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Abstract

Motivation: Large gene networks can be dense and difficult to interpret in a biologically meaningful way.

Results: Here, we introduce PAFway, which estimates pairwise associations between functional annotations in bio-
logical networks and pathways. It answers the biological question: do genes that have a specific function tend to
regulate genes that have a different specific function? The results can be visualized as a heatmap or a network of bio-
logical functions. We apply this package to reveal associations between functional annotations in an Arabidopsis
thaliana gene network.

Availability and implementation: PAFway is submitted to CRAN. Currently available here: https://github.com/ezer/
PAFway.

Contact: daphne.ezer@york.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological networks can be very large, dense and difficult to visual-
ize and interpret. PAFway is a tool to interpret large, dense biologic-
al networks in the context of functional annotations, such as gene
ontology (GO). Some methods that analyse GO enrichment within
networks, such as BiNGO (Maere et al., 2005), operate by partition-
ing the network into clusters and then finding functional enrichment
within each cluster.

Another family of methods, called topological network enrich-
ment methods, utilize the structure of the network to find GO terms
that are enriched in a network or sub-network (Mitrea et al., 2013).
The output of these algorithms is generally a ranked list of annota-
tions, ordered by how much they are enriched in the network.

In contrast, PAFway finds pairwise associations of functional
annotations in biological networks and pathways, which is calcu-
lated efficiently using the Fast Fourier Transform (FFT). The results
can be illustrated either in the form of a heat map or as a network
where the nodes in the graph are functional annotations. We apply
this method to AraNet (Lee et al., 2015), a gene network for
Arabidopsis thaliana.

2 Materials and methods

The PAFway function takes as input a directed network, with or
without edge weights, and a list all of the functional annotations
associated with each node. We refer to each edge type as an ordered

pair of functional annotations, representing the scenario where a

gene with the first functional annotation regulates a gene with the
second functional annotation. The output of PAFway is the prob-

ability of observing at least the observed number (or sum of edge
weights) of each edge type, under a null model in which the func-
tional annotations are randomly distributed in the network (after

correcting for multiple hypothesis testing).

2.1 P-value of edge counts
Let us say that the relative frequency of the first functional annota-
tion in the network is pa and the second is pb. The probability of
observing an edge between annotations a and b is pa;b ¼ papb if they

are randomly distributed in the network. The probability of observ-
ing n edges between the first and second functional annotations in a

network with N edges is determined by a binomial distribution:

n � BðN; pa;bÞ (1)

This means that it is possible to determine the probability of

observing at least n edges of a certain type by using the binomial
test.

2.2 P-value of sum of edge weights
When a gene network contains edge weights, we calculate the sum
of the edge weights of each edge type, to interrogate whether this

value is higher than would be expected by chance. For two
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functional annotations a and b, let us define za;b as the sum of the
edge weights of edge type (a, b) in the network. Let us say that ca;b is
the count of the number of edges of that type. Pðca;b ¼ iÞ is the prob-
ability of observing exactly i edges of type (a, b) and Pðx �
za;bjca;b ¼ iÞ is the probability of observing a sum of edge weights
greater than za:b given that ca;b ¼ i. The probability of observing at
least za;b is:

Pðx � za;bÞ ¼
XN

i¼1

Pðca;b ¼ iÞPðx � za;bjca;b ¼ iÞ (2)

where N is the number of edges in the network. Note that, Pðx �
za;bÞ is the P-value. From the previous section, we see that Pðca;b ¼
iÞ is the probability density function (pdf) of the binomial distribu-
tion BðN; pa;bÞ. Pðx � za;bjca;b ¼ iÞ can be determined by a set of re-
cursive functions described in Supplementary Section S1.1. These
functions are convolutions and so can be expressed in terms of
Fourier transforms and calculated efficiently using the FFT (see
Supplementary Section S1.2).

3 Results

PAFway produces a network of functional annotations, which
can be depicted as a network (Fig. 1A and B) or a heatmap
(Fig. 1C). This is shown for AraNet, a gene network for

Arabidopsis thaliana (containing some co-expression-based
edges) (Supplementary Section S2.1). We are not aware of any
other tool for performing this precise task, but there are alterna-
tive packages that perform other kinds of complementary analy-
ses of GO terms.

First, we compare the results of PAFway to a pairwise associ-
ation score similar to the one proposed by Chitale et al. (2011) and
Yerneni et al. (2018). Our method produces results that are consist-
ent with this score, but with the added benefit of providing a P-value
(Supplementary Section S2.2).

Next, we compare our results to those produced by NaviGO
(Wei et al., 2017), a tool that allows the user to calculate the similar-
ity between pairs of GO terms, based on either semantic similarity
(Lin, 1998; Resnik, 1999; Schlicker et al., 2006) or how often they
appear together in gene annotations (Chitale et al., 2011), the scien-
tific literature (Chitale et al., 2011) and in physically interacting pro-
teins (Yerneni et al., 2018). We find that the strength of the
correlation between our P-values and these metrics varies quite sub-
stantially based on whether edge weight information is incorporated
in the model (Supplementary Section S2.3).

Finally, we cluster the AraNet network into communities, and
visualize the GO terms within each community with both BiNGO
(Maere et al., 2005) and PAFway. We suggest that BiNGO can be
used to help identify GO terms of interest whose relationships with-
in the network could be further analysed with PAFway
(Supplementary Section S2.4).

In conclusion, PAFway provides information that is complemen-
tary to these alternative methods, providing an innovative way to
improve our understanding of large biological networks.
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Fig. 1. PAFway is applied to the AraNet gene network of Arabidopsis thaliana, ei-

ther including (A) or ignoring (B) edge weights. Only edges with P-values < 0.05

are depicted. The network can also be represented as a heatmap (C), in this case

depicting the same network as the one shown in (A)
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