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Magnetic resonance imaging and cell-based 
neurorestorative therapy after brain injury

Introduction
Treatment of brain injury such as stroke and traumatic brain 
injury is currently either restricted to acute thrombolysis 
treatment with a short treatment window in stroke (NINDS, 
1995), or no effective neuroprotective agents identified from 
traumatic brain injury clinical trials (Narayan et al., 2002). 
Therefore, it is important to have alternate treatment strat-
egies with a less restrictive therapeutic window that can be 
applied to a large population of brain injury patients. Exper-
imental studies in laboratory animals suggest that cell-based 
neurorestorative treatments may be of benefit when admin-
istered up to weeks after brain injury (Chopp and Li, 2002, 
2006; Jiang et al., 2010a; Xiong et al., 2010b; Xu et al., 2013; 
Mouhieddine et al., 2014). The cell-based therapies that are 
under intense investigation include bone marrow mesen-
chymal cells, cord blood cells, fetal cells, and embryonic cells 
among others (Chopp and Li, 2002, 2006; Lindvall et al., 
2004; Jiang et al., 2010a; Xiong et al., 2010b; Mouhieddine 
et al., 2014). In this review, we incorporate these various cell 
treatments under the term, cell-based therapy.

Current understanding of cell migration, distribution, 
angiogenesis, neurogenesis, and the interaction between an-
giogenesis and neurogenesis after brain injury, however, has 
been derived mainly from regional measurements of stained 
sections using histological and immunohistological methods 
(Auerbach et al., 2000; Zhang and Chopp, 2009; Xiong et al., 
2010a; Li et al., 2014). These methods do not allow dynamic 
assessment of tissue remodeling, and only one measurement 
per experimental animal can be performed. MRI has been 
used to noninvasively monitor migration and distribution of 
magnetically labeled cells, and tissue remodeling after brain 

injury (Bulte et al., 2002, 2009; Hoehn et al., 2002; Frank et 
al., 2003; Zhang et al., 2003c; Jiang et al., 2005, 2006, 2010a; 
Janowski et al., 2014). In this review, we will focus on new 
magnetic resonance imaging (MRI) methodologies to eval-
uate exogenously administered cell migration, distribution 
and labeled cell concentration, and MRI methodologies for 
the detection of angiogenesis and neuronal remodeling, as 
primary mechanisms of injury recovery.

MRI Measurements of Migration, Distribution 
and Concentration of Magnetically Labeled 
Cells
Therapeutic benefit using neural progenitor cells depends on 
the migration, distribution, and concentration of the grafted 
cells within the target tissue (Dunnett et al., 2001; Jiang et 
al., 2005, 2006; Bull et al., 2014). In this section, MR labeling 
methods, route effects on cell migration and distribution, 
MRI monitoring cell migration, distribution, and concen-
tration will be reviewed. The unresolved issues and further 
direction will be discussed at the end of this section.

The most critical issue for MRI monitoring cell migration 
and distribution is the magnetic labeling of the cells. Differ-
ent MR labeling methods have been developed for different 
cells. The most popular way of labeling cells for treatment of 
brain injury is in vitro labeling with subsequent transplan-
tation. The advantage of in vitro labeling is its optimization 
in iron loading with minimum effects in cell variability, cell 
function, and differentiation, and high specificity (Mukherjee 
et al., 1997; Conner and Schmid, 2003; Frank et al., 2003; 
Zhang et al., 2003c; Medina-Kauwe et al., 2005).
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There are several other approaches for labeling cells  
(Hinds et al., 2003; Zhang et al., 2003c; Crich et al., 2004; Ho 
and Hitchens, 2004; Shapiro et al., 2005), and the most wide-
ly used method for cell labeling is dextran-coated superpara-
magnetic iron oxide with transfer agents. Superparamagnetic 
iron oxide using transfer agents are stably incorporated into 
cells with minimum side effects and have shown successful 
MRI monitoring ability (Bulte et al., 2001, 2002, 2003, 2009; 
Hoehn et al., 2002; Bulte and De Cuyper, 2003; Frank et al., 
2003, 2004; Arbab et al., 2004, 2005; Bulte and Kraitchman, 
2004; Janowski et al., 2014). The technique has been intro-
duced into the clinic (Bulte, 2009).

The route of administration of cells is another important 
parameter for cell treatment of brain injury (Li et al., 2010). 
Currently, several routes have been used to administer cells, 
including intraparenchymal injection, intracerebral, intra-
cisternal, intravenous, and intra-arterial. Intraparenchymal 
stereotactic cell injection is the insertion of a needle and 
infusion of the cells into the brain parenchyma. Intrapa-
renchymal injections can be precisely targeted towards the 
lesion; however, this method is invasive. There is usually 
poor cell distribution through the lesion and limited migra-
tory potential of injected cells in ischemic brain (O’Leary 
and Blakemore, 1997; Li et al., 2000; Lu et al., 2001; Hoehn 
et al., 2002; Zhang et al., 2003b). Intracisternal injection of 
cells enables widespread cerebral engraftment of cells along 
the cerebrospinal fluid from spinal to ischemic damaged 
tissue. The injected cells will cross the blood-cerebrospinal 
fluid barrier to penetrate into the parenchyma. We have in-
vestigated the migration and distribution of subventricular 
zone cells transplanted intracisternally into rat brain. The 
advantage of intracisternal administration is that it permits 
dynamic monitoring of cell migration from injection site 
to final targets as demonstrated in Figure 1 and for the de-
livery of subventricular zone cells which are accustomed to 
the cerebrospinal fluid environment (Zhang et al., 2003b). 
Intracisternal injection not only provides information on 
the migration and distribution of the labeled cells but also 
on the migration speed of the labeled cells. The mean speed 
of labeled subventricular zone  cell movement from the 
injection site to the parenchyma is 65 ± 14.6 m/h, which is 
comparable to published data (Alvarez-Buylla et al., 2000). 
Intra-arterial injection can be used to bypass the initial up-
take by the systemic organs and deliver larger numbers of 
cells directly to the ischemic lesion, once vessels are reper-
fused (Li et al., 2001, 2010; Lu et al., 2001; Walczak et al., 
2008). However, intra-arterial injection may involve a rela-
tively high mortality rate in animals (Walczak et al., 2008). 
Intravenous injection is a relatively easy and the least inva-
sive procedure for cell delivery. Intravenous injection allows 
broad distribution of cells within the target ischemic tissue. 
However, intravenous injection causes the cells to first dis-
tribute through the body, with many cells accumulating 
and trapped in filtering organs such as the lungs and liver. 
Therefore, intravenous injection may lead to low numbers 
of cells at the lesion.

MRI can monitor migration and distribution of magnet-
ically labeled cells in the brain after transplantation. How-

ever, quantitative determination of labeled cells remains a 
challenge, especially in vivo. Assessment of brain iron has 
typically involved the measurement of proton transverse 
relaxation rate, R2 (1/T2; Table 1) (Bizzi et al., 1990; Schenk-
er et al., 1993; Ordidge et al., 1994; Vymazal et al., 1995a, b, 
1996). Several authors have observed a relationship between 
transverse relaxation rate (R2) and labeled cell concentration 
in vitro (Zelivyanskaya et al., 2003). However, the relation-
ship between R2 and labeled cell concentration is much more 
complicated in vivo and has not been well studied. Addition-
ally, the theory establishing the relationship between R2 and 
labeled cell concentration, especially the effects of diffusion, 
has not been formulated. One recent study tested a theo-
ry relating R2 and apparent diffusion coefficient (ADC) to 
labeled cell concentration (Athiraman et al., 2009). Exper-
imental tests were performed both in vitro and in vivo. The 
data demonstrate that R2, ADC, and ADC × R2 has a linear 
relationship with labeled cell concentration in vitro and that 
multiple factors have to be considered when these relation-
ships are evaluated in vivo, especially the background varia-
tion caused by ischemic damage (Athiraman et al., 2009). 

There are several unresolved issues in the field for evalu-
ating cell distribution and concentration. The labeled cells 
maybe die, proliferate, divide, or the magnetic labeled par-
ticles from died cells may be eaten by macrophages after 
administration which could lead to error massage in cell dis-
tribution and concentration. Current methods for evaluating 
cell concentration are more suitable for acute time (days) but 
not yet for chronic (weeks or months) monitoring. Chronic 
monitoring of cell distribution and concentration needs to re-
solve more issues related to cell death, proliferation, division, 
or labeled macrophages. The potential advanced MRI method 
to evaluate labeled cell concentration may be quantitative sus-
ceptibility mapping (Table 1) which could reduce the back-
ground variation to estimate labeled cell concentration more 
accurately (Kressler et al., 2010; Haacke et al., 2015). 

MRI Measurements of Vascular Remodeling 
after Brain Injury 
Angiogenesis is a primary factor associated with improved 
neurological recovery after brain injury (Weiller et al., 1993; 
Cramer et al., 1997). Patients with a higher cerebral blood 
vessel density after brain injury make better progress and 
survive longer than patients with lower vascular density 
(Krupinski et al., 1994; Slevin et al., 2000). Preclinical stud-
ies in brain injury indicate that neurological improvement 
after brain injury is induced by cell-based treatments that 
induce angiogenesis (Chopp et al., 2000; Chen et al., 2001; 
Zhang et al., 2002a, 2003a, 2005). Thus, enhanced angiogen-
esis observed after treatment with cell-based therapy may 
contribute to functional improvement. Several pre-clinical 
studies demonstrated that treatment of brain injury in rats 
with cell-based therapy increased levels of rat vascular en-
dothelial growth factor (Zhang et al., 2002c, 2003a), which 
consequently enhances angiogenesis  and reduces functional 
deficits (Chopp et al., 2000; Zhang and Chopp, 2009; Xiong 
et al., 2010a). Based on histopathological investigation of 
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angiogenesis after brain injury, MRI methodologies have 
been developed and implemented to monitor the spatial and 
temporal evolution of vascular remodeling. Angiogenesis 
and vasculogenesis are complex processes by which new 
capillaries form by sprouting from pre-existing vessels or 
de novo, respectively (Risau, 1998). These newly formed 
cerebral vessels are inherently leaky, as it can take several 
weeks to form a functional blood brain barrier (BBB) (Risau, 
1994). Monitoring changes in blood volume over time may 
reflect the growth of new blood vessels and, therefore, may 
reflect angiogenesis and vasculogenesis (Hawighorst et al., 
1998a, b; Brasch and Turetschek, 2000; Pathak et al., 2001). A 
significant correlation was found between dynamic contrast 
enhanced MRI blood volume measurements and histological 
determination of microvessel density in angiogenic hotspots 
(Hawighorst et al., 1998a, b; Brasch and Turetschek, 2000; 
Pathak et al., 2001). A link between angiogenesis and vas-
cular permeability has been established through the work 
of Dvorak on vascular endothelial growth factor (Dvorak et 
al., 1999). MRI in combination with 3D laser scanning con-
focal microscopy images of neural progenitor cell therapy 
of stroke in rats has shown significant correlations between 
angiogenesis and increased cerebral blood flow (Table 1), 
cerebral blood volume and blood-to-brain transfer constant 
(Ki) for gadolinium-diethylanetriamine penta-acetic acid 
(Gd-DTPA) (Zhang et al., 2002b; Jiang et al., 2005). These 
MR measurements identify the location and area of vascular 
remodeling and angiogenesis (Figure 2) (Jiang et al., 2005).

In addition to cerebral blood flow, cerebral blood volume 
and Ki MRI measurements of angiogenesis after brain inju-
ry, susceptibility weighted imaging (SWI; Table 1) incorpo-
rating phase information also exhibited high sensitivity in 
detecting angiogenesis (Ding et al., 2008; Jiang et al., 2008). 
Because angiogenesis typically occurs in regions of high 
oxygen extraction, SWI will generate early images of small 
draining veins in peri-infarct regions that are likely to pro-
mote angiogenesis. Combination of SWI and Ki may also 
provide information about the stage of angiogenesis (Ding 
et al., 2008; Jiang et al., 2008). These MRI measurements 
also offer an indirect means of detecting newly formed ves-
sels. Angiogenesis evokes an increase in microvessel density 
(MVD; Table 1). Several authors have used MRI to estimate 
vessel size, and this can be correlated with blood volume as 
a means of inferring microvessel density (Wu et al., 2004). 
The ratio of changes in gradient-echo to spin-echo relax-
ation rate (∆R2*/∆R2) induced by a high molecular weight 
intravascular contrast agent may  provide an indication 
of  average vessel size in a voxel under certain conditions 
related to  echo time,  contrast  concentration and the main 
magnetic field (Boxerman et al., 1995; Dennie et al., 1998). 
∆R2*/∆R2 is a dimensionless ratio, and its expression in 
terms of tissue model parameters depends on not only  ves-
sel size distribution but also  contrast  concentration and the 
water diffusion coefficient (Jensen and Chandra, 2000). To 
avoid strong dependency on contrast concentration, Jensen 
and Chandra suggested using the quantity Q ≡ ΔR2/(ΔR2*)2/3 
an analytic parameter that involves only intrinsic properties 

of the vascular network, which is sensitive to vessel density 
but not  size (Jensen and Chandra, 2000). MRI measure-
ment of MVD, mean segment length (MSL) and vessel size 
index (VSI) has been recently applied to angiogenesis during 
recovery of brain injury (Bosomtwi et al., 2008, 2011). By 
direct comparison of MVD, MSL, and VSI measured be-
tween MRI corresponding immunostained sections, a good 
agreement in the intracorrelation coefficient (ICC) and 
correlation were observed in the recovery region and nor-
mal contralateral hemisphere (Bosomtwi et al., 2008, 2011). 
MRI MVD, MSL, and VSI measurements exhibit promise 
for quantitative evaluation of microvascular changes in 
the brain tissue after injury. Further investigation of MRI 
methodologies in evaluating vascular remodeling after brain 
injury may focus on translation to clinic with shortest data 
acquisition time and maximize information. 

MRI Measurements of Neuronal Remodeling 
after Brain injury
In addition to vascular changes, cell-based therapy also en-
hances neuronal remodeling, e.g., promoting axonal growth 
and remyelination, new axonal sprouting, synaptogenesis, 
and endogenous neurogenesis, all of which contribute to 
functional recovery (Chopp et al., 2008; Zhang and Chopp, 
2009; Jiang et al., 2010b; Chen et al., 2014). Cell-based treat-
ment of stroke significantly increases both progenitor and 
mature oligodendrocytes in the ipsilateral hemisphere of the 
ischemic brain (Li et al., 2005; Zhang et al., 2013). Oligoden-
drocytes generate myelin and contribute to the integrity of 
white matter tracks in the brain. Stimulation and amplifi-
cation of these cells may lead to restructuring of axons and 
myelin. White matter architecture in the ischemic boundary 
was altered by the cell treatment, and axonal density in the 
peri-infarct area was significantly increased in the treated 
animals. Pseudorabies virus labeled with green fluorescent 
protein (PRV-GFP) and red fluorescent protein (PRV-RFP) 
has been used to identify axonal remodeling in experimental 
stroke animal model (Liu et al., 2007). In normal rats, with-
out stroke, few cells were labeled green in the left pyramidal 
neurons. After stroke, there is a significant increase in green 
and yellow pyramidal neurons, indicating ipsilateral or tran-
scallosal rewiring (Liu et al., 2007). Treatment with MSCs 
brought a significant increase in green and yellow pyrami-
dal cells in the left hemisphere. Comparable cross rewiring 
is also present in the ipsilateral hemisphere. These data 
indicate that treatment of brain injury with MSCs creates 
new circuitry in both the ipsilateral and contralateral hemi-
spheres. Response to treatment of brain injury with MSCs 
also extends beyond the brain to the spinal cord (Liu et al., 
2007).

MRI has demonstrated an unprecedented ability to obtain 
structural and physiologic information of the brain. Diffu-
sion tensor MRI (DTI) provides a means for delineating the 
anatomic connectivity of white matter pathways and can 
be used to detect pathologic tract disruption based on the 
movement of water. DTI provides us two scalars called ap-
parent diffusion coefficient (ADC) and fractional anisotropy 
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(FA; Table 1) (Conturo et al., 1996; Shimony et al., 1999), 
which characterize the magnitude of water diffusion and the 
degree of anisotropy, respectively, for each voxel. In addition, 
axial (parallel to long axis of fiber) and radial (perpendicu-
lar) diffusivity are given by corresponding eigenvector values 
which may be related to axonal (axial diffusivity) or myelin-
ation (radial diffusivity) status (Song et al., 2002; Sun et al., 
2006). FA is directly correlated with histological markers of 

myelination (Watanabe et al., 2001; Beaulieu, 2002; Mori 
and van Zijl, 2002; Sotak, 2002). Increased FA appears to 
correlate with white matter tract integrity, while reduced FA 
is correlated with functional deficits (Watanabe et al., 2001; 
Beaulieu, 2002; Sotak, 2002). Recent studies have shown 
that restorative treatment of brain injury promotes axonal 
remodeling and increases oligodendrocytes (remyelination) 
(Li et al., 2005; Shen et al., 2006). FA may be able to identify 

Figure 1 Dynamic migration of transplanted cells in ischemic brain in a representative ischemic rat. 
MRI signals (dark areas) were not detected before transplantation of labeled subventricular zone cells (column N in A to C). In contrast, the same 
rat exhibited magnetic resonance imaging (MRI) signals at the fourth ventricle at the day of injection of superparamagnetic labeled cells into the 
cistern (A; 0 d, arrow). MRI signals moved forward along the fourth ventricle 1 and 2 days (B; 1 d and 2 d, arrows) and first reached the ipsilateral 
striatum nearby the ipsilateral lateral ventricle 2 days after transplantation (C; 2 d, arrow). MRI signals expanded from nearby the lateral ventricle 
to the distant lateral ventricle in the ipsilateral hemisphere 4 days after transplantation (C; 4 d, arrow), and MRI signal in the ipsilateral striatum in-
creased from 2 to 4 days after transplantation (C; 5 d and 7 d). MRI signals were not detected in the contralateral hemisphere at any time points after 
transplantation (C; 0 d to 7 d). Panels A to C represent different levels of coronal sections from the posterior to anterior brain (A, bregma _13.3 mm; 
B, bregma _11.8 mm; and C, bregma_1.3 mm). N represents 1 day before transplantation, and 0 d to 7 d indicate days after transplantation from a 
representative rat. Prussian blue staining was used to identify superparamagnetic labeled cells on sagittal or coronal sections. This staining reacts with 
iron to produce blue color. Panel D is a schematic representation of a sagittal section from the ipsilateral hemisphere at lateral 1.40 mm. Panels E to 
G are microphotographic images of Prussian blue-stained sections from the same rat in which MRI images were presented above. Panel E is from the 
boxed area in the panel D. The arrow in the panel E indicates transplanted cells (blue) around the ischemic boundary. Higher magnification showed 
that these blue cells had round morphology (F and inset). A box and an arrowhead in panel E show transplanted cells at a distance from the ischemic 
boundary, and these cells exhibited bipolar morphology (G), indicating that these cells migrate. Panel H shows that MRI signals (arrows) from a 
representative rat localized to the boundary regions of the ischemic lesion and persisted for at least 5 weeks after transplantation. N represents 1 day 
before transplantation, and 1 W to 5 W indicate weeks after transplantation. Reprint from Ann Neurol, 2003;53:259-263, with permission.

Table 1 Advantage and disadvantage of magnetic resonance imaging (MRI) measurements

MRI measurements Advantage Disadvantage

Labeled cells:
-T2 and T2*

-Quantitative susceptibility mapping

-Quantitative map

-Quantitative map and excellent to evaluate cell 
concentration

-Low resolution and involved error in 
evaluating cell concentration
-Complex analysis and low signal to noise

Vascular remodeling:
-Cerebral blood flow and cerebral blood volume
-Susceptibility weighted imaging 
-Ki

-Microvessel density, mean segment length, and 
vessel size index

-Clinical available measurements
-High resolution to identify vessels
-High sensitivity to identify immature new vessels
-Quantitative map of microvasculature

-Low sensitivity
-Not a quantitative map
-Low resolution and signal to noise
-Low resolution and signal to noise

Neuronal remodeling:
-Fractional anisotropy and fiber tracking
-Apparent kurtosis coefficient
-Axonal density

-Clinical available measurements
-Quantitative map of diffusion distribution
-Quantitative map of axonal density

-Involved error due to modeling
-Not a physiological map
-Complex analysis and low signal to noise

N                       1 w                   2 w                     3 w                    5 w 

N           0 day           1 day          2 days       3 days        4 days      5 days       7 days  
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ischemia injured cerebral tissue undergoing white matter 
reorganization after restorative treatment. The immunore-
active staining profile showed that axonal projections ema-
nating from individual parenchymal neurons exhibited an 
overall orientation parallel to the lesion areas after stroke (Li 
et al., 2005; Jiang et al., 2006).

We have demonstrated that white matter reorganization, 
confirmed by an increase in axons and myelination, after 
neural progenitor cell treatments is coincident with increases 

of FA (Figure 3; red arrows) in the ischemic recovery regions 
(Jiang et al., 2006). Also the fiber tracking maps derived 
from diffusion tensor imaging revealed that axonal projec-
tions emanating from individual parenchymal neurons ex-
hibited an overall orientation parallel to lesion areas (E, red 
lines) after stroke similar to the orientation patterns as the 
immunohistological results (D). So far, conventional DTI is 
still dominant in the investigation of white matter damage 
and reorganization. However, when white matter fiber tracts 

Figure 2 The evolution of changes in MRI Ki and CBF after restorative cell treatment. 
The Ki maps revealed an increase in Ki in the subcortical region (yellow dotted circle) that maximized at 2 weeks (Ki, 2 weeks) and returned to 
normal 6 weeks after treatment. Panels A and B show the vWF immunoreactive images of coronal sections, which matched MRI sections from the 
same animal sacrificed at 6 weeks after treatment. The data show increased numbers of vWF immunoreactive vessels (left image in A, black line 
area; left image in the magnified vWF immunostained image B, arrows). The density of microscopic vessels was significantly higher in cell treated 
animals than in control animals, indicating that the cell therapy enhances vascular remodeling. CBF measurements revealed a small and gradual 
increase in the subcortical region (yellow dotted circle), where increased numbers of microvessels were confirmed by histology, starting at 3 weeks 
and with increased contrast at 6 weeks after treatment. By statistical analysis, vascular remodeling was coincident with increases of CBF and CBV 
(CBF, P < 0.01; CBV, P < 0.01) at 6 weeks after treatment, and coincident with transient increases (P < 0.05) of Ki with a peak at 2–3 weeks after 
cell therapy (Jiang et al., 2005). Bar in B: 100 µm. Reprint from Neuroimage, 2005;28:698-707, with permission. MRI: Magnetic resonance imaging; 
vWF:  von Willebrand factor; CBF: cerebral blood flow; CBV: cerebral blood volume.

Figure 3 The evolution in T2 (A) and 
fractional anisotropy (B) maps after 
neural progenitor cell treatment and 
corresponding Bielshowsky silver 
and Luxol fast blue stained coronal 
section (C, D) from the same rat. 
The left image in D is a high magni-
fication image from the box area in 
panel C and the corresponding con-
tralateral area (right image in D). E is 
the axonal tracking image from ex vivo 
diffusion tensor imaging data of an-
other rat which show that fiber tracks 
circumscribe the lesion boundary. The 
marker C in E represents ischemic 
core. The bar in D: 10 µm. Reprint 
from Neuroimage, 2006;32:1080-1089, 
with permission. 
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cross, conventional DTI, produces an anomalous result, 
showing an overall lowering of FA despite the presence of 
highly-oriented tissue. The inability of conventional DTI to 
resolve multiple fiber directions derives from the assumption 
of Gaussian diffusion inherent to the tensor model (Basser 
et al., 2000; Alexander et al., 2002; Tuch et al., 2002). The 
distribution of the path of water molecules for the time of 
the MRI experiment can be generated through q-space DTI 
(q-DTI), including diffusion spectrum imaging (Wedeen et 
al., 2005), q-ball (Tuch et al., 2003), persistent angular struc-
ture MRI (PASMRI) (Alexander, 2005), and diffusion kur-
tosis imaging. Characterization of white matter tracts using 
q-DTI will provide more mechanistic information between 
white matter remodeling and functional recovery after trau-
matic brain injury. Recent investigation has demonstrated 
that the apparent kurtosis coefficient (AKC; Table 1) detect-
ed additional axonal remodeling regions with crossing axons 
confirmed by immunohistological staining compared with 
FA (Jiang et al., 2011). Further investigation of MRI method-
ologies in evaluating axonal changes after brain injury may 
focus on quatitation of axonal density (Jespersen et al., 2010; 
Wang et al., 2013; Davoodi-Bojd et al., 2014), myelin con-
tents (Davoodi-Bojd and Soltanian-Zadeh, 2011; Melbourne 
et al., 2013; Ganzetti et al., 2014) and axonal permeability 
(Davoodi-Bojd et al., 2014).

Conclusion 
We have demonstrated that MRI can be used to visualize cell 
migration, distribution, and determine labeled cell concen-
tration as well as to monitor mechanisms related to brain in-
jury recovery with cell-based treatment. Cell-based therapy 
can enhance the endogenous restorative mechanisms of the 
injured brain and amplify angiogenesis and axonal remodel-
ing. Based on the mechanism of recovery from brain injury, 
MRI methodologies can be employed to dynamically char-
acterize spatio-temporal events related to brain remodeling. 
Since the noninvasive nature of MRI methodologies allows us 
to translate MRI methodologies from animal to patient, MRI 
technique for studying cell therapy induced recovery from 
brain injury could lead to optimization of cell transplantation 
protocols and improved management of brain injury.
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