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Abstract

Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences.
Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin
with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and
biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal
impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate
of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of
intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator
surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be
modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended
to other pore forming proteins.
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Introduction

Pore-forming toxins (PFTs) comprise the largest category of

bacterial virulence factors [1]. One of the better studied examples

is aerolysin secreted by Aeromonas hydrophila [2]. Aerolysin forms

a homo-heptameric pore that spans the plasma membrane of the

target cell [3] [4], leading to depletion of small ions [5] [6] [7],

rapid loss of ATP, and ultimately cell death [8].

Aerolysin is secreted as an inactive monomeric precursor,

proaerolysin, comprising a 43-residue C-terminal peptide (CP) [9]

(Fig. 1A). The CP has chaperone features and appears to be

required in the course of synthesis to properly fold proaerolysin

into its soluble form. It not only prevents aggregation but also

impedes premature pore formation by controlling the onset of

heptamerization [10]. Proaerolysin is known to bind to N-

glycosylated glycosylphosphatidylinositol (GPI)-anchored proteins

at the target cell surface [11] [12]. Not only is the glycan important

for binding but also the polypeptide to which it is attached [13].

Maturation of proaerolysin to aerolysin involves proteolytic

cleavage in a flexible loop that precedes the C-terminal peptide.

Furin is thought to play a major role in this process, but other

proteases at the plasma membrane may participate as well [14]

[15]. Following cleavage, monomers oligomerize to form a

prepore complex on the cell surface [16], a step that requires

release of the C-terminal peptide [17]. Removal of the C-terminal

peptide induces the transition from prepore to the pore complex.

The aerolysin heptamer undergoes a drastic concerted conforma-

tional change of the extramembranous region, accompanied by a

vertical collapse of the complex, which ultimately leads to the

insertion of a water-filled transmembrane beta-barrel into the lipid

bilayer [17]. The CP is not part of the functional pore, as inferred

from tryptophan fluorescence and energy transfer measurements

[18]. Its fate after separation from the heptamer is unknown.

Insights into the mechanism of aerolysin intoxication have been

obtained without the possibility of labeling discrete domains of the

toxin at will. Being able to do so might allow a more detailed

examination of the role and fate of each of the specific domains. It

is still unclear which domains of aerolysin bind to the proteina-

ceous moieties of its receptors. Chemical labeling of exposed Lys

or Cys residues usually results in a heterogeneous population of

labeled proteins, making it impossible to accurately assess the

identity of the molecular species responsible for activity. To

overcome this technical challenge, we explore sortase-based site-

specific chemoenzymatic labeling [19–21]. This allows us to

investigate the fate of individual N- and C-terminal domains, while

preserving toxin activity. Attachment of a single fluorophore at the

very C-terminus of the C-terminal peptide makes it possible to

directly visualize this chaperone’s departure during aerolysin

intoxication. Attachment of a single biotin group at the N-

terminus of aerolysin enables us to identify novel cell surface

receptors.
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Materials and Methods

Antibodies, cell lines, constructs
Antibodies against CD59 (sc-28805) and mesothelin (sc-50427)

were purchased from Santa Cruz Biotechnology. HRP-coupled

secondary anti-rabbit antibody was from BD Biosciences. HeLa

cells were purchased from American Type Culture Collection and

cultured in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% Fetal Bovine Serum (FBS). KBM7 cells

were a kind gift from the T. R. Brummelkamp lab, and were

described previously [22]. KBM7 cells were maintained in Iscove’s

Modified Dulbecco’s Medium (IMDM) supplemented with 10%

FBS. The wild type proaerolysin construct [23] was a generous gift

from F. G. van der Goot. Sortaggable variants were cloned by site-

directed mutagenesis using the QuikChange kit (Agilent Technol-

ogies) following the manufacturer’s instructions and using the

following primers: NAeL.CP (introduction of a single glycine at N-

terminus),

forward: 59-AGCCGGCGATGGCCGGTATGGCAGAGC-

CCGTC-39,

reverse: 59-GACGGGCTCTGCCATACCGGCCATCGCC-

GGCT-39; AeL.CPC (introduction of LPETGG at C-terminus),

Figure 1. Strategies for site-specific labeling of proaerolysin. A Structure of the proaerolysin monomer (PDB: 1PRE). Proaerolysin consists of
several different domains, two of which are responsible for receptor binding (domains 1 and 2), one containsing the trans-membrane domain, and
the C-terminal peptide (CP), which functions as a chaperone and dissociates from the rest of the complex upon heptamer association and pore
formation. B Sortase reaction mechanism. C-terminal sortagging: sortase cleaves after threonine in the context of its recognition motif resulting in the
formation of a new covalent bond with the N-terminus of an added oligoglycine or oligoalanine nucleophile coupled to a label of choice. N-terminal
sortagging: the N-terminal glycine of proaerolysin is recognized as a nucleophile by sortase and conjugated to an LPXTG/A probe bearing a label. C
Structures of probes used in this study. Not depicted is AAA.Alexa Fluor 647, which is similar to GGG.Alexa Fluor 647, but with alanine replacing
glycine. PelB: periplasm targeting sequence, cleaved off by the producer bacteria upon export of proaerolysin to the periplasm. H6: hexahistidine
handle for affinity purification. Protease cleavage sites are recognized by target cell surface proteases such as furin. CP: C-terminal peptide, serves as a
chaperone for proaerolysin. Upon its loss, proaerolysin is converted to mature aerolysin (AeL). D Scheme for wild type (WT) and sortaggable versions
of proaerolysin with their designations. The LPXTG/A pentapeptides are sortase recognition motifs.
doi:10.1371/journal.pone.0109883.g001
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forward: 59-GCGTGACCCCTGCTGCCAATCAACTAC-

CAGAGACCGGTGGACTCGAGCACCACCACCACCACC-

ACTGAGATCC-39,

reverse: 59-GGATCTCAGTGGTGGTGGTGGTGGTGCT-

CGAGTCCACCGGTCTCTGGTAGTTGATTGGCGCAGG-

GGTCACGC-39. NAeL.CPC, was built using the forward primer

59-AGCCGGCGATGGCCGGTATGGCAGAGCCCGTC-39,

and the reverse primer 39-GGATCTCAGTGGTGGTGG-

TGGTGGTGCTCGAGTCCACCGGTCTCTGGTAGTTGA-

TTGGCAGCAGGGGTCACGC-59 with a PCR on WT proaer-

olysin template using the Expand High Fidelity PCR system

(Roche Diagnostics). AeL.C (introduction of LPLTALPETA

motive upstream of the C-terminal peptide) was done in a two-

step-manner using QuikChange, according to the manufacturer’s

instructions:

59-AGATCGGTGCTCCCCTCCCGCTCACTGCTGACA-

GCAAGGGTG-39,

39-CACCTTGCTGTCAGCAGTGAGCGGGAGGGGAGC-

ACCGATCT-59;

59-TCCCCTCCCGCTCACTGCTCTCCCGGAGACTGC-

TGACAGCAAGGTGCGTCG-39,

39-CGACGCACCTTGCTGTCAGCAGTCTCCGGGAGA-

GCAGTGAGCGGGAGGGGA-59.

Expression and purification proaerolysin
Overnight cultures of E. coli BL21 (DE3) pLysS (Promega)

transformed with the various aerolysin constructs and grown at

30uC were diluted 1:50 with LB broth supplemented with 200 mg/

mL ampicillin plus 35 mg/mL chloramphenicol, and incubated at

37uC, shaking at 220 rpm, to an optical density of 0.5–0.6 at

600 nm. Expression of proaerolysin was induced with 1 mM

isopropyl-beta-D-1-thiogalactopyranoside (IPTG) (Sigma), and the

temperature was lowered to 26uC. After 4–5 hours, cells were

harvested and centrifuged at 60006g, 4uC for 20 min. Subsequent

steps were carried out at 4uC. Cell pellets were resuspended in

10 ml lysis buffer per 1 L expression culture: 50 mM Tris-HCl

pH 7.5, 300 mM NaCl, 0.5 mg/ml polymixin B (Sigma) supple-

mented with complete protease cocktail inhibitors (Roche) and

50 mg/ml phenylmethylsulfonyl fluoride (PMSF) (Sigma). The

suspension was agitated for 45 minutes at 4uC and centrifuged at

60006g for 30 min at 4uC. The supernatant was incubated at 4uC
with 0.25 ml bed volume NiNTA agarose (Qiagen) per 1 L

culture, overnight, with gentle rotation. The resin was washed with

20 column volumes of 50 mM Tris-HCl pH 7.5, 300 mM NaCl,

10 mM imidazole. The protein was eluted with 5 column volumes

50 mM Tris-HCl pH 7.5, 300 mM NaCl, 150 mM imidazole.

The fractions were subjected to buffer exchange to 50 mM Tris-

HCl pH 7.5, 300 mM NaCl, using a PD-10 desalting column (GE

Healthcare). 10% (v/v) glycerol was added to the protein

preparations, aliquots were snap-frozen, and stored at 280uC.

Protein concentration was determined by Bradford assay (Bio-Rad

Laboratories).

Toxicity assay
0.56105 KBM7 WT cells were incubated for 1 h at 37uC with

different concentrations of each of the aerolysin variants (as

indicated in the figures) in a total volume of 100 mL. Cells were

washed twice with cold PBS and resuspended in PBS containing

1 mg/mL propidium iodide and analyzed by flow cytometry. The

percentage of PI negative controls was set to 100%, and the 50%

lethal dosis (LC50) calculated in R. 0.001 was added to all

concentration values to avoid taking a log2 of 0.

Flow cytometry
Data acquisition was performed on a FACS Calibur HTS (BD

Biosciences) using the CellQuest Pro (BD Biosciences) software.

Data were analyzed with FlowJo (Tree Star Inc.).

Sortase expression, purification, immobilization. Sortase
expression, purification, immobilization

Sortase A (SortA) from Staphylococcus aureus (SrtAStaph) and

SortA from Streptococcus pyogenes (SrtAStrep) were expressed and

purified as described previously [21] [20]. Additionally we used a

heptamutant form of Sortase A from S. aureus (SrtAstaph7M),

which combined previously described mutations to give Ca2+

independence and increased activity [24] [25]. SrtA was

immobilized on cyanogen bromide activated sepharose beads

(Sigma) in a ratio of 1 g dry beads per 30 mg SrtAStaph or 40 mg

SrtAStaph7M. The beads were swelled in 50 mL of 1 mM HCl for

five washes of five minutes each at 4uC. After extensive washing

with ice-cold water the sortase was coupled to the beads in

100 mM NaHCO3 and 500 mM NaCl for 2 hrs at 25uC or O.N.

at 4uC (make sure the storage buffer of the SortA is exchanged as

Tris will react with the beads). Finally, the coupled beads were

washed and stored as a 50% bead slurry in 50 mM Tris (pH 7.4)

and 150 mM NaCl at 4uC. All washes/filtrations were done in a

plastic capped fritted column and the buffers were removed

between steps by vacuum filtration. For long-term storage more

than one week add 20% glycerol and store aliquots at 220uC.

Synthesis of sortase probes and sortase labeling
GGG.TAMRA, AAA.AF647, TAMRA.LPETGG and Bio-

tin.LPETGG were synthesized as described in [20] [21]. Soluble

sortase labeling reactions with SrtAstrep and SrtAstaph were

performed as described [19] [20] [21] [26]. The SrtAstaph7M has

increased activity and reactions took place at 4uC and with 20% of

sortase in relation to proaerolysin. Additionally, Ca2+ is no longer

needed in the coupling buffer. Sortase immobilized to cyanogen

bromide beads was filtered from the reaction solution. Otherwise

reaction conditions are the same as the soluble sortase.

Fluorescence image scan
Fluorescence scans were obtained using a variable mode imager

(Typhoon 9200; GE Healthcare).

SDS PAGE, Coomassie staining, and Immunoblot
SDS-PAGE was performed as described [27]. Gels were stained

with Coomassie Brilliant Blue R250 (Thermo Scientific) according

to the manufacturer’s instructions. Proteins were blotted onto

polyvinylidene difluoride (PVDF) membranes and probed with the

appropriate antibodies, followed by chemoluminescence detection

using Western Lightning ECL detection kit (Perkin Elmer Life

Sciences) and exposure to XAR-5 films (Kodak).

Fluorescence microscopy
HeLa cells grown on coverslips were washed with ice-cold

DMEM media and incubated on ice for 30 minutes with the

appropriate concentrations of labeled or unlabeled aerolysin (as

indicated in the figures). Cells were washed 3 times with ice-cold

PBS, fixed with 4% paraformaldehyde in PBS for 20 minutes at

room temperature to prevent activity of plasma membrane-

associated proteases that cleave off the C-terminal peptide, washed

with PBS, incubated for 1 minute in PBS containing 1 mg/mL

Hoechst stain, and mounted with glycerol on coverslips. Alterna-

tively, cells were shifted to 37uC after Hoechst staining. All images

were collected on a PerkinElmer Ultraview Multispectral Spinning

Sortase-Mediated Modification of Aerolysin
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Disk Confocal Microscope equipped with a Yokogawa CSU-22

spinning disk confocal on a Zeiss Axiovert 200 motorized inverted

microscope with Chroma 488/568/647 and 458/515/647 triple

dichroic mirrors and Prior emission filter wheel, Perkin Elmer

laser launch with 100 mW argon gas laser (488 nm, 514 nm),

100 mW krypton gas laser (568 nm), and 405 nm, 440 nm and

640 nm solid state lasers with AOTF for laser line selection/

attenuation and fiber-optic delivery system, a Zeiss 1.4 NA oil

immersion 63x objective lens and a Prior piezo-electric objective

focusing device for maintenance of focus. Images were acquired

with a Hamamatsu ORCA ER cooled CCD camera controlled

with Volocity software. Confocal images were collected using an

exposure time of 500 ms and 161 binning. For time-lapse

microscopy, laser power was set to 77% for the 100 mW krypton

gas laser (568 nm), and to 100% for the 640 nm 40 mW solid-state

laser. Number of frames: 1 per image. Acquisition frequency: 1

frame per 25 seconds. Brightness was adjusted on displayed images

(identically for compared image sets) using Fiji software.

Immunoprecipitation
, 107 HeLa cells per condition were incubated with 120 mg

BiotinAeL.CP or WT aerolysin for 30 min at 4uC, washed, scraped,

and lysed in buffer containing 0.5% (v/v) NP40, 10 mM Tris-HCl

pH 7.4, 150 mM NaCl, 5 mM MgCl2, supplemented with

complete protease cocktail inhibitors (Roche) and 50 mg/ml

phenylmethylsulfonyl fluoride (PMSF) (Sigma). Immunoprecipita-

tions were performed for 3 h at 4uC with rotation using 20 mL

neutravidin-sepharose beads (Thermo Scientific) per sample.

Samples were eluted by boiling in reducing sample buffer and

subjected to SDS-PAGE, followed by immunoblotting or mass

spectrometry.

Mass spectrometry
Bands were excised, reduced, alkylated and digested with

trypsin at 37C overnight. The resulting peptides were extracted,

concentrated and injected onto a Dionex RSLCnano HPLC

equipped with a self-packed Jupiter 3 mm C18 analytical column

(0.075 mm by 10 cm, Phenomenex). Peptides were eluted using

standard reverse-phase gradients. The effluent from the column

Figure 2. Impact of aerolysin modification on toxic activity. Aerolysin variants were titrated on KBM7 cells. 0.56105 cells per sample were
incubated with toxin for 1 hour at 37uC in a total volume of 100 mL, stained with propidium iodide (PI), and the PI negative percentage determined
by flow cytometry. The concentration range for the aerolysin variants ranged from 60 ng/mL to 4 pg/mL. Every condition was tested in triplicate. The
percentage of PI negative controls was set to 100%, and the 50% lethal dose (LC50) calculated in R. 0.001 was added to all concentration values to
avoid taking a log2 of 0.
doi:10.1371/journal.pone.0109883.g002
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was analyzed using a Thermo Orbitrap Elite mass spectrometer

(nanospray configuration) operated in a data dependent manner.

The resulting fragmentation spectra were correlated against the

known database using SEQUEST. Scaffold Q+S (Proteome

Software) was used to provide consensus reports for the identified

proteins.

Results

Strategies for site-specific labeling of proaerolysin
Sortases A (SrtA) recognize a pentapeptide motif specific to an

individual bacterial enzyme, e.g., LPXTG for SrtA from

Staphylococcus aureus (SrtAStaph) and LPXTA for SrtA from

Streptococcus pyogenes (SrtAStrep) (where X is any aminoacid). SrtA

cleaves the peptide bond between the threonine and glycine or

alanine, respectively, yielding a thioacyl intermediate, which is

then resolved by a nucleophilic attack of the N-terminus of an

oligoglycine- or oligoalanine-containing nucleophile (Fig. 1B).

This results in the formation of a new peptide bond [28] [26].

Because SrtAStaph and SrtAStrep enzymes are orthogonal to one

another it is possible to introduce two distinct labels into one and

the same protein or virus [29] [30] [31].

Hexa-histidine tags have been genetically installed at the C-

terminus of proaerolysin [23]. However, site-specific fluorescent

labeling of the C-terminus of mature aerolysin has not previously

been attempted, an essential requirement for live-cell imaging.

Using sortases we installed biotin and fluorophore probes onto

different domains of proaerolysin (Fig. 1C). Labels were placed at:

the N-terminus of proaerolysin (NAeL.CP), the C-terminus of the

C-terminal peptide (AeL.CPC), the C-terminus of aerolysin

Figure 3. Installation of a single label on proaerolysin. The fluorophore carboxytetramethylrhodamine (TAMRA) was installed at the N-
terminus of aerolysin (NAeL.CP), at the C-terminus of aerolysin upstream of the CP (AeLC) and at the C-terminus of the C-terminal peptide (AeL.CPC)
with sortase. A, C, E Schematic representation of the sortagging reactions using of NAeL.CP, AeL.CPC, AeLC respectively. B, D Sortagging of NAeL.CP
and AeL.CPC, respectively, with respective control conditions, resolved by SDS PAGE and imaged with a fluorescence scanner. Product is visible by
fluorescent signal. SrtAStrep and SrtAStaph recognize and cleave LPXTA and LPXTG motives, respectively. F Purification of labeled AeLTAMRA, gel
filtration. The first peak in the A280 elution profile corresponds to aerolysin, the second to sortase, and the third to free nucleophile. G Analysis of the
first peak of the gel filtration elution profile with SDS PAGE followed by fluorescence image scan and Coomassie stain. A fraction of AelC is not
converted to fluorescent product.
doi:10.1371/journal.pone.0109883.g003
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preceeding the chaperone (AeLC), as well as creating a double-

label variant (NAeL.CPC). The different sortaggable proaerolysin

versions are schematically diagrammed in Fig. 1D.

Aerolysin activity
The different versions of sortaggable aerolysin were titrated on

KBM7 cells. Toxin concentrations ranging from 60 ng/mL to

4 pg/mL were assayed in triplicate. The assay was performed for

all aerolysin versions and concentrations in a single experiment on

aliquots of the same batch of cells. Cells (3.56105 per sample) were

intoxicated for 1 hour at 37uC, washed, stained with propidium

iodide and analyzed by flow cytometry. The percentage of live

cells was determined and the median lethal concentration (LC50)

calculated (Fig. 2). Compared to wild type (WT) aerolysin, all of

the modified versions showed a slight decrease in toxicity. The

difference was greatest for AeLC, which was ,10 fold less toxic

than the WT. Modifying the N terminus with a single glycine

impaired toxicity ,3 fold. This was comparable to the loss of

activity observed for the C-terminal modified version. Modifica-

tion of both the N and C terminus of proaerolysin reduced toxic

activity further and revealed the toxicity of NproAeLC to be

intermediate between the WT and AeLC.

Installation of a single label on proaerolysin
Proaerolysin was labeled at either its N- or C-terminus with a

peptide coupled to carboxy-tetramethylrhodamine (TAMRA)

Figure 4. Double-labeling of proaerolysin. Double-labeling was achieved with a two-step approach. A Schematic representation of the dual
labeling strategy of proaerolysin. B We used SrtAStrep to install an oligoalanine coupled to the fluorophore AF647 at the C-terminus of proaerolysin,
followed by a gel filtration purification step. C Elution profiles were analyzed by SDS-PAGE, fluorescence scan and coomassie stain. D The reaction
product was subjected to the second round of sortagging with SrtAStaph7M and LPETG-coupled TAMRA fluorophore for N-terminal labeling. SrtAStaph

does not recognize or cleave LPXTA, hence the C-terminal label remains intact. A single peak is observed on the elution profile as immobilized sortase
was used for the reaction and removed prior to gel filtration. E Elution profiles were analyzed by SDS-PAGE followed by fluorescence scan.
doi:10.1371/journal.pone.0109883.g004
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[Figs. 3A and 3C]. Fluorescent product was observed only when

all the components of the labeling reaction mixture were co-

mixed. No background labeling detected (Fig. 3B and 3D). The

labeling efficiency was near-quantitative, as previously demon-

strated for cholera toxin [32] and various other proteins [30]

[33]. N-terminally labeled proaerolysin (TamraAeL.CP) migrated

slightly faster on SDS-PAGE than the C-terminally labeled

AeL.CPTAMRA.

To label AeLC, we introduced a tandem sortase recognition site,

LPLTALPETA, upstream of the protease cleavage site(s) that

precede(s) the C-terminal peptide (Fig. 3E). We empirically

determined that installation of a single sortase recognition motif,

either LPLTA or LPETG, was insufficient to yield a good

substrate for sortase and failed to yield a labeled product (data not

shown).

Sortagged product was purified by fast protein liquid chroma-

tography (FPLC) to separate the product from free dye-conjugated

nucleophile and sortase (Fig. 3F). The fractions of the elution

profile containing aerolysin were resolved by reducing SDS-PAGE

and analyzed by fluorescence scan followed by coomassie staining.

For this construct, labeling was incomplete (yield ,50%) (Fig. 3G).

Prolonged incubation times, different reaction temperatures and

increasing the concentration of nucleophile did not further

improve the extent of labeling (data not shown).

Double-labeling of proaerolysin
Labeling with two different probes was achieved by combining

sortases with different specificities, SrtAStaph and SrtAStrep, such

that the product of the first reaction was not recognized as a

substrate for the second (Fig. 4A). In the first step, the C-terminus

of NAeL.CPC was reacted with AAA.Alexa Fluor 647 by SrtAStrep

with near-complete labeling efficiency. The product was purified

by FPLC and used as a substrate for the second labeling reaction

(Fig. 4B). The elution peak containing NAeL.CPAF647 also

contained a minor fraction of higher and lower molecular weight

species (Fig. 4C), the identity of which is not known.

TAMRA.LPETGG was appended to the N-terminus of
NAeL.CPAF647 in a second labeling step. We used immobilized

SrtAStaph7M to simplify sortase removal. Free nucleophile was

removed by size exclusion chromatography (Fig. 4D). Labeling

was monitored by SDS-PAGE, followed by fluorescence imaging

(Fig. 4E). Two prominent polypeptides were visible in both

channels (AF647: peudo color green; TAMRA: pseudo color

red), one around 50 kDa, and a second around 100 kDa. In

addition, a third polypeptide with an apparent molecular weight of

150 kDa was detected in the TAMRA channel but not in the

AF647 channel. Image overlay showed co-localization of the 50

and 100 kDa species, most probably oligomers that lost the CP.

Aerolysin imaging. Next we checked whether the different

labeled proaerolysin versions would still bind to cells. Cell

preparation, incubation, and the subsequent washing steps prior

to fixation were done at 4uC to prevent activity of cell surface

proteases that would otherwise activate proaerolysin. Confocal

fluorescence microscopy revealed a rim-staining pattern for single-

labeled proaerolysin (Fig. 5A). To acquire images with the same

image acquisition settings (laser intensity, exposure time, gain), 3.3

times more (5 mg/mL) AeLTAMRA had to be added to cells

compared to both TAMRAAeL.CP and AeL.CPTAMRA (1.5 mg/

mL). 20 mg/mL double-labeled TAMRAAeL.CPAF647 was required

for an adequate signal to noise ratio (Fig. 5B). Both fluorophores

were visible as rim staining, and co-localized at the plasma

membrane. Shifting the intoxicated cells to 37uC for 10 minutes

Figure 5. Aerolysin imaging. Aerolysin variants, fluorescently labeled, bind to the cell surface of HeLa cells. Images were acquired by confocal
fluorescence microscopy. A Single labeled aerolysin versions. For comparable signal intensity, different aerolysin concentrations were required as
indicated. B Double-labeled aerolysin and unlabeled aerolysin control.
doi:10.1371/journal.pone.0109883.g005

Sortase-Mediated Modification of Aerolysin
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prior to imaging resulted in cell detachment, indicative of

intoxication (data not shown).

Dissociation of the C-terminal chaperone in the course of

intoxication. We used the double-labeled version of aerolysin

to monitor the fate of the C-terminal chaperone during aerolysin

intoxication. HeLa cells were incubated with TAMRAAeL.CPAF647

for 30 minutes on ice, washed, and then shifted to 37uC. Confocal

microscopy showed an initial overlapping surface staining pattern

for both fluorophores. The intensity of the AF647 signal decreased

over time to almost background level in ,120 seconds, whereas

the signal for TAMRA suffered loss of intensity to a much smaller

extent and remained well above background (Fig. 6). This is

indicative of separation of the two labels, and hence consistent

with loss of the C-terminal peptide.

Identification of new aerolysin receptors. Aerolysin was

sortugged with biotin at its N-terminus (Fig. 7A) and incubated

with HeLa cells at 4uC. Upon cell lysis, using a mild detergent,

biotinylated aerolysin and its bound materials were recovered with

neutravidin beads. The eluted proteins were separated on a

reducing SDS-PAGE gel, and analyzed by mass spectrometry.

Five GPI-anchored proteins were identified: mesothelin, urokinase

plasminogen activator surface receptor (uPAR, CD87), glypican-1,

complement decay accelerating factor (CD55), and CD59

glycoprotein; each represented by multiple exclusive unique

peptide coverage (Fig. 7B). Interaction was confirmed for

mesothelin and CD59 by immunoblot in an independent

experiment (Fig. 7C).

Discussion

Aerolysin is the first example of a pore-forming toxin to which a

site-specific, chemoenzymatic labeling strategy has been applied.

Sortagging allows maximal versatility in the choice of functional-

ities to be installed [28] [33]. Sortase accepts protein substrates in

their native tertiary or quaternary structure. This eliminates two

common problems of genetic fusion proteins: aggregation and

Figure 6. Dissociation of the C-terminal chaperone in the course of intoxication. HeLa cells were incubated with TAMRAAeL.CPAF647 for 30
minutes at 4uC, washed, and the temperature shifted to 37uC. Images were acquired by confocal microscopy.
doi:10.1371/journal.pone.0109883.g006
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non-functional folding. Aerolysin tolerates only subtle modifica-

tions [34]. A dramatic conformational change must take place for

the soluble aerolysin monomer to form the homo-heptameric pore

upon binding to a suitable receptor [17]; a point mutation can lock

the protein into a particular conformation [35] and/or impede

oligomerization [9], preventing toxicity. This leaves only three

sites readily amenable to site-specific alteration: the very N-

terminus, the very C-terminus, and the slightly more variable

sequence that flanks the protease cleavage site(s) preceding the C-

terminal peptide [36]. While it is true that addition of a few

residues, a single glycine at the N-terminus of aerolysin, or the

LPXTG/A motif diminishes toxicity (anywhere from a factor of 3

up to a factor of 10, Fig. 2), we have shown that enzymatic

modification of any of these three aerolysin sites nonetheless yields

a functional product fully capable of intoxication. It is not

immediately obvious from the aerolysin crystal structure whether

the N-terminus is critically engaged in receptor binding or pore-

formation [37]. Genetic appendage of an affinity tag at the C-

terminus of the C-terminal peptide for purification purposes is

standard, but its effect on toxicity has not been systematically

investigated. As observed in this study, internal modification of

aerolysin has the most detrimental effect. The anomalous mobility

on SDS-PAGE of TAMRAproAeL compared to proAeLTAMRA

(calculated molecular weights: 55.5 kDa for TAMRAproAeL and

54.8 kDa for AeL.CPTAMRA) we attribute to the relative position-

ing of the fluorophores, and the incomplete denaturation and/or

differences in SDS binding. Alternatively TAMRAAeL.CP may have

lost its C-terminal peptide, which has a molecular weight of

Figure 7. Identification of new aerolysin receptors. BiotinAeL.CP was used to identify new GPI-anchored proteins that bind Aerolysin. A
Biotin.LPETG was attached to the N-terminus of proaerolysin via sortagging. The purified reaction product was analyzed by immunoblot. B HeLa cells
were incubated with BiotinAeL.CP for 3 hours at 4uC and subsequently lysed with 0.5% NP-40. After pull-down with neutravidin beads, proteins were
eluted, analyzed by SDS-PAGE, and subjected to mass spectrometry. Five GPI-anchored proteins were identified. UniProt accession codes are
indicated. Peptides identified by mass spectrometry, lipidated amino acids, signal peptides, as well as peptides cleaved off from the pro-proteins are
highlighted. C Binding of BiotinAeL.CP to mesothelin and to CD59 was verified by immunoblot.
doi:10.1371/journal.pone.0109883.g007
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approximately 3.7 kDa. However, unless proteases were present in

the sortagging reaction, or aerolysin could somehow activate

autocatalytically, this we consider less likely. AeL.CPTAMRA was

clearly not affected in this manner, or it would have lost its

fluorescence.

We show that modification of mature aerolysin not only at its N-

terminus and C-terminal end of the CP (in the context of the

holotoxin), but also at the newly generated C-terminus after

cleavage of the CP is readily achievable using sortase. After the CP

is cleaved off by the sortase reaction, it remains associated with

non-receptor-bound aerolysin and continues to exert its function

as a chaperone. By inhibiting aggregation and premature pore-

formation, it maintains the molecule’s toxic potential [10].

Introduction of five additional amino acids in addition to the

sortase recognition site was necessary to achieve successful sortase-

mediated modification. Placing the LPXTG/A pentapeptide in a

flexible loop generally increases flexibility of the protein backbone

and thus accessibility, which in certain cases is required for proper

sortase action [28] [32]. We did not determine which of the two

motifs within this tandem sequence was recognized and used by

sortase. The fact that modification of this site by addition of amino

acids only modestly affects toxicity suggests that the new C-

terminus has no critical function in the mature pore. Still, even

though the five amino acid extension rendered the site accessible

to sortase, the sortagging reaction could not be driven to

completion. Presumably there is residual steric hindrance that

interferes with accessibility for sortase.

Site-specific N- and C-terminal labeling of a single polypeptide

using sortases of different specificity has been demonstrated in

earlier work [29]. Applying the same strategy on aerolysin,

obtained data are entirely consistent with double labeling.

SrtAStrep not only accepts oligoalanine, but also oligoglycine as a

nucleophile, albeit with different kinetics [29] [38]. The N-

terminal glycine of NAeL.CPlabel acts as a nucleophile, and can

resolve the substrate-sortase thioacyl intermediate. This may result

in concatenation of a fraction of aerolysin monomers, and would

explain the detection of the 100 kDa and 150 kDa protein bands

in the double-labeling reactions. These molecular weights are

compatible with dimer and trimer formation, respectively. Dimers

of aerolysin appear to contribute to the protein’s stability and have

been detected in solution [39] [40] [41]. Dissociation in the

presence of SDS is dependent on detergent concentration. Van

der Goot et al. reported that ‘‘the dimer begins to come apart at

0.0125% SDS and is nearly completely dissociated by 0.025%

detergent’’ [39]. The SDS concentration in our system is 0.1% (w/

v), which should be sufficient to achieve denaturation. However,

we know of several examples where non-covalent oligomers might

be formed in the presence of SDS or resist to denaturing

conditions, for example, the Cholera toxin B subunit [21]. How

the enzymatic modification of aerolysin affects these properties is

not known.

Installation of fluorescent tags does not compromise the ability

of aerolysin to bind to its receptors. The different toxin amounts

required to achieve equivalent binding reflect the differences in

LC50 observed for the unlabeled, sequence-modified aerolysin

variants. Moreover, the immediate detachment of the adherent

HeLa cells shortly after temperature shift is a clear indication of

the toxicity of the aerolysin variants. In the case of AeLTAMRA,

where the unlabeled fraction constitutes the majority after

reaction, it is not possible to infer toxicity of the labeled fraction,

although the unlabeled, altered sequence of the input aerolysin

preparation used for labeling is of course toxic.

With the double labeled TAMRAAeL.CPAF647 construct in hand,

we could not only confirm the toxicity of the labeled fraction itself,

but also visualize the loss of aerolyin’s C-terminal peptide in the

course of intoxication by microscopy. We thus confirm the

previous findings of van der Goot et al that the chaperone is not

part of the functional pore and separates from the active toxin

[18].

A further application of sortagged aerolysin is the identification

of new GPI-anchored human cell surface proteins that serve as

receptors for the toxin. Previously, it was known that aerolysin

binds to a subset of N-glycanated GPI-anchored proteins [11] [12]

[42], where not only the GPI anchor, but also the receptor

polypeptide moiety plays a role [13]. Plasma membrane micro-

domains act as a concentration platform for such GPI-anchored

proteins [43]. The earliest identified receptor was Thy-1 from

mouse lymphocytes [44]. Others are an unidentified 80 kD

protein on baby hamster kidney cells [6], an unidentified 47 kD

receptor on rat erythrocytes [45], the variant surface glycoprotein

(VSG) of Trypanosoma brucei over-expressed in mammalian cells,

Leishmania major CD63, but only when expressed in Chinese

hamster ovary cells [11], and murine contactin [46]. In addition,

aerolysin binds to human complement decay accelerating factor

(CD55) [47]. In our assay we were able to detect CD55, attesting

to the power of our approach, along with mesothelin, urokinase

plasminogen activator surface receptor (uPAR, CD87), glypican-1,

and CD59 glycoprotein, a novel set of molecularly identified GPI-

anchored proteins not previously associated with aerolysin

binding. Of note, CD59 was specifically excluded as an aerolysin

receptor in previous work [13]. We speculate that the reason for

this observed difference might be of a technical nature. The fact

that we identify CD59 with two different analysis methods,

immunoblot and mass spectrometry, makes us confident that

CD59 is a true interaction partner of aerolysin.

Sortagging converts aerolysin into a versatile and valuable tool

to study the ‘GPI-ome’ as a means of further characterizing lipid

rafts where most GPI-anchored proteins are clustered [48], The

sortagging strategy described here should be applicable also to

other members of the bacterial pore-forming toxin family and may

facilitate further biophysical studies on membrane interactions and

pore formation.
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