
Structural Differences between the Streptococcus
agalactiae Housekeeping and Pilus-Specific Sortases:
SrtA and SrtC1
B. Khare1, V. Krishnan1, K. R. Rajashankar3, H. I-Hsiu2, M. Xin2, H. Ton-That2, S. V. Narayana1*

1 Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 2 University of Texas Health

Science Center, Houston, Texas, United States of America, 3 NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois, United States of America

Abstract

The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In
Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and
three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the
major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2,
respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not
catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the
structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1
and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA
exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus
aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is
similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and
composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal
structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80,
IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural
elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

Citation: Khare B, Krishnan V, Rajashankar KR, I-Hsiu H, Xin M, et al. (2011) Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-
Specific Sortases: SrtA and SrtC1. PLoS ONE 6(8): e22995. doi:10.1371/journal.pone.0022995

Editor: Robin Charles May, University of Birmingham, United Kingdom

Received April 5, 2011; Accepted July 6, 2011; Published August 30, 2011

Copyright: � 2011 Khare et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the U.S. Public Health Service grants AI073521 to SVN and AI061381 to HT-T from the National Institute of Allergy and
Infectious Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: narayana@uab.edu

Introduction

In Gram-positive bacteria, cell wall-anchored surface proteins

are virulence factors and are essential for host-cell adhesion,

nutrient acquisition and many other functions that facilitate

pathogen survival in a hostile environment [1,2]. Anchoring of

these surface proteins to the cell wall peptidoglycan requires

transpeptidase enzymes called sortases, a product of an srt (surface

protein sorting) gene [3,4]. The substrates of sortases are protein

precursors with an N-terminal signal peptide and a C-terminal cell

wall sorting signal (CWSS), consisting of the LPXTG motif,

followed by a segment of hydrophobic and basic residues [1]. The

membrane-associated sortase recognizes the LPXTG motif of the

substrate protein, cleaves between the Thr and Gly, and forms an

acyl-enzyme intermediate [5]. Nucleophilic attack by the amino

group of a peptidoglycan precursor, lipid II, resolves the acyl

intermediate and releases the enzyme [6]. The subsequent

transglycosylation and transpeptidation reactions incorporate the

surface protein into the peptidoglycan and decorate the bacterial

cell surface with covalently bound proteins [6].

Like surface proteins, pilins of Gram-positive bacteria harbor an

N-terminal signal peptide and a C-terminal CWSS. Pilins are

covalently assembled [7,8] into thin and flexible fibers called pili,

which cover the bacterial cell surface and participate in many

functions, including host-cell attachment and biofilm formation

[9]. The mechanism of Gram-negative pili biogenesis has been

extensively investigated [10,11] and involves chaperones that are

non-covalently associated with the cell wall [12,13]. In contrast,

the Gram-positive pili, present in microorganisms such as

Actinomyces naeslundii [14,15], Corynebacterium diphtheriae [7,16],

Bacillus anthracis [17], Streptococcus agalactiae [18,19,20], Streptococcus

pyogenes [21], and Streptococcus pneumoniae [22,23], are covalently

attached to peptidoglycans and require multiple sortases of

different types for assembly and anchoring [8,24,25,26]. The

Spa-type pilus of C. diphtheriae is the best studied; it is encoded by

the spaA-spaB-srtA-spaC locus that is composed of three pilins: SpaA

forming the shaft, SpaC at the tip, and SpaB along the pilus

structure and at the base [7]. In addition to the CWSS, SpaA

contains a pilin motif that is involved in the sortase-catalyzed

covalent cross-linking between SpaA subunits. The pilin-specific

sortase, SrtA, is the only enzyme required for the polymerization

of SpaA pilins, which is terminated when SpaB enters at the pilus

base; the housekeeping sortase, SrtF, whose gene is located in a

different chromosomal region, then catalyzes the cell wall

anchoring of the assembled pilus. A study by Swaminathan

et al. [27] has shown that the function of C. diphtheriae SrtF may be
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limited to the cell wall anchoring of pilins, whereas the C. diphtheriae

SrtA sortase has dual functions, that is, polymerizing and cell wall

anchoring activities, although its cell wall anchoring activity is less

efficient than that of SrtF. Intriguingly, by swapping the LPXTG

motif of SpaB with that of SpaA, SrtA is able to anchor its pilus

polymers to the cell wall in the absence of SrtF, indicating that the

LPXTG motif may determine the substrate specificity.

Similar to corynebacterial pili, the S. agalactiae (Group B

streptococcus, GBS) pili are heterotrimeric, and the individual

components are promising candidates for pilus-based vaccines

[28,29]. Historically known for life-threatening neonatal infec-

tions, such as sepsis, pneumonia, and/or meningitis [30], GBS also

causes invasive disease in pregnant and non-pregnant adults

[31,32,33]. GBS disease in the elderly manifests as bacteremia and

as peritoneal skin and soft tissue diseases [33]. Two pilus islands

(PI-1 and PI-2a) have been identified in strain 2603V/R (serotype

V), which is the strain responsible for most GBS infections in the

elderly. The PI-1 cluster encodes three pilins, the major pilin

GBS80 (or SAG0645) and two minor pilins GBS52 (SAG0646)

and GBS104 (SAG0649), and the two sortases SrtC1 and SrtC2

(or SAG0647 and SAG0648, respectively) [18,20]. The PI-2a

locus encodes three pilins, the major pilin GBS59 and two minor

pilins GBS67 and GBS150, in addition to the two sortases SrtC3

and SrtC4. The srtA locus encodes the housekeeping sortase SrtA,

and it resides elsewhere in the genome. Interestingly, though either

SrtC1 or SrtC2 is sufficient for the polymerization of GBS80, the

incorporation of the GBS52 and GBS104 minor pilins into the

pilus structure requires SrtC1 and SrtC2, respectively. Consistent

with the two-step mechanism of pilus assembly described above for

corynebacterial pili (i.e., pilus polymerization preceding cell wall

anchoring), the housekeeping SrtA sortase has been shown to be

involved in cell wall anchoring of the PI-2a pilus polymers via the

minor pilin, GBS150 [34].

The pilus-specific sortases and the housekeeping sortase belong

to class C and A sortases, respectively, and their nomenclature is

based on their function and substrates [35]. Sortases of the same

class from different pathogens exhibit limited primary sequence

identity (,21%), which is even lower among different types from

the same pathogen [36,37,38]. The available crystal structures of

class A and C sortases from different pathogens [39,40,41,42,43]

reveal similar overall structures, with differences in the active sites

and surrounding loop regions that often dictate the specificity for

proteases. The first crystal structures of sortases, S. aureus sortase A

(SASrtA) and sortase B (SASrtB) [39,40], displayed novel catalytic

residue arrangements with an unconventional distance (.3.8 Å)

between the nucleophilic Cys and the conserved (and presumed

catalytic) His. Based on the substrate and inhibitor complex

structures of SASrtA and SASrtB, respectively [39,40], Zong et al.

have proposed that a conserved and proximally positioned Arg will

partner with the catalytic Cys for both the proteolysis of the

LPXTG motif and the transpeptidation reaction between the

acylated sortase and the amino group of lipid II. Site-directed

mutagenesis and enzymatic assays have shown that Arg and His

are absolutely required for catalysis [44,45], and Arg might help in

the substrate binding and stabilization of the acyl-enzyme

intermediate, analogous to an ‘oxyanion hole’ in serine proteases

[46]. In this report, we present the crystal structure of GBSSrtA

and show that the catalytic site is more open and extended in

comparison to SASrtA. In addition, we reveal the spatial

arrangement of putative catalytic residues, similar to that seen in

S. pyogenes sortase A (SPYSrtA) though different from SASrtA.

The crystal structures of three pilus-specific sortases from

Streptococcus pneumoniae (SPNSrtC1–C3) [43,47] have revealed an

N-terminal loop, termed the ‘lid’, positioned close to the catalytic

residues in the respective putative substrate binding sites; it has

been proposed that the opening/closing of the lid facilitates the

accessibility to the binding pocket. Manzano et al. (2009) later

showed that mutation of the anchor residues in the lid did not

affect substrate recognition or acyl-intermediate formation;

instead, it adversely affected the stability and efficiency of the

enzyme [48]. The mechanism by which the lid promotes either

substrate accessibility or enzyme stability is not clear yet.

Furthermore, structure-function relationships of class C and class

A sortases from a single strain of the same pathogen have not been

studied so far.

In our previous report [49], we described the recombinant

expression, purification, crystallization and diffraction data

collection statistics for the pilus-specific GBS sortase C1

(GBSSrtC1; type I, II and III, corresponding to three different

space groups) and the housekeeping GBS sortase A (GBSSrtA)

from the SAG 2603 V/R strain. Here, we present two crystal

structures of the GBSSrtC1 (type II and III) determined by

molecular replacement methods and that of GBSSrtA determined

by SAD-MR phasing. In addition, we also present the crystal

structure of a lid mutant of GBSSrtC1. Toward an understanding

of the factors that confer lid-associated enzyme stability we

identified structural features within the putative active site of

GBSSrtC1 that may explain the presence of the lid and its

proposed role of maintaining enzyme integrity. Lastly, we detail

some of the structural differences between GBSSrtA and

GBSSrtC1 and discuss the structure-function relationships of the

two classes of GBS transpeptidase enzymes.

Results

Crystal Structure of GBSSrtC1
The two molecules of the dimer, related by a non-crystallo-

graphic 2-fold axis, in the asymmetric unit of both the type II and

III crystals of the GBSSrtC1 display the typical sortase fold made

of an eight-stranded beta-barrel (Figure 1a). The barrel core is

flanked by two long N-terminal helices (H1 and H2, Figure 1b),

positioned approximately at 75u to each other and away from the

dimer interface, which is formed by b6 strands and b4/b5 loops.

The major differences between the four molecules are localized at

the peripheral regions, such as the H2/b1, b2/b3, b4/b5 and b6/

b7 loops and the C-terminus. Subtle differences, such as one

single-turn a-helix in the b1/b2 loop present only in chain B of

both dimers, and a four-turn and two-turn H1 helix in the type III

and II structures, respectively, may explain the plasticity in the

sortase structural features, the presence of multimers in the

asymmetric unit and the observed multiple crystal-packing

arrangements. Based on the SASrtA-substrate complex structure

[40], we suggest an elongated cleft that widens towards the

catalytic Cys184 residue on one end is the putative active site of

GBSSrtC1, with the b7, b8 and b4 strands as its floor and the b6/

b7, b3/b4 and the b2/helix5 loops as the walls of this binding

pocket (Figure 2b and 3b).

Both GBSSrtC1 and GBSSrtC2 of SAG2603 V/R were shown

to be capable of polymerizing GBS80, similar to SPNSrtC1 and

SPNSrtC2 of Streptococcus pneumoniae strain TIGR4, which show

cross-specificity for the major pilin RrgB [36,50]. The primary

sequence (Figure 2a) and the crystal structures of GBSSrtC1 and

SPNSrtC1 (Figure 2b) share similarities (rmsd = 1.8 Å over 177

CA atoms), although variations were found in the conformations,

orientations and composition of the loops connecting the b strands

in the active site, the N-terminal helical domain and both termini.

Residues 44–55 and 44–54 in type II (A and B chains,

respectively) and 44–51 and 46–53 in type III (chain A and B,

Streptococcus agalactiae Sortases
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respectively), which cover the putative active site from one-end to

the other, form the lid region in GBSSrtC1. Despite the high

flexibility and temperature factors (80–100 Å2), residues 46–51

were consistently positioned in all four of the active sites (Figure 3a

and 3b). Unlike the SPNSrtC1–C3 crystal structures, the hinge

region between the H2 helix and the lid and the link between the

lid and the b1 strand were not observed in the GBSSrtC1

structures, possibly due to their high flexibility.

Analogous to the Asp58, Pro59 and Trp60 residues of the

conserved DP(W/F/Y) motif in SPNSrtC1 [43,48], Asp49, Pro50

and Tyr51 of GBSSrtC1 anchored the lid in its active site. In

addition, the preceding leucine residue (Leu47) was observed

inserted into a highly hydrophobic pocket in the active site present

below the lid. The residues in the hydrophobic pocket included

Val118 (on the b4 strand), Ile162 (at the edge of the b6 strand) and

Tyr171 (on the b6/b7 loop) (Table 1; Figure 4a). Similar to the

Leu47 of GBSSrtC1, Val55, Ile84 and Ile72 are the hydrophobic

residues from the ‘lids’ (hereafter referred to as HB-lid) inserted

into the hydrophobic pockets in SPNSrtC1, SPNSrtC2 and

SPNSrtC3, respectively. Though the conformations of the lid

regions varied somewhat, the HB-lid residues occupied spatially

similar positions in all of the five class C pilus-specific sortase

structures (Figure 4b), along with the corresponding pocket

residues below the lid, conserved both in identity and spatial

position (Table 1; Figure 4b). Only the two residues Leu167 and

Tyr171 in GBSSrtC1 presented by the b6/b7 loop are variable in

identity, hydrophobic character or spatial conservation among

pilus-specific sortases. A similar trend in the conservation of the

hydrophobic pocket residues and the HB-lid residue was also

observed for the Actinomyces oris sortase C1 (AORSrtC1) [51]

(Table 1, Figure 4c). Interestingly, the conformation of the

AORSrtC1 lid is most similar to the SPNSrtC2 lid; the hinge

Figure 1. The topology and secondary structural elements of GBS Sortase C1. (a) The helices are represented as blue cylinders, b-strands as
arrows in pink color and loops as lines in black color (b) Individual GBSSrtC1 is made of an eight-stranded beta-barrel fold and the interface of the
dimer present in the asymmetric unit, is formed by the b6 strands. The N- and the C- termini are marked. Helices H1 and H2 flanking the barrel core lie
on the opposite sides of the dimer interface. The catalytic residues (C184, R193 and H122) are shown in sticks and the lid region is shown in yellow.
doi:10.1371/journal.pone.0022995.g001
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between the lid anchor and the b1 strand that has been observed

to form a helix in AORSrtC1 was disordered in SPNSrtC2. The

HB-lid residue in AORSrtC1 is Ile127, spatially analogous to the

SPNSrtC2 Ile84.

A few residues of the hinge regions at both ends of the lid in all

of the GBSSrtC1 monomers were disordered, compared to the

fully observed hinge regions in SPNSrtC1, SPNSrtC3 and, to

some extent, in SPNSrtC2. Although the lids of the pilus-specific

sortases exhibit high temperature factors, remarkably, the

observed minimal parts of the ‘lid to b1 strand’ hinge in

GBSSrtC1 followed a conformation that was essentially similar

to that observed for SPNSrtC1–C3 (Figure 5b). Minor variations

in lid conformations, as observed between the four GBSSrtC1

molecules, also have been found to occur between SPNSrtC1–C3

crystal structures.

The three catalytic residues Cys184, His122 and Arg193 of

GBSSrtC1 and the corresponding residues of SPNSrtC1 (chain A)

displayed similar spatial arrangements [43]; Cys184 and Arg193

were present on the b7 and b8 strands, respectively, whereas

His122 was on a loop extending from the b4 strand. Cys184 in the

GBSSrtC1 monomers displayed a single conformation with its

sulfhydryl pointing toward Arg193, which adopted a similar

conformation in all of the monomers due to salt-bridge

interactions with Asp49 of the lid DP(W/F/Y) motif. Arg193 also

formed a weak hydrogen bond with the backbone carbonyl of

Asn190, except in the type II chain A structure.

Crystal Structure of GBSSrtC1-lid Mutant (GBSSrtC1-lidM)
Crystal structures of a number of the pilus-specific C type

sortases have been reported thus far [43,47,51]; however, no

Figure 2. Similarities between of GBS SrtC1 and SPN SrtC1 (PDB code- 2W1J). (a) In the primary sequence alignment achieved by
secondary structural element superposition, the conserved DP(Y/W) motif is highlighted in red, and identical residues in pink color. The secondary
structural elements in GBSSrtC1are presented as red boxes for b-strands and blue for helices and loops as black lines and depicted below the
sequence. (b) The backbone superposition of GBSSrtC1 (cyan) and SPNSrtC1 (magenta) is shown and the corresponding catalytic residues are
depicted as sticks and labeled accordingly.
doi:10.1371/journal.pone.0022995.g002
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structures are available for their substrate complexes. Our

attempts to co-crystallize pilin sorting-motif peptides (of different

lengths) with GBSSrtC1 were unsuccessful. Because the DP(W/F/

Y) motif anchors the lid in all of the putative active sites of

GBSSrtC1 monomers, we reasoned that the substitution of the

‘KDPYS’ region with IPNTG, the sorting motif of the shaft pilin,

GBS80, may present us a view of the substrate-bound active site.

Our previous experience with an active SASrtA suggested that, in

the absence of the second substrate, the sorting peptide undergoes

slow hydrolysis when soaked into crystals. Therefore, we generated

a Cys184Ala mutant of GBSSrtC1, containing the lid mutation

(KDPYS to IPNTG), and used this mutant for crystallization.

The association of the two GBSSrtC1-lidM monomers observed

in the triclinic unit cell, related by a non-crystallographic 2-fold

axis, is identical to that observed for the type II and III GBSSrtC1

dimer association. The two monomers of GBSSrtC1-lidM, with an

rmsd of 0.63 Å over 164 atoms, display differences around the

active site region. Molecule A showed a continuous electron

density for the hinge region between H2 and the lid, and this

formed an extra helical turn. In chain B, residues 39–43 of this

hinge remained disordered. The position of the next ordered

residue, Tyr44, differed considerably between the monomers and

may be due to the flexibility of this region.

Both GBSSrtC1-lidM monomers lacked electron density for the

introduced ‘IPNTG’ motif. The lid in both chains was visible up to

Leu47, which points inwards into the hydrophobic pocket,

positioned precisely as in GBSSrtC1 structures (Figure 5a). The

average overall temperature factors of monomers A and B were

40.55 and 48.48 Å2, respectively. The B factors of the consecutive

residues in the lid region increased sequentially, with higher values

for the respective B chain residues, but with considerably lower

values for Leu47 of both monomers. The low B factors for Leu47

Figure 3. The putative active site of GBSSrtC1 with the protecting ‘lid’ (a). Residues 44–55 are seen positioned in the putative binding
pocket close to the catalytic residues in one of the molecules of the GBSSrtC1 Type II dimer. Tyr51, Asp49 and Leu47 residues anchor the lid in
position. (b) A Stereo view of GBSSrtC1 monomer in surface representation shows an elongated putative active site groove and the ‘lid’ (yellow,
sticks) seen occupying the length of the groove. Catalytic residues Cys184 (red), His122 (magenta) and Arg193 (blue) are marked.
doi:10.1371/journal.pone.0022995.g003
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in GBSSrtC1-lidM and its surrounding hydrophobic environment

may suggest that the spatial disposition of Leu47 acts as an anchor

to the lid.

The disposition of Ala184 and the catalytic His122 and Arg193

remained unaffected in the absence of the DP(W/F/Y) motif;

however, the orientation of Arg193 side chain was slightly different

from that seen in the GBSSrtC1 structures.

Crystal Structure of GBSSrtA
The crystallized GBSSrtA is a truncated recombinant, lacking

81 and 9 residues at the N- and C-termini, respectively. The

crystals belonging to the C2 space group diffracted weakly to

2.9 Å. Useful data were processed and scaled up to 3.1 Å

(Rmerge = 11%). Despite the poor data quality, the initial electron

density map calculated using MR-SAD phases to 3.2 Å was of

good quality, suitable for chain tracing and had distinct density for

the residue side chains. The quality of the map was further

improved by bulk-solvent correction in addition to anisotropic

scaling [52], non-crystallographic symmetry averaging and,

subsequently, by iterative cycles of restrained refinement and

model building.

The 18 GBSSrtA molecules in the asymmetric subunit are

packed into three hexamers, X (X1, X2, ..X6), Y (Y1, Y2,…Y6)

and Z (Z1, Z2,..Z6) (Figure 6a). X and Y are related to one

another by a non-crystallographic 2-fold axis, resulting in a donut-

like multimer; and Z formed another such multimer with a

symmetry-related hexamer. The molecules in X and Y are

arranged in clockwise and counter-clockwise directions, respec-

tively, with X1 juxtaposed against Y6 related by a non-

crystallographic 2-fold axis. The residue numbering scheme we

followed is as follows: residue numbers for six individual

monomers in X hexamer are incremented by 1000; thus C1184

of X1, C2184 of X2, C3184 of X3,……C6184 of X6 are

equivalent. Similar 1000 increments are done for residue numbers

of the six monomers in Y and Z hexamers, respectively.

All 18 molecules display a similar sortase fold; however, the b7

and b6 strands in some monomers are much longer (e.g. in X3,

X6, Y2, Y4 etc.) than in others such as Z2 and Z5. Three short

helices, one each between b1/b2, b2/b3 and b4/b5 strands,

observed in most of the monomers, are absent in few monomers

such as X3 and Y1.

The 18 GBSSrtA monomers in the asymmetric unit are held

together by an elaborate network of zinc ions (Figure 6a): 36 of

them are localized at dimeric interfaces. The inter-hexameric

dimer interface (e.g., X1 and Y6) is formed by the b6 strand, the

b6/b7 loop, the termini and the zinc sites coordinated to Glu158

from one molecule and Glu168 and His196 from the other.

Hence, the two juxtaposed monomers (e.g., X1 and Y6) are held

together by non-crystallographic 2-fold interactions. Six such pairs

of molecules were held in place by Zn ions between adjacent

monomers (i.e., X1 and X2 or X6 and X1) of the same hexamer

(Figure 6b). The second, intra-hexameric coordination site (i.e.,

X1 and X2) consisted of the catalytic His118 of X1 and His136 of

X2; His136 of X1 formed similar coordination with His118 of X6.

These sites resemble the protein-interface coordination sites found

in many zinc-binding proteins [53,54]. Extensive crystallization

trials in the presence of EDTA, conducted on a number of

GBSSrtA constructs, failed to yield diffraction-quality crystals,

which we obtained only with the present recombinant enzyme

using zinc salts (i.e., Zn [SO4]2 or Zn [O2CCH3]2) in the reservoir

solution.

The loops protruding into the central cavity of the donut-shaped

multimer are typically different between the monomers. The

putative active site groove of SASrtA is equally wide on either end,

whereas the long, inwardly bent b7/b8 loop blocked the groove at

the catalytic end. In sharp contrast, the b7/b8 loop of GBSSrtA,

fully defined except in molecules X2–5, Y3–4, Y6, Z1 and Z6, is

much shorter and in an ‘‘open’’ conformation. With an equally

wide active site, the catalytic Cys184 and Arg192 of GBSSrtA

reside at the edges of the anti-parallel b7 and b8 strands,

respectively (Figure 7a). The Cys184 sulfhydryl in all of the

monomers is pointing away from His118, hence, the distance

between them is greater than 3.8 Å. However, unlike for SASrtA,

His118 is present on a loop at the C-terminal end of the b4 strand

and as a ligand for zinc coordination it showed a near-identical

disposition in all of the monomers, except in Y4, where it moved

closer toward the b7 strand that hosted Cys184. In X1, the Cys184

sulfhydryl oriented directly at Phe131 of X2, which is stacked

between its Pro187 and His118 aromatic rings. The backbone

carbonyl of His166 on the b6/b7 loop is hydrogen bonded with

the catalytic Arg192 side chain and stabilized the latter.

Interestingly, the imidazole ring of the H166 is stabilized by its

interactions with a Zn atom positioned between the hexamers.

The GBSSrtA Arg192 is spatially conserved in all of the

monomers, and has comparable disposition to Arg197 of SASrtA.

The overall architecture of GBSSrtA is closer to SPYSrtA, the

only other pilus-anchoring sortase (A type) crystal structure

available. A key difference is at the C-terminus beyond the b8

strand, which is 20 residues long, with two small helical segments,

and reached the backside of SPYSrtA active site. The absence of

such long C-terminus (as the derivative was only 9-residues long

and truncated for expression) resulted in a flexible b4/b5 loop for

GBSSrtA. Despite being part of the dimer interface, the position of

the GBSSrtA b6/b7 loop, which is proposed to dictate substrate

specificity for sortases [55] is identical to that in SPYSrtA. In both

the structures, the catalytic His resided at the N-terminal end of

the b4/b5 loop and the dispositions of side chains are almost

similar but slightly displaced due to its coordination with Zn in

GBSSrtA. Orientation of catalytic Cys side chain in GBSSrtA is

Table 1. The residues forming the hydrophobic pocket and
the hydrophobic lid anchor residue in the pilus-specific
sortases.

GBSSrtC1
SPNSrtC1
(2W1J)

SPNSrtC2
(3G66)

SPNSrtC3
(2W1K)

AORSrtC1
(2XWG)

Leu103 Leu112 Leu140 *Val125 Leu185

Val118 Val127 Val155 Val140 Val200

Leu167 *Phe176 *(Phe204) *(W189) *Thr249

Leu170 Leu179 *Val207 Leu192 Leu252

Leu182 Leu191 Leu219 *Ile204 *Ile264

Leu195 Leu204 Leu232 Leu217 Leu277

Ile162 Ile171 *Val199 Ile184 *Val244

Tyr171 *Leu180 *Leu208 ** *Arg253

Leu47 1Val55 1Ile84 1Ile72 1Ile127

The PDB codes for different structures are also given.
The lid anchor residues are given in bold.
*Identity of this residue is different from the corresponding residue in GBSSrtC1.
**This position is occupied by Glu193 and its side chain is spatially conserved
with Tyr171 side chain.
Residues in parentheses indicate that the residue does not occupy the same
spatial position as the structurally corresponding residue in GBSSrtC1.
1While the Ca’s of HB-lid residues do not coincide with Leu47 upon
superposition, the orientation and spatial position of the sidechains over the
hydrophobic pocket is conserved.

doi:10.1371/journal.pone.0022995.t001
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similar to that in SPYSrtA: both oriented away from the catalytic

His (Figure 7b). The catalytic Arg lay at the same place on the b8

strand in both GBSSrtA and SPYSrtA.

Comparison of GBSSrtA and GBSSrtC1 active sites
The beta-strands that formed the floor of the putative binding

pockets in GBSSrtA and GBSSrtC1 varied in length resulting in

slight differences in the disposition of the respective catalytic

residues. Hexamers X, Y and Z have an overall temperature factor

of 54.5, 62.6 and 52.1 Å2, respectively. Based on its lowest overall

Figure 4. The conserved hydrophobic pockets and the
covering ‘lid’ regions. (a) The GBSSrtC1 (Type II chain A) active site
(pale blue) has the lid (yellow) positioned over the hydrophobic pocket
of the putative active site. The residues comprising this pocket are
shown in sticks (GBSSrtC1 residues in cyan, labeled in black and
SPNSrtC1 residues and labels in magenta; the numbering of the
residues is according to the respective structures). A single conforma-
tion of SPN Leu191 is shown. The catalytic residues of GBSSrtC1 (sticks)
are also shown. (b) Stereo view of the putative active sites of GBSSrtC1
(cyan; lid in yellow), SPNSrtC1 (violet) and AORSrtC1 (orange) looking
down toward the hydrophobic pocket. The HB-lid in all three pilus-

specific sortases inserts into the hydrophobic pocket and is spatially
conserved. (c) The hydrophobic pocket residues of GBSSrtC1 (cyan) and
AORSrtC1 (orange) are highly conserved. The two positions corre-
sponding to Tyr171 and Leu167 of GBSSrtC1 are different in AORSrtC1
but spatially conserved. Also shown are the HB-lid residues of the two
enzymes.
doi:10.1371/journal.pone.0022995.g004

Figure 5. Comparison of GBSSrtC1 lid mutant with other pilus
specific sortase structures. (a) The two molecules of GBSSrtC1-lidM
(yellow and green) show differences in the hinge region but the
minimal parts of the lid are ordered till Leu47, as in the GBSSrtC1
structure (cyan). The lid region of the wt GBSSrtC1 structure is shown in
cyan. (b) Superposition of the lid and hinge regions of the GBSSrtC1
(cyan), GBSSrtC1-lidM (yellow), SPNSrtC1 (magenta), SPNSrtC2 (orange)
and SPNSrtC3 (green) structures in relation to the corresponding
catalytic residues in GBSSrtC1.
doi:10.1371/journal.pone.0022995.g005
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B value within the hexamer, ordered catalytic residues and positive

density for all residues, we selected molecule X2 of GBSSrtA for

comparison with the type II chain A molecule of GBSSrtC1. The

distance of Cys from Arg and His (residues C184, R192 and H118,

respectively in X2) is 4.9 Å each (the average over 18 molecules is

4.5 Å and 4.9 Å, respectively). The corresponding distances in the

GBSSrtC1 molecule (residues 184, 193 and 122, respectively) are

4.5 Å (the average over 4 molecules is 4.5 Å) and 7.9 Å (the

average for 4 molecules is 7.7 Å), respectively suggesting that

Cys184 in GBSSrtC1 is closer to the respective catalytic Arg

Figure 6. GBS housekeeping sortase SrtA crystal packing. (a) Two views of the 18 GBSSrtA molecules in the asymmetric unit. The three
hexameric rings X (green), Y (blue) and Z (pink) are shown, the X and Y hexamers formi a donut-like oligomer and the third Z hexamer forms another
such oligomer with a symmetry-mate (pale pink). The zinc atoms are shown as red spheres. (b) The inter-hexameric dimer of GBSSrtA: showing two
zinc coordination sites similar to those observed in zinc binding proteins. Each zinc ion is coordinated by two Glutamic residues donated by the two
neighbors and one Histidine residue. The catalytic residues in relation to the zinc coordination sites are identified.
doi:10.1371/journal.pone.0022995.g006

Streptococcus agalactiae Sortases

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e22995



residue, rather than His, compared to GBSSrtA. The directions of

the sulfhydryls are almost opposite to each other in the two

enzymes (Figure 8a). The Arg193 side chain is held in place by

Asp49 in the lid of GBSSrtC1, and Arg192 of GBSSrtA is held in

place by the main chain carbonyl of His166 from the b6/b7 loop.

The b7/8/4 strands and the b6/b7 and b3/b4 loops

contributed hydrophobic residues to the putative active sites.

Except for Val118 and Thr120 of the b4 strand in GBSSrtC1,

which are replaced with alanines in GBSSrtA, the hydrophobic

(mostly identical) and polar residues (similar in polarity) are

spatially conserved in both of the sortase active sites. Located on

the b3/b4 loops, Met101 and Leu103 in GBSSrtA and

GBSSrtC1, respectively, occupied the same place and equally

covered the hydrophobic residues of the active site. Interestingly,

the hydrophobic patch in GBSSrtC1, which formed the left side

wall of the putative S1 site and consisted of residues Pro164,

Leu167, Leu170, Tyr171, Val172 and Ile173 from the b6/b7

loop, is also conserved in GBSSrtA, where the contributing

residues are Pro164, His166, Val167, Val169 and Ile170

(Figure 8a). Therefore, the specificity determining the b6/b7 loop

on one side was spatially conserved in the two GBS sortases, and

the differences in the b3/b4 loop composition and conformation

resulted in a wider active site for GBSSrtA (Figure 8b). In

GBSSrtA, where a lid is absent, the N-terminus and part of the

b6/b7 loop of the neighboring molecules covered the putative

pocket to some extent.

Discussion

Since the characterization of the first sortase enzyme in 1999

and the discovery of pili in Gram-positive bacteria in recent years,

the sortase-mediated biogenesis of pili has been the subject of

much interest and investigation. According to the current model of

sortase-mediated pilus assembly, the pilus polymerization cata-

lyzed by a pilus-specific sortase is followed by cell wall anchoring

of pilus polymers by the housekeeping sortase [56]. The latter step

involves the insertion of a minor pilin at the pilus base, which is

then anchored to the cell wall and for both these steps the

housekeeping sortase is essential. Attempts to understand the

structural correlates that dictate the substrate specificities of

sortases responsible for pili biogenesis have resulted in the crystal

structures of a housekeeping sortase, SPYSrtA, from S. pyogenes

[42], three pilus-specific sortases from S. pneumoniae, SPNSrtC1–C3

[43,47], and more recently, an atypical, class B pilus-specific S.

pyogenes sortase C1 [57] and the Actinomyces oris sortase C1 [51].

To understand the molecular basis of pilin sorting and pilus

anchoring within a bacterial strain, we investigated the house-

keeping sortase, GBSSrtA, and a pilus-specific sortase, GBSSrtC1,

from the PI-1 pathogenicity island of S. agalactiae SAG 2603 V/R.

Either GBSSrtC1 or GBSSrtC2 of this GBS strain is capable of

polymerizing GBS80, the pilus shaft of the GBS PI-1 pili [18].

However, the incorporation of minor pilins, GBS52 and GBS104,

specifically requires GBSSrtC1 and GBSSrtC2, respectively.

GBS104 is the tip pilin [2], but the location of GBS52 is still not

clear, as it has not been detected by imaging techniques.

Interestingly, an ortholog of GBS52 in strain NEM316,

GBS1474, has been observed primarily at the base of the pilus

and also randomly along the pilus shaft [8,18]. It has been

suggested that the housekeeping sortase, SrtA, catalyzes the cell

wall anchoring of the PI-1 polymers via the pilus base, GBS52, in

the same manner that SrtA catalyzes the cell wall anchoring of the

PI-2 polymers via GBS150 [34]. We have previously characterized

the GBS80 and GBS52 crystal structures [58,59], the substrates

for the GBSSrtC1 and GBSSrtA enzymes and identified a pilin-

like motif (IYPKI) present at the junction of the N1 and N2

domains of GBS52, similar to the pilin motif (YPKN) of the major

pilin GBS80. This observation possibly suggests a conserved

secondary substrate binding site in the active site of GBSSrtC1

that can accommodate both pilins.

If the termination and anchoring of PI-1 pili require GBSSrtA

to present GBS52 and resolve the acylated complex of GBSSrtC1

and the GBS80 polymer, we suggest an interesting corollary that

GBSSrtA should exhibit cross-specificity with GBSSrtC1 in the

primary substrate-binding site for recognizing the GBS52 sorting

motif but differ in the second substrate-binding site, as its acyl-

enzyme intermediate is resolved by a yet unknown cell wall

peptidoglycan precursor. What then determines how the two

sortase enzymes selectively recognize their cognate substrates for

pilus assembly? In this report, we analyzed the crystal structures of

two enzymes that share some common features and substrates and

Figure 7. Comparison of GBSSrtA and other housekeeping
sortases. (a) Cartoon representation of GBSSrtA secondary structure;
the b-strands are depicted in yellow color, a-helices are in red and loops
are in green color. The side chains of catalytic residues Cys184, His118,
and Arg192 are represented as sticks. (b) Superposition of the GBSSrtA
(green), SPYSrtA (magenta) and SASrtA (orange) catalytic residues and
the surrounding contributing regions.
doi:10.1371/journal.pone.0022995.g007
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differ in several regions, which may contribute to their substrate

specificity and function.

A characteristic feature of the class C sortases is the presence of

a lid anchored by the DP(W/F/Y) motif in the putative active site,

close to the catalytic residues [43,47]. The enzyme destabilization

and decreased efficiency upon DP(W/F/Y) motif mutation in

SPNSrtC1 [48] revealed the need for the active site to be occupied

and covered. Confirming this hypothesis, a GBSSrtC1 recombi-

nant in which we truncated the entire lid (helix H1 to the b1

strand) remained unfolded (data not shown). The availability of

substrate and inhibitor complexes of sortases has been limited to

the SASrtA and SASrtB structures [39,40,60], which have helped

us to demarcate the enzyme active sites. Because the lid needs to

be displaced for active site accessibility and the substrate may have

a higher affinity than the lid, we generated the GBSSrtC1-lidM

recombinant in which we mutated Cys184 to Ala and the anchor

region (KDPYS) to IPNTG, the sorting signal motif of GBS80.

The disorder of the IPNTG residues in the GBSSrtC1-lidM

structure was attributed to the loss of specific hydrogen bonds.

Because the DP(W/F/Y) motif was dislodged by mutation, the

entire elongated groove was potentially available for binding;

however, the active site is empty around the catalytic residues.

This result underscores the possibility of additional interacting

components/partners or structural elements beyond the substrate-

sorting motif in dictating both specificity. The enzyme integrity

was not compromised in GBSSrtC1-lidM, because the hydropho-

bic pocket in the active site remained protected (discussed below).

Analysis of the residue distribution covered by the lid revealed

that the floor region and the walls of the putative active site of the

GBSSrtC1 were studded with hydrophobic residues. The pilus-

specific GBSSrtC1 and SPNSrtC1 enzymes showed remarkable

conservation of all but two of the residues in this hydrophobic

pocket (Figures 4a). In contrast, greater differences were observed

between SPNSrtC1 and SPNSrtC2/3. The SPNSrtC2 enzyme,

which shares functional redundancy with the SPNSrtC1 enzyme,

displayed comparatively fewer differences with SPNSrtC1 than

SPNSrtC3. A similar hydrophobic pocket and HB-lid residue

present in AORSrtC1 suggests that these structural elements are

conserved features of class C sortases (Table 1 and Figure 4a). An

exception to this is the SPYSrtC1 structure, which is an atypical

class B sortase that functions as a class C enzyme [57].

In the GBSSrtC1 and GBSSrtC1-lidM structures, Leu47 was

lodged between the b6/b7 loop (Leu167, Leu170 and Tyr171)

and the b3/b4 loop (Leu103) and inserted directly above the

Val118 and Leu182 present on the b4 and b7 strands,

respectively. Analogous to Leu47, Val55 and Ile84/Ile72 were

the HB-lid residues in SPNSrtC1 and SPNSrtC2/C3, respectively.

The HB-lid residues were one or two residues apart from the

Figure 8. Comparison of GBSSrtA and GBSSrtC1 structures. (a) The superposition of the GBSSrtA (green) and GBSSrtC1 (cyan) active sites
shows the respective catalytic and hydrophobic pocket residues. Corresponding residues in GBSSrtA shows a less conserved pattern of hydrophobic
residues between the housekeeping sortase and the pilus-specific sortase. (b) Stereo view of the surface representation of GBSSrtA shows a putative
active site groove, different from GBSSrtC1. The catalytic Cys184, His118 and Arg192 are colored yellow, magenta and blue, respectively.
doi:10.1371/journal.pone.0022995.g008
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anchor motif and adjacent to another hydrophobic residue on

either side that pointed away from the active site. Manzano et al.,

[43] have referred to similar hydrophobic interactions as being

essential for covering the TLXT region of the putative active site,

a motif conserved in all of the known sortases. Because the lid was

absent in the housekeeping sortases, we suggest that the mode of

active site accessibility is different, despite the overall hydrophobic

nature of the sortase active sites.

Remarkably identical in both the molecules of the dimer, the

SPNSrtC1 lid was snugly threaded in the active site by specific

polar interactions. SPNSrtC2 and AORSrtC1 lids have similar

conformations, with an ordered hinge region located at the N-

terminus of the anchor motif. The GBSSrtC1 lid was character-

istically longer and highly flexible around the hinge regions on

either end. Despite such differences, lid displacement in general is

a two-fold problem, which requires lid anchor displacement and

the concomitant protection of the hydrophobic pocket. The

energetics involved for lid displacement might be offset by the

gains in the enzyme reaction. The differences between the active

site and lid residues may explain the substrate specificities between

the enzymes, as reflected by the abrogation of RrgB polymeriza-

tion that has been observed upon swapping the SPNSrtC1 and

SrtC2 lid regions [48]. The differences in the hinge regions of pilus

specific sortases between pathogens may have a bearing on the

mechanism of lid displacement employed by different species.

However, investigations are needed to delineate the regions in the

substrate beyond the sorting motif that may have bearing on

recognition by the enzyme.

Both GBSSrtA with SPYSrtA (PDB 3FN7), having an rmsd of

0.89 Å for 98 Ca atoms, suggests noticeable structural differences

that extend beyond the barrel core. Interestingly, both GBSSrtA

and SPYSrtA exhibited a well-defined and spatially conserved b6/

b7 loop, with minor positional differences due to the Zn

coordination in GBSSrtA. In addition to the b3/b4 loop, the

active site hydrophobic residues in both structures was also

spatially conserved (Table 2), and each hosted a Met residue

protruding into the active site hydrophobic patch.

The catalytic residue arrangement in sortases is novel and

unique. Site-directed mutagenesis studies in SASrtA have

confirmed the role of Arg and His as catalytic partners for

Cys184, and the significance of these residues in sortase-catalyzed

pili biogenesis of S. pneumoniae has also been reported. However,

due to the perceived difficulties of a partnership of Cys with His at

a physiological pH (pKa = 9.4 and 7.0, respectively in SASrtA) and

the catalytically unfeasible distance between His and Cys

(d = 4.84 Å, averaged over three chains for SASrtA) obtained

from the crystal structures, there is no single catalytic mechanism

for SASrtA that satisfies all of the kinetic and structural findings.

The proposed need for Ca2+ to stimulate SASrtA enzyme activity

is different from the effect of Ca2+ on the enzyme activity of

SPYSrtA [42,61], suggesting no universal requirement.

We need to understand the differences between the enzymatic

mechanisms of housekeeping and pilus-specific sortases for

selective inhibition of specific functions in pili biogenesis. The

demarcation of the primary and secondary substrate binding sites

is not available, even for SASrtA, in which the conformations of

some of the loops (if not all) implicated in calcium and substrate

binding are different between the X-ray and NMR structures.

These differences have been attributed to crystal and molecular

packing constraints in the X-ray structures and to unusual

covalently bound substrate mimics used in the NMR investiga-

tions. However, crystal structures of the enzyme-substrate complex

are essential for structure-based design efforts and to demarcate

the structural correlates responsible for both substrate specificity

and enzyme efficiency.

Materials and Methods

Cloning, Expression, Purification and Crystallization
GBSSrtA and GBSSrtC1. The expression, purification and

crystallization of GBSSrtA and GBSSrtC1 from strain SAG 2603

V/R have been described previously [49].

Mutant of GBSSrtC1 (GBSSrtC1-lidM). To generate the

SrtC1 mutation, C225A, the primers VR-SrtB-C225A-5 (59-

cacgtcaccctattaactgccacaccttatatgataaat-39) and VR-SrtB-C225A-

3 (59- atttatcatataaggtgtggcagttaatagggtgacgtg-39) were used for

PCR-based site-directed mutagenesis, as described previously

[56] with pSrtC1S43-Q260 as the template. KDPYS-IPNTG

mutations were generated in a similar manner, using primers VR-

SrtB-KDPYS-5 (59-ggcgaatatccagcgcttatccctaatactggtgctgaacaaa-

agcaggca-39) and VR-SrtB-KDPYS-3 (59-tgcctgcttttgttcagcaccagt-

attagggataagcgctggatattcgcc-39).

The GBSSrtC1 lid-mutant plasmid was transformed into

M15 [pREP4] cells for expression. Luria-Bertani (LB) broth

supplemented with ampicillin (100 mg ml21) and kanamycin

(25 mg ml21) was used to grow bacteria with shaking at 37uC,

until the OD600 reached 0.7–0.8. Protein expression was induced

by adding 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG),

and the cells were grown for 20–22 hours. The cells were

harvested by centrifugation at 25686 g for 15 minutes (min) at

4uC. The pellet was re-suspended in 20 mM sodium phosphate

(pH 7.4) / 500 mM NaCl. The cell lysate, obtained by sonication,

was then centrifuged at 483846 g for 30–40 min at 277 K. The

protocol used for purification of the lid-mutant was similar to that

described for the native protein [49]. Purified protein was dialyzed

into 50 mM Tris/100–150 mM NaCl (pH 7.4) and concentrated

to approximately 5.2 mg/ml (e= 14,900 M21 cm21, as deter-

mined from the www.expasy.org website). The GBSSrtC1-lidM

was crystallized using the hanging drop vapor diffusion method at

4uC with 1 ml of the protein mixed with 1 ml of the reservoir

solution and equilibrated against 1 ml of 10% (w/v) PEG

monomethyl ether 2000 and 100 mM MES (pH 6.4).

Se-Met GBSSrtA. The seleno-methionine incorporated

GBSSrtA was expressed using the M9 SeMET High-Yield

growth media kit (Medicilon) following the manufacturer’s

instructions. The cells were harvested by centrifugation at

25686 g for 20 min, re-suspended in lysis buffer (50 mM Tris

Table 2. The hydrophobic residues in the active sites of
GBSSrtC1 and the housekeeping sortases.

GBS SrtA
SA SrtA
(1T2P)

SPY SrtA
(3FN7) GBS SrtC1

(Met101) (Ala104) (Met125) Leu103

(Ala114) Ser116 (Ser138) Val118

(Thr167) - Val191 Leu167

(Ile170) (Val168) (Ile194) Leu170

1(Val182) Ile182 Val206 Leu182

Ile194 Ile199 Ile218 Leu195

(Val162) Pro163 Val186 Ile162

(Asp171) (Leu169) Asp195 Tyr171

Residues in parentheses indicate that the residue does not occupy the same
spatial position as the structurally corresponding residue in GBSSrtC1.
1Sidechain conformations are conserved but not the Ca position.
doi:10.1371/journal.pone.0022995.t002
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pH 7.4, 300 mM NaCl, 0.1 mM phenylmethylsulfonyl fluoride,

and 5 mM b-mercaptoethanol) and lysed using a sonicator. After

removing the debris by centrifugation at 483846 g for 30 min at

4uC, the supernatant was loaded onto a Ni-NTA column pre-

equilibrated with the lysis buffer. The column was washed with

buffer A (50 mM Tris pH 7.5, 100 mM NaCl, and 5 mM b-

mercaptoethanol). The protein was eluted with 50 mM Tris

pH 7.5, 100 mM NaCl and 300 mM imidazole. The His tag was

cleaved, and the protein (in 20 mM HEPES pH 7.2, 100 mM

NaCl and 5 mM b-mercaptoethanol) was concentrated to

Table 3. Refinement Statistics for the GBSSrtC1 and GBSSrtA structures.

Type II SrtC1 Type III SrtC1 GBSSrtC1-lidM GBSSrtA

PDB code 3RBK 3RBI 3RBJ 3RCC

Resolution range (Å) 63.6-2.9 65.2-3.0 25.0-2.5 136.9-3.1

Reflections used in refinement 14102 11452 16668 65303

Number of non-H protein atoms 2954 3054 3023 17810

Rwork (%) 24.8 24.2 24.7 23.2

Rfree (%) 28.2 30.1 30.4 29.9

Mean B values (Å2) 42.8 52.3 44.8 56.6

Type (and number) of ligands/ions SO4(3) SO4(6) - Zn (73)

B factor ligand/ion 60.8 98.11 - 61.2

B factor water 30.7 38.6 35.3 19.1

R.m.s.d in bond lengths (Å) 0.022 0.017 0.018 0.015

R.m.s.d. in bond angles (u) 1.93 1.72 1.73 1.58

Number of residues in allowed region (%) 95.3 93.3 94.8 92.3

Number of residues in disallowed region (%) 0.0 1.0 0.0 0.5

doi:10.1371/journal.pone.0022995.t003

Table 4. Data collection statistics for Se-Met GBSSrtA and the lid-mutant of GBSSrtC1.

GBS Sortase Sortase A Sortase C1

Crystal SeMet Derivative GBSSrtC1-lidM

No of crystals 1 1

Beamline NE-CAT 24ID R-AXIS IV generator

Wavelength (Å) 0.9792 1.541

Detector ADSC 315 CCD R-AXIS Image Plate

Crystal to Detector distance (mm) 399.18 150

Rotation range per image (u) 1 1

Total rotation range (u) 0–360 0–360

Exposure time per image (s) 10 300

Resolution range (Å) 50-3.1 (3.2-3.1) 38.55-2.3 (2.38-2.3)

Space group C2 P1

Unit cell parameters (Å/u) 238.8, 167.8, 97.9; 90, 94.2, 90 43.5, 49.4, 52.7; 87.9, 70.5, 89.4

Mosaicity (u) 3.86 1.16

Total number of measured reflections 593518 (58553) 68884 (6667)

Unique reflections 136005 (13617) 17654 (1707)

Redundancy 4.4 (4.3) 3.9 (3.9)

Mean I/s(I) 13.6 (1.9) 12.2 (2.9)

Completeness (%) 100 (100) 96.3 (93.9)

x2 1.59 (1.16) 1.00 (1.32)

Rmerge (%) 13.6 (78.5) 5.2 (40.2)

Number of molecules in asymmetric subunit 18 2

Rmerge =Shkl Si I Ii (hkl)2ÆI (hkl)æI/ Shkl Si Ii (hkl), where Ii(hkl) are the intensities of symmetry-related reflections and ÆI(hkl)æ is the average intensity over all observations.
doi:10.1371/journal.pone.0022995.t004
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38 mg/ml and crystallized using previously determined

conditions [49].

Data collection, structure determination and model
refinement

GBSSrtC1 (Type II and III) and GBSSrtC1-lidM. Diffraction

data on the GBSSrtC1 type II and III crystals (space group P212121

and P312, respectively) were collected at the SER-CAT 22ID beamline

at Advanced Photon Source (APS), Argonne National Laboratories

(ANL), Chicago and processed with HKL 2000 software [62]. Details

describing the diffraction data collection, processing and scaling

statistics for type II and type III crystals, respectively were reported

earlier [49]. Diffraction data on the GBSSrtC1-lidM crystals in space

group P1 were collected in-house using a RIGAKU (100 mA and

50 kV) generator and R-AXIS IV image plates and processed with

HKL 2000. Scaled amplitudes were corrected for anisotropic

diffraction distribution using SFCHECK in CCP4. The crystal

structure of SPNSrtC1 (PDB code 2W1J; sequence identity with

GBSSrtC1 = 56%) was used as the search model for the structure

determination of GBSSrtC1 (type II) by molecular replacement

methods using MOLREP [63]. COOT graphics software was used for

model building [64], and the refinement was performed using CNS

[65] and REFMAC [66]. The crystal structures of GBSSrtC1 type III

and the lid-mutant were determined by molecular replacement

methods using GBSSrtC1 type II structure as the starting model,

and the model building and refinement were completed as described

above. The refinement statistics for all three models are presented in

Table 3.
GBSSrtA82–238. The GBSSrtA crystals belong to the C2 space

group with 18 molecules in the asymmetric subunit. GBSSrtA

shares a sequence identity of 65% and 34% with SPYSrtA and

SASrtA, respectively; however, molecular replacement efforts were

unsuccessful. The 157-residue GBSSrtA contains four methionine

residues; therefore, the seleno-methionine single-wavelength

anomalous dispersion (SAD) method was chosen for phase

determination. The crystals of Se-Met GBSSrtA diffracted to

2.9 Å resolution at the NE-CAT 24ID beamline (l= 0.9792 Å)

(Table 4). Diffraction data suffered from significant anisotropy and

scaled amplitudes were corrected for anisotropic diffraction

distribution using SFCHECK in CCP4. Anomalous maps,

generated using SHELX-D [67], revealed a positive electron

density for three to four heavy atom sites per molecule. The top

fifty selenium sites with peak heights greater than 9 s were selected

for refinement and phasing. The PHASER [68] program was used

for MR-SAD phasing, using the poly-Ala beta-barrel core of

SPYSrtA (residues 72-203, GBS sortase numbering) for the MR.

Phase combination, solvent flattening and density modification

using the DM program of the CCP4 suite [69,70] helped in

generating the electron density maps suitable for tracing all of the

18 molecules, whose models were built with COOT [64]. In the

final cycles of refinement, both TLS and restrained refinement

were used in REFMAC [66]. We set aside 3.0% randomly selected

reflections for the test set during the refinement and the structure

was refined to an Rwork of 23% and Rfree of 29% (Table 3) using

NCS restrains.
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