of Frankia and Streptomyces clusters.
The associated LanA homolog (FraEullcDRAFT_1582) is
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notable by virtue of being 46% identical to SSCG_03316, a
known LanA of Streptomyces clavuligerus ATCC 27064
while a gene encoding an ABC transporter related protein
(FraEul1cDRAFT_1578) is also present.

Identification of novel Salinispora -associated lantibiotic
gene clusters

Salinispora are marine Actinobacteria. There are two
recognised species, S. tropicalis and S. arenicola. Repre-
sentatives have been sequenced in each case and genes
predicted to encode non-lantibiotic bacteriocins have
been identified in both cases [36]. The existence of a
putative lantibiotic/lantipeptide cluster, between
Sare_0602 and Sare_0623, in the genome of S. arenicola
CNS-205 was noted previously [36]. However, this clus-
ter has not been the subject of a detailed bioinformatic
characterisation. Our analysis reveals that Sare_0601
apparently encodes a LanA peptide which is 88% identi-
cal to that encoded by MicauDRAFT_5818 of Micromo-
nospora aurantiaca ATCC 27029. The proteins encoded
by Sare_0602 (LanB) and Sare_0603 (LanC) also resem-
ble other ATCC 27029-associated proteins (encoded by
MicauDRAFT_5819 (71% identity) and Micau-
DRAFT_5820 (75% identity)), thereby revealing an addi-
tional novel cluster in Micromonospora, a genus better
known for its production of non-ribosomal antibiotics
such gentamycin and netamycin [37] (Table 4).
Identification of novel Stackebrandtia-associated lantibiotic
gene clusters

Stackebrandtia are aerobic, non-motile Actinobacteria
which have been isolated from soil [38]. There are only
2 associated species i.e. S. albiflava and S. nassauensis
and in silico analysis of S. nassauensis DSM 44728
(NC_013947) reveals the presence of two similar clusters
(S. nassauensis DSM 44728 1 and S. nassauensis DSM
44728 1I) (Figure 1). The hypothetical LanA, encoded by
Snas_5416, of the first cluster showed a singular homol-
ogy of 78% identity to Snas_3601 of the second cluster.
The corresponding LanBs (Snas_5417 and Snas_3602)
are 62% identical while the LanCs (Snas_5418 and
Snas_3603) are 68% identical.

Identification of novel Streptomyces-associated lantibiotic
gene clusters

Bacteria from the genus Streptomyces, comprising over
500 species, are filamentous, high G-C bacteria found
frequently in soil and rotting vegetation. They are the
most numerous and ubiquitous soil bacteria [39]. Strep-
tomyces are also responsible for the production of over
two-thirds of the clinically useful antibiotics of natural
origin (e.g., neomycin, chloramphenicol) [40]. Although
a number of Streptomyces-associated bacteriocins, such
as ancovenin [41] and cinnamycin [42], have been iden-
tified, this number is relatively small considering the
size of the genus. As was apparent above, our in silico
analysis has revealed that many Streptomyces possess
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potentially lantibiotic-encoding gene clusters which
resemble those found in Franmkia. Once again, the
majority of these clusters contain O-methyltransferases
(Figure 2).

Streptomyces clavuligerus ATCC 27064 S. clavuligerus
is an aerobic, mesophillic Streptomyces sp. While there
have been no previous reports of bacteriocin production
by this species, two lantibiotic clusters were found to be
present on the genome of S. clavuligerus ATCC 27064.
In the first of these clusters, the associated hypothetical
LanA, B and C proteins (SSCG_01498-01496) are 63%,
42% and 50% identical to the corresponding proteins of
Frankia sp. CcI3 II. BLAST analysis of these proteins
also revealed another novel cluster in Streptomyces
viridochromogenes DSM 40736 corresponding to
SvirD4_23440 (LanA; 50% identity), SvirD4_23449
(LanB; 36% identity) and SvirD4_23454 (LanB; 45%
identity) (Table 4). The second S. clavuligerus cluster,
which contains SSCG_03316 (LanA), SSCG_03317
(LanB) and SSCG_03318 (LanC), resembled clusters pre-
sent in a number of other strains such as that of Strep-
tomyces griseus subsp. griseus NBRC 13350 [43] (73%,
56% and 64% identity, respectively). BLAST analysis of
these sequences also led to the identification of yet
another novel cluster in Streptomyces sp. SPB74
(SSBG_01041 [LanA] 69% identity and SSBG_01042
[LanB] 58% identity).

Streptomyces coelicolor A3(2) Streptomyces coelicolor A3
(2) (NC_003888) is the best characterised representive of
its genus [44] and was the first Streptomyces strain to
have its genome sequenced [45]. Although bacteriocins/
bacteriocin-like peptides are known to be produced by
this species (e.g. the class III morphogenic peptide SapB
[4]), such peptides have not previously been associated
with this strain. Here BLAST analysis revealed the pre-
sence of two lantibiotic/lantipeptide clusters (S. coelicolor
A3(2) I and S. coelicolor A3(2) II). The first of these clus-
ters, containing SCO0268 (LanA), SCO0269 (LanB) and
SCO0270 (LanC), very closely resembles Streptomyces gri-
seoflavus Tud000 cluster II (see below). Subsequent
BLAST searches with the A3(2) cluster I-associated pro-
teins led in turn to the discovery of an almost identical
cluster in Streptomyces lividans TK24 which contains
SSPG_07329 (LanA; 100% identity), SSPG_07328 (LanB;
99% identity) and SSPG_07327 (LanC; 100% identity)
(Table 4). The second cluster, Streptomyces coelicolor A3
(2) II, is predicted to encode two LanA peptides,
(SCO6932 [43aa] and SCO6931 [59aa]) which are 97%
identical to each other, as well as LanB (SC0O6930) and
LanC (SCO6929) proteins with homology (39-46% iden-
tity) with corresponding proteins associated with Frankia
sp. CcI3. Such analysis also revealed another cluster of
interest in the actinomycete, Catenulispora acidiphila
DSM 44928 (NC_013131; [Table 4]).
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Streptomyces griseoflavus Tu4000 Three lantibiotic/
lantipeptide clusters were identified on the genome
of this anaerobic, terrestrial Streptomyces. Although
the LanA encoded within the first cluster (SgriT_
010100000925) does not significantly resemble any other
protein, the associated LanB (SgriT_010100000920) and
LanC (SgriT_010100000915) proteins are homologous
to the corresponding proteins of S. coelicolor A3(2) clus-
ter I and Tu4000 cluster II. BLAST searches using the
cluster I proteins as drivers also resulted in the identifi-
cation of several additional clusters in Nocardiopsis das-
sonvillei DSM 43111 (NdasDRAFT_3161 [LanB] 30%
identity), Streptomyces sp. Mgl (SSAG_05771 [LanB]
37% identity) and two clusters on the genome of
M. aurantiaca ATCC 27029 (NZ_ADBZ00000000;
MicauDRAFT_5820 and MicauDRAFT_3008 [both
LanBs] 35% identity). In addition to the components of
the second cluster referred to above, an associated LanA
(SgriT_010100036309) was also noted. In addition to
the Tu4000 I and A3(2) I clusters, this cluster is also
highly identical to that of S. lividans TK24 (SSPG_07329
[LanA] 97% identity; SSPG_07328 [LanB] 87% identity
and SSPG_07327 [LanC] 89% identity). The LanA asso-
ciated with the final cluster (SgriT_010100029766) again
bears no homology with any other known peptides
whereas the LanB (SgriT_010100029771) and LanC
(SgriT_010100029776) corresponded to those of Frankia
sp. EAN1pec II (39% and 44% identity, respectively).

Type 1 lantibiotic gene clusters in Firmicutes

Identification of novel Bacillus-associated lantibiotic gene
clusters

Bacillus is a large and diverse genus of rod-shaped,
sporulating, obligate aerobes which contains both free
living and pathogenic species. A number of type 1 lanti-
biotics have previously been characterized in this genus
(e.g. subtilin [46] and ericin [47]). The NisC-driven
screen highlighted the presence of a type 1 lantibiotic
cluster in the genomes of two Bacillus strains i.e. Bacil-
lus cereus F65185 and Bacillus mycoides DSM 2048
(Figure 3). Bioinformatic analysis of these clusters
revealed two further clusters in B. cereus ATCC 14579
and B. cereus AH1272.

Bacillus cereus F65185 B. cereus F65185 is a mesophi-
lic bacterium sourced from a human wound containing
one lantibiotic/lantipeptide cluster which is unusual in
that 3 orfs separate the putative LanB and C genes and
the two have a divergent orientation. The predicted
LanA (bcere0025_48310) does not resemble any other
known lantibiotic prepropeptides. The LanB homolog
(bcere0025_48320) resembles a putative LanB associated
with  Clostridium cellulovorans 743B (Clocel-
DRAFT_0452, 30% identity) while the predicted LanC
(bcere0025_48280) most closely resembles two further
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743B proteins (ClocelDRAFT_0452, 34% identity and
Clocel DRAFT_0446, 28% identity). However the 743B
strain lacks an associated LanA. Further BLAST analysis
with the F65185-associated LanB highlighted the pre-
sence of a related protein within thiocillin-encoding
gene cluster in B. cereus ATCC 14579 [48].

Bacillus mycoides DSM 2048 B. mycoides is a non-
motile, non-pathogenic, saprophytic Bacillus, strains of
which have been investigated with a view to their applica-
tion as biological pesticides. Although representatives of
this species have been associated with bacteriocin pro-
duction [49], there are no published reports of lantibio-
tic-producing B. mycoides. The DSM 2048 genome
contains a lantibiotic/lantipeptide cluster that contains
putative lanA, B, C and other lantibiotic-associated genes
which is very similar to other novel clusters in B. cereus
AH1272 and B. cereus AH1273. Bmyco0001_53830 is
the predicted prepropeptide and is 100% identical to
the products of the B. cereus AH1272-associated
bcere0029_28240 and bcere0029_28250. It is also 58%
identical to prepropeptides associated with several
Staphylococcus-associated Bsa lantibiotics, such as
BsaA2grp195 of S. aureus RF122 [22]. It is thus apparent
that the LanA is a member of the epidermin-like
peptides. In addition to homologues in B. cereus AH1273
and AH1272, use of the DSM 2048-associated LanB
and LanC sequences as drivers also surprisingly high-
lighted a gene cluster present in Actinomyces sp. oral
taxon 848 (Table 4). In addition to homology with
respect to LanB and LanC proteins (HMPREF0972_00932
and HMPREF0972_00933, respectively), the proposed
LanA (HMPREF0972_00931; 86aa) is 43% identical
to bmyco0001_53830 and bcere0029_28240 and
bcere0029_28250 of Bacillus mycoides DSM 2048 and
Bacillus cereus AH1272, respectively.

Identification of novel Clostridium-associated lantibiotic
gene clusters

The Clostridia are gram postitive anaerobic, endospore-
forming Firmicutes of which there are approximately
100 species. These include important pathogens such as
Clostridium difficile, Clostridium perfingens and Clostri-
dium tetani. Several Clostridium-associated bacteriocins
have been characterised from this genus [50-52], but no
type 1 lantibiotic producers have been identified to date.
Here, bioinformatic analysis revealed one Clostridium-
associated lantibiotic/lantipeptide cluster, located on the
genome of C. perfringens CPE str. F4969 (Figure 3).

C. perfringens CPE str. F4969 C. perfringens is one of
the leading causes of food-borne illness in the developed
world, usually as a result of the improper sterilization of
canned foods in which endospores have germinated. It
can also be responsible for wound and surgical infec-
tions [53,54]. The predicted LanA (AC5_A0201) of
strain F4969 is most closely related to the LanAs of
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B. mycoides DSM 2048 and B. cereus AH1272 (51%
identity) while the proteins encoded by AC5_A0200
(LanB) and AC5_A0198 (LanC) most closely resemble
proteins associated with Geobacillus sp. G11MC16
(G11MC16DRAFT_2954 and G11MC16DRAFT_2952;
34% and 35% identity respectively). Surprisingly, BLAST
analysis also highlighted the presence of a related LanB
homolog encoded within a lantibiotic/lantipeptide-
like gene cluster in the genome of Parachlamydia
acanthamoebae (phlylum Chlamydiae) str. Hall's coccus
(pah_c0280031; 25% identity). Adjacent genes of
note within the P. acanthamoebae cluster include
pah_c0280029 (LanA) and pah_c0280030 (LanC).
Identification of novel Enterococcus-associated lantibiotic
gene clusters

The enterococci are gram positive lactic acid bacteria
which are common commensal organisms in the intes-
tines of humans but can also be pathogens. Many Enter-
ococcus-associated bacteriocins (enterocins) have been
identified [55]. Only one Enterococcus-associated lanti-
biotic, the type 2 peptide cytolysin, has been identified
to date [56]. Here we describe genes which potentially
encode the first type 1 Enterococcus-associated lantibio-
tic (Figure 3).

Enterococcus faecalis Flyl: E. faecalis Flyl (NZ_-
ACARO00000000) is a non-motile, facultative anaerobe.
Within its genome we identified a previously unanno-
tated LanA determinant, through analysis of raw
sequence data. The corresponding peptide is homolo-
gous to C. perfringens CPE str. F4969 (AC5_A0201; 68%
identity), as well as a number of epidermin-like LanAs
in other bacilli. The putative LanB protein is split across
two orfs, EFKG_00402 (80 amino acids) and
EFKG_0403 (942 amino acids), with both components
most closely resembling the N-terminus of the dehydra-
tase of Streptococcus pyogenes MGAS10270,
MGAS10270_Spy0922. It is unclear whether the appar-
ent frameshift in the Flyl [anB is genuine or the result
of a sequencing error. The LanC-like EFKG_00405, was
most closely related to the corresponding protein in
G. thermodenitrificans NG80-2 (SpaC GTNG_0268; 35%
identity).

Identification of novel Geobacillus-associated lantibiotic
gene clusters

Geobacilli are thermophillic (45-70°C), aerobic, spore-
forming Firmicutes. They have been isolated from var-
ious terrestrial and marine environments, in geothermal,
temperate and permanently cold habitats. Reclassified in
2001 [57], these bacteria are of industrial interest as
sources of thermostable enzymes. Bacteriocins have
been identified in Geobacillus stearothermophilus [58]
and Geobacillus thermoleovorans [59], and while screen-
ing for LanM-producing gene clusters has highlighted
the potential existence of a number of type 2 lantibiotics
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[25], associated type 1 lantibiotics have not previously
been described. Here, three putative type 1 lantibiotic/
lantipeptide-encoding clusters within the genomes of
Geobacillus kaustophilus HT A426, Geobacillus thermo-
denitrificans NG80-2 and Geobacillus sp. G11MC16
(Figure 3) are described.

Geobacillus kaustophilus HTA426 G. kaustophilus
grows optimally in aquatic environments at 60°C with
an upper temperature limit of 74°C. From a lantibiotic
persepective, genome xsequencing of HTA426 revealed
a hypothetical protein annotated as a ‘lantibiotic precur-
sor’ GK0294. Our analysis revealed that this putative
LanA is 91% identical to another prepropeptide encoded
by the closely located GK0286 gene. It is also 100%
identical to orphan ‘lantibiotic precursor’ homologs
(GYMC52DRAFT_3129 and GYMC61_1158) in Geoba-
cillus sp. Y412MC52 and Geobacillus sp. Y412MC61,
respectively. More distantly related LanAs (79% identity)
are also associated with the genomes of Geobacillus
thermodenitrificans NG80-2 (GTNG_0265) and Geoba-
cillus sp. GIIMC16 (G11MC16DRAFT_2956). The
homology between the Geobacillus LanAs is highest
within the leader regions, but, as is the case with nisin-,
epidermin- and streptin-like lantibiotics, a conserved
serine and CTPGC motif in the N-terminus of the pro-
peptide is present, which is believed to be involved in
the binding of these lantibiotics to lipid II in the cell
wall in gram positive bacteria [60]. BLAST analysis of
the GK0286-encoded LanA highlighted the presence of
another potential lantibiotic/lantipeptide cluster in Cory-
nebacterium lipophiloflavum DSM 44291 (57% identity
with HMPREF0298_1795). Within the HTA426 cluster,
the proteins predicted to be encoded by GK0300/301
(an apparently frameshifted /anB) and GK0304 are
homologous to those associated with many other geoba-
cilli. It was also noted that this cluster is less condensed
than typical lantibiotic gene clusters in that there are
insertions of 7, 5 and 3 genes (predicted to encode
many transposases and small, hypothetical proteins)
between the lantibiotic associated genes.

Geobacillus thermodenitrificans NG80-2 and Geoba-
cillus sp. G11MCI16: G. thermodenitrificans are faculta-
tive soil bacteria with denitrification qualities.
Representatives of this species grow between 45°C and
73°C (optimum 65°C). NG80-2 was isolated from a
deep-subsurface oil reservoir in Dagang oilfield, North-
ern China [61] and on the basis of in-silico analysis is
potentially the producer of both a type 1 (see below)
and type 2 lantibiotic [25]. Our analysis reveals that the
type I lantibiotic/lantipeptide operons in G. thermodeni-
trificans NG80-2 and Geobacillus sp. G11MC16 are very
highly conserved. The two LanAs are 100% identical
and the homology between these, and indeed the asso-
ciated B and Cs, and the corresponding G. kaustophilus
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HTA426 proteins is discussed above. It was noted that
the lanB of Geobacillus sp. G11MC16 is apparently fra-
meshifted (G11MC16DRAFT_2955 (176aa) and
G11MC16DRAFT_2954 (848aa)) but that this is not the
case in G. thermodenitrificans NG80-2 (GTNG_0266).
Identification of novel Staphylococcus-associated lantibiotic
gene clusters

The staphylococci are non-sporeforming, non-motile
Firmicutes. The genus Staphylococcus contains 33 spe-
cies, most of which are harmless and reside normally on
the skin and mucous membranes of humans and other
organisms. However, staphylococci can also cause a
wide variety of diseases either through toxin production
or penetration and are a common cause of food poison-
ing and nosocomial infections. Several strains of Staphy-
lococcus epidermidis have been shown to be producers
of type 1 lantibiotics, including epidermin [62], Pep5
[63], epicidin 280 [64] and epilancin K7 [65], gallidermin
was isolated from S. gallinarum [14] while Staphylococ-
cin Au26 [66] and Bsa [22] were isolated from S. aureus.
BLAST analysis has revealed that several other S. aureus
strains possess gene clusters similar to those associated
with Bsa and Bsagppizs [22]. These clusters were identi-
fied in S. aureus A9765, D139 and H19. In A9765,
SAPG_01762 and SAPG_01760 correspond to the
BsaAl and BsaA2 peptides of S. aureus MW2 (97% and
100% identity, respectively). The precursor peptides of
the D139 (SATG_00575 and SATG_00574; 76% identi-
cal to each other) and H19 (SAUG_01228 and
SAUG_01229; 76% identical to each other) strains are
100% identical. The peptides encoded by SATG_00575
and SAUG_01229 are 93% identical to BsaAlrgio, of S.
aureus RF122 (93% identity) while those corresponding
to.SATG_00574 and SAUG_01228 are 100% identical to
BsaA2gg19.

Identification of novel Streptococcus-associated lantibiotic
gene clusters

These facultative anaerobes of the phylum Firmicutes
are spherical in shape and grow in long chains. Many
species are part of the normal commensal flora of the
mouth, skin, intestine and upper respiratory tract of
humans but the genus also includes numerous human
pathogens such as Streptococcus pneumoniae, pyogenes
and agalactiae. The streptococci are known to produ-
cers of type 1 lantibiotics [67,68], such as streptin [69],
some mutacins [21,70-72], nisin U and nisin U2 [73], as
well as several non-lantibiotic bacteriocins. Here we dis-
cuss two clusters, identified in strains of S. pyogenes and
S. thermophilus LMG 18311.

Streptococcus pyogenes MGAS10270 S. pyogenes (or
Group A Streptococcus, GAS) is the cause of many
important human diseases ranging from mild superficial
skin infections to life-threatening systemic diseases. Bac-
teriocin production by these strains may give them a
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competitive advantage against the natural skin micro-
biota. It has previously been established that many S. pyo-
genes strains, as well as strains of Streptococcus salivarius,
produce the type 2 lantibiotic salivaricin A or closely
related variants [16]. The type 1 streptins (1 and 2) and
type 2 streptococcin A-FF22 are also S. pyogenes asso-
ciated [69,74]. Here our analysis focuses on a type 1 clus-
ter within the genome of S. pyogenes MGAS10270 [75].
This includes MGAS10270_Spy0919, which is 100% iden-
tical to the propeptide sequence of streptin. While this
lantibiotic is thus not novel, subsequent BLAST searches
were revealing in that they highlighted the presence of a
LanA with 97% identity in S. pyogenes MGAS10750
(MGAS10750_Spy0955) which is contained within a clus-
ter which also encodes a LanB (MGAS10750_Spy0958)
and LanC (MGAS10750_Spy0957).

Streptococcus thermophilus LMG 18311 S. thermophilus
is a thermophillic, non-pathogenic Streptococcus. It is of
major importance to the fermented dairy food industry.
A number of non-lantibiotic bacteriocins (thermophilins)
from this species have been characterized, including ther-
mophilin 347 [76], thermophilin A [77] and thermophilin
ST-1 [78]. Strain LMG 18311 was sequenced in 2004 and
at the time it was noted that bacteriocin production was
one of the characteristics that distinguishes it from strain
CNRZ1066 [79]. While the existence of a putative lanti-
biotic/lantipeptide gene cluster in LMG 18311 has been
reported [79,80], this cluster (Figure 3) has not been the
focus of a detailed in silico analysis. The associated LanA,
encoded by stu0097, is homologous with that predicted
to be encoded by SPCG_0144 of S. pneumoniae CGSP14
(88% identical) which, on the basis of previous in silico
analysis, is also within a lantibiotic gene cluster [81]. The
LanB protein (Stu0098) is 73% identical to SPCG_0145 of
S. pneumoniae CGSP14 and 97% identical to a truncated
LanB associated with S. thermophilus CNRZ1066 [79].

Type 1 lantibiotic gene clusters in Bacteroidetes

The Bacteroidetes are a highly diverse phylum found in
soil, seawater and the skin and intestines of animals.
The Bacteroidales class, which includes the genus Bac-
teroides, are the best-studied of the phylum. Bacteroides
comprises the most substantial portion of the human
gastrointestinal tract [82] some of which are opportunis-
tic pathogens [83].

Identification of novel Chitinophaga-associated lantibiotic
gene clusters

Chitinophaga are rod-shaped mesophiles of the phylum
Bacteroidetes which are are noted for their ability to
degrade chitin [84]. There have been no reports to date
of bacteriocin production by any of the 10 Chitinophaga
species. Chitinophaga pinensis DSM 2588 (NC_013132)
is unusual in that it appears to be a Bacteroidetes pos-
sessing genes encoding a type 1 lantibiotic (Figure 4).
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Figure 4 Diagramatic representation of the Chitinophaga
pinensis (Bacteroidetes) type 1 lantibiotic operons, found in the
original NisC screen, which contain genes predicted to encode
a structrural peptide LanA, and the modification enzymes LanB
and LanC.

There are two predicted LanA peptides, corresponding
to Cpin_1438 and Cpin_1437, which are 50% identical
as a consequence of similar N-terminii. Adjacent orfs of
note include Cpin_1435 and Cpin_1440, predicted to
encode a -lactamase and a 2-component transcriptional
regulator of the LuxR family, respectively. BLAST analy-
sis of the associated LanB and LanC proteins
(Cpin_1436 and Cpin_1439 respectively) revealed
another putative LanB (Cpin_3392; 36% identity) and
LanC (Cpin_3397; 23% identity) encoded within the
same genome. Within this second C. pinensis-associated
cluster, Cpin_3393 possess a number of features which
suggest that it may be a LanA-encoding gene. Interest-
ingly, BLAST analysis of the Cpin_3397-encoded LanC
also led to the identification of a number of additional
homologs apparently encoded within the genomes of
strains not previously associated with lantibiotic produc-
tion. The genome of another Bacteroidetes, Spirosoma
linguale DSM 74, is notable in that it contains 4 puta-
tive LanB-encoding genes and 5 putative LanC-encoding
genes. Of these only one LanB protein (Slin_4704; 31%
identity) and one LanC protein (Slin_4705; 26% iden-
tity), are encoded within what appears to be a novel lan-
tibiotic-associated gene cluster. This cluster contains 3
potentially LanA-encoding genes, Slin_4706-4708.
Slin_4706 and Slin_4707, which are identical and share
58% identity with Slin_4708. The genome of another
Bacteroidetes species, Pedobacter heparinus DSM 2366
(NC_013061), contains a cluster encoding two LanBs
(Phep_0556 and Phep_0557; 37% and 36% identity,
respectively), a LanC (Phep_0555; 33% identity) and a
potential LanA (Phep_0553; no significant BLAST hits).
A cluster within Kordia algicida OT-1 contains LanB
(KAOT1_15523; 36% identity), LanC (KAOT1_15518;
30% identity) and LanA determinants (KAOT1_15533;
no significant BLAST hits) while Microscilla marina
ATCC 23134 potentially has five associated LanB homo-
logs, but of these, the LanB corresponding to
M23134_03921 (28% identity) was the only one to be
located in close proximity to one of multiple LanC pro-
teins (M23134_03925; 22% identity). The putative LanA,
M23134_03926, does not resemble any other known
proteins.
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Figure 5 Cladogram of all the LanB enzymes from clusters encountered during the screen. Also included are dehydratases from some
well-known lantibiotics. Green = Actinobacteria; Pink = Firmicutes; Blue = Bacteroidetes; Yellow = Chlamydiae
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Phylogenetics of LanABC

The conserved nature of LanB and LanC proteins facili-
tated a phylogenetic analysis of their relatedness. The
resultant cladogram of LanB enzymes (all those identi-
fied in both screens, as well as a number of LanBs from
previously analysed clusters) highlights the existence of
two distinct phylogroups (Figure 5). The first phy-
logroup contains Actinobacteria-associated LanBs, all of
which are from strains not previously known to be pro-
ducers of lantibiotics/lantipeptides. The second contains
a variety of lanthionine synthetases associated with
known lantibiotics (nisin, subtilin, epidermin etc), some
uncovered by previous in silico analysis (e.g. S. pneumo-
niae CGSP14 [81]), novel clusters from genera with
which lantibiotic production has previously been attribu-
ted as well as genera not previously associated with lan-
tibiotic production. Within this second phylogroup one
finds two subgroups; one consisting of Bacteroidetes-
associated LanBs (2A) and a second consisting of Firmi-
cutes-associated LanB’s (2B) as well as that from
P. ancanthamoeba. Among the Firmicutes-associated
LanBs further subclustering is evident. One common
branch contains three offshoots; (i) Bacillus/Geobacillus/
Enterococcus/Clostridium, (ii) S. pyogenes and (iii)
P. acanthamoebae str. Hall’s coccus LanBs. The Staphy-
lococcus LanBs and that of mutacin 1140 (those asso-
ciated with epidermin-like peptides) also form a distinct
subgroup as do those encoded with the genomes of
S. thermophilus LMG 18311 and S. pneumoniae
CGSP14. Curiously the epicidin (S. epidermidis) LanB
does not group with any other LanB.

The cladogram of the corresponding lanthionine
synthetases (LanCs) is quite similar to that of the dehy-
dratases (Figure 6). All can be positioned into one of
two phylogroups (phylogroups 1 and 2). Phylogroup 1
contains six Bacteroidetes-associated LanC’s. In contrast
phylogroup 2 is large and can be further divided into
group 2A, which are Actinobacteria-associated, and the
Firmicutes-associated group 2B. Further subgrouping
follows the patterns identified from analysis of the LanB
cladogram. 8 exceptional LanCs that avoid subgrouping
include those associated with C. lipophiloflavum DSM
44291, S. thermophilus LMG 18311/S. pneumoniae
CGSP14, epicidin, B. cereus F65185, N. dassonvillei
subsp. dassonvillei DSM 43111, nisin-producing lacto-
cocci and Actinomyces sp. oral taxon 848.

A cladogram of the less highly conserved LanAs
revealed 13 major branches, several of which contain
only one corresponding LanA (Figure 7). Notably the
various phylogroups do not group in a phylum specific
manner to the same extent as was evident in LanB and
LanC cladograms. The largest phylogroups, i.e. phy-
logroups 11 and 13, are those containing the nisin-like
and epidermin-like peptides, respectively. While
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phylogroup 13 is, with the exception of the Actinomyces
sp. oral taxon 848-associated LanA, composed of Firmi-
cutes-associated LanAs, phylogroup 11 contains LanAs
from both Firmicutes and Actinobacteria. This phy-
logroup contains three subgroups, with subgroup 11A
containing LanAs from E. faecalis Flyl and C. perfrin-
gens F4969, 11B contains Actinobacteria-associated
LanAs and 11C contains both Actionobacteria- and Fir-
micutes-associated LanAs. Of the other phylogroups,
phylogroups 6 and 7 are largest and contain Chlamy-
diae/Bacteroidetes- and Actinobacteria-associated
LanAs, respectively.

Alignment of LanABC

The availability of a significant number of LanA, B and
C protein sequences enabled further in silico analysis to
identify conserved motifs and residues. Alignment of 66
LanB proteins highlighted a number conserved motifs
which are summarised in Table 5. A YxxR motif (corre-
sponding to residues 80-83 of NisB) is conserved in 89%
of the LanB enzymes, while a GxG motif (363-365) is
present in 92% of LanBs, with the LanB of C. lipophilo-
flavum being exceptional by virtue of lacking both gly-
cine residues. A GRF motif (463-465) is fully conserved
in 86% of LanBs with the Streptomyces sp. Mgl III LanB
being the only protein to lack this motif. An RxTPFG
motif (87-94) is present in 77% of LanBs but is comple-
tely absent from the LanBs of Geobacillus sp.
G11MC16, Streptomyces sp. Mgl 111, M. aurantiaca and
C. lipophiloflavum. A FxxxYG motif (342-347) is present
in 82% of LanBs and, although present in only 50% of
LanBs, a PxxxRxxNV (501-509) motif is at least partially
conserved in many such proteins i.e. 94% contain the
proline, 71% contain the NV residues and the least con-
served is the arginine with 71% conservation. Elsewhere,
there is a RFL motif (585-587) conserved in 51% of
LanBs, a RYG motif (826-828) conserved in 85% of
LanBs and a HxxxNR motif (961-966) in 70% of the
dehydratases. n addition to these, there are multiple
highly conserved residues such as aspartates at residues
121, 299, 648 and 843, prolines at 612 and 639 and a
leucine, tryptophan and phenylalanine at 97, 616 and
840.

Alignment of the LanC protein also revealed several
conserved regions (summarised in Table 6). Of these,
CHG and WCYG motifs were particularly notable. The
CHG motif (corresponding to residues 330-333 of NisC)
was found to be conserved in 98% of the LanCs. The
cysteine®*® and histidine®*' residues, which act as
ligands to the zinc in the active site of NisC, have been
shown to be necessary for enzyme activity [85]. The
WCYG motif (283-286) was present in 95% of the
aligned enzymes. Within the WCYG motif, trypto-
phan®® (W) and cysteine284 (C) have been shown to be
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Figure 6 Cladogram of all the LanC enzymes from clusters encountered during the screen, as well as some from well-known
lantibiotics. Green = Actinobacteria; Pink = Firmicutes; Blue = Bacteroidetes; Yellow = Chlamydiae

vital to subtilin and nisin biosynthesis (residue numbers
refer to location in NisC) [85,86]. It has previously been
shown that although alanine subsititution of tyrosine**”
(Y) results in enzyme inactivation, a phenylalanine
change is tolerated indicating that the presence of an

aromatic ring at this position is of key importance [85].
In the same study, a preceding arginine residue (Arg**°)
present in 86% of these enzymes, was found not to be
essential for enzyme activity. 92% of LanCs also con-
tained a closely located Gly*® residue. The histidine*'>

’
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of another highly conserved motif, GxAHGxxG (209-
216; conserved in 83% of LanCs), together with a con-
served aspartic acid'*' (91% of LanCs) are thought to be
involved in the electrophilic activation of the carbonyl
group of dehydroalanine/dehydrobutyrine or in the

protonation of the enolate (thiol substrate) [85]. The
HG of this latter motif was conserved in 98% of the
enzymes (the exception being S. aureus subsp. aureus
D139). In addition to these, other motifs of note
included LxxG (39-42; conserved in 83% of LanCs),
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Table 5 Highly conserved residues shared by 66 cluster-
associated (including those from the 49 novel clusters
referred to in this paper) lanthionine dehydratases
(LanB).

From Alignment NisB Position % Conservation
Motifs
YxxR 80-83 89%
RXTPFG 87-94 77%
FxxxYG 342-347 82%
GxG 363-365 92%
GRF 463-465 86%
PxxxRxxNV 501-509 50%
RFL 585-587 51%
RYG 826-828 85%
HxxxNR 961-966 70%
Single Residues
R 14 86%
D 121; 299; 648; 843 86%; 94%; 94%; 85%
N 145 86%
L 217 97%
P 612; 639 100%; 95%
E 975 89%
W 616 98%
F 840 95%
\Y 352 83%

Residues are numbered according to their position in NisB

GxxxGxxGxxLxL (377-389; 73%) and YDxxxGxxG (140-
148; 67%). Highly conserved single residues include
Gly®® (94%) and Tryp**® and Tryp**' (83% and 92%
respectively).

Although LanA peptides are less conserved than their
modification enzymes, some motifs were evident (Figure 8).
A DLD motif present in the leader region of the almost all
phylogroup 13 LanAs is also found in many other LanAs.
Indeed, the leucine of this motif is conserved across 93% of

Table 6 Highly conserved residues shared by 66 cluster-
associated (including those from 49 novel clusters)
lanthionine cyclases. Residues are numbered according
to their position in NisC

Conserved Residues NisC Position % Conservation
Motifs
LxxG 39-42 83%
YDxxxGxxG 140-148 67%
GXAHGxXG 209-216 83%
WCYG 283-286 95%
CHG 330-332 98%
GXxxGxxGxxLxL 377-389 73%
Single Residues
G 90 94%
W 258; 401 83%; 92%
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the 70 aligned peptides. The only peptides lacking this resi-
due are those from M. marina, B. cereus F65185, N. dasson-
villei subsp. dassonvillei and P. heparinus as well as
mutacin 1140. The leader regions from many actinobac-
teria, and especially those from phylogroup 11, are also dis-
tinctive as a consequence of the frequent presence of
proline residues.

Within the propeptide, the most highly conserved
residues are cysteines corresponding to positions 30 and
34 of the Nisin A prepropeptide [60] which significantly
are within the lipid II-binding region of the peptide.
These cysteines are each found in 86% of the type 1
LanAs. The Actinobacteria in phylogroups 10 and 11
also share a conserved or partially conserved DGCG
motif in the propeptide region. A less highly conserved
AC motif which is closer to the C terminus is also evi-
dent. In addition to motifs which are conserved across
motifs, a large number of motifs which are conserved
within phylogroups are evident.

Conclusions
The in silico strategy adopted here resulted in the initial
identification of 56 proteins which share 20-30% identity
with NisC. Further investigation of novel LanC proteins
in turn led to the identification of even more homologs,
revealing novel lantibiotic/lantipeptide associated clusters
and establishing the existence of subgroups of LanA, B
and C proteins. Theoretically, additional homologs could
be identified through a continuation of this method but
the rate at which new homologs would be identified
would begin to level off. The approach taken led to the
identification of 49 novel clusters which, prior to this
study, had not been the subject of a detailed bioinfor-
matic analysis. While the in silico identification of gene
clusters in a strain will not always be confirmed by detec-
tion of an associated lantibiotic/lantipeptide, past experi-
ence [22-25] suggests that there is likely to be a strong
correlation. It is thus anticipated that the peptides pro-
duced by these gene clusters will represent a valuable
resource, as will be the associated biosynthetic proteins.
This study reveals new details regarding type 1 lanti-
biotics and their associated clusters. Type 1 lantibiotics
have been predominantly associated with the Firmicutes,
with the Actinobacteria-produced planosporicin and
microbisporicin being notable exceptions. It is thus
interesting to find type 1 clusters distributed among the
genomes of bacteria representing four different phyla,
the Actinobacteria, Firmicutes, Bacteroidetes and Chla-
mydiae, which have been isolated from a diverse range
of habitats including soil, skin, intestines and the deep-
sea. Indeed, based on these investigations, it would
appear that such clusters are as common among Actino-
bacteria as they are among Firmicutes, with Strepto-
myces and Frankia sp. being particularly rich sources.
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The Actinobacteria clusters are, in general, quite similar,
typically encoding a LanA, B, C and a methyltransferase.
The role of the methyltransferase is not clear but may
serve to protect specific serine and threonine residues
from LanB-mediated dehydration. The presence of five
clusters within the genomes of five Bacteroidetes, a phy-
lum in which bacteriocin production is purportedly
quite rare, is particularly noteworthy. However, the
sequencing of additional representatives of this species
may well reveal this to be a common feature. The
P. acanthamoebae cluster is unusual by virtue of its pre-
sence in a representative of the Chlamydiae. Phyloge-
netic analysis indicates that the LanB and LanC proteins
from this strain are closely related to those of several
Firmicutes and thus the cluster may originally have been
acquired from such a source.

The availability of a much larger collection of LanA, B
and C sequences for further in silico analysis is also extre-
mely useful for a number of other reasons. In addition to
providing greater certainty with respect to the proposed
conservation of particular motifs, it also reveals the exis-
tence of a greater number of subgroups of sequences than
was previously apparent. This is particularly important

with respect to LanAs as alignment of these peptides has
previously been employed as a means of subgrouping type
1 lantibiotics [2,6]. Ultimately, the most significant out-
come has been the number of new type 1 lantibiotic gene
clusters. When one considers that less than 25 type 1 lan-
tibiotics had been identified prior to this study, this repre-
sents a major expansion. While the genome sequenced
strains themselves can be accessed with a view to purifying
the associated peptides and/or utilising the biosynthetic
machinery, the information gathered will also encourage
researchers to include Actinobacteria and Bacteroiodetes
when carrying out wet lab-based screens for novel lanti-
biotic producers. A combination of this approach and ana-
lysis of newly generated bacterial genome sequence data
will ensure that many more lantibiotics and lantipetides
will soon be discovered which are associated with unusual
microorganisms and a wide variety of environments.

Methods

Screening of genomic databases

Using the nisin modification enzyme NisC (GenBank
accession number CAA79470) as a driver sequence, all
fully sequenced genomic sequences (approx. 1178 at
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time of study; Dec 2009) were mined for homologs
using Genomic-BLAST (http://www.ncbi.nlm.nih.gov/
sutils/genom_table.cgi). BLASTs were carried out with
default parameters; criteria for homolog detection were
a threshold of 1e” and greater than 20% identity.

Bioinformatic anlaysis of lanC-containing gene clusters

In cases where novel lanC-like genes encoding enzymes
were identified, the arrangement of adjacent genes was
visualised using the genome viewer on NCBI, and indivi-
dual orfs were subjected to BLAST analysis to identify
those potentially involved in lantibiotic production or
immunity. The predicted LanA, LanB and LanC proteins
from these operons were each in turn used for further
in silico screens to determine their similarities to corre-
sponding proteins associated with known lantibiotics
and to identify additional novel clusters. In instances
where a LanC- and LanB-, but not a LanA-, encoding
gene were annotated, intergenic regions were inspected
following translation by the Seqbuilder program of the
DNASTAR Lasergene 8 software package to investigate
the presence of potentially unidentified lanA genes. The
tblastn program was then used to search all sequenced
DNA for related peptides.

Phylogenetic analysis

Protein alignments were generated by MUSCLE [87].
Sequence alignment were viewed and edited for publica-
tion with Jalview alignment editor [88]. These align-
ments were used to establish phylogenetic trees in
Phylip [89] which were subsequently visualised using the
Dendroscope package [90].
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