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Abstract: The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS)
production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of
ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing
mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to
cause a critical imbalance in antioxidant/oxidant mechanisms and a “vicious circle” in mitochondrial
injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently
leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids,
and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies)
may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kid-
ney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive
diagnostic target to be investigated in any patient with unexplained progressive multisystem disor-
der. This review article highlights the pathomechanisms of mitochondriopathies, details advanced
analytical tools, and suggests predictive approaches, targeted prevention and personalization of
medical services as instrumental for the overall management of mitochondriopathy-related cascading
pathologies.

Keywords: mitochondrial function; dysfunction; injury; vicious circle; mitochondriopathy; energy
metabolism; antioxidant mechanisms; ROS overproduction; ATP synthesis; oxidative damage; DNA
repair; pathology; systemic disorders; tumorigenesis; cancer; apoptosis; neurodegeneration; di-
agnostic tools; liquid biopsy; biomarker panels; chronic inflammation; vasoconstriction; life-style;
dietary habits; suboptimal health conditions; disease predisposition; individualised patient profile;
multi-parametric analysis and machine learning; predictive, preventive, and personalized medicine
(PPPM/3PM); health policy; socio-economic burden; COVID-19

1. Introduction
1.1. Mitochondria as the Life-Important Energy Supplier and Potential “Troublemaker”

Mitochondria are unique double-membrane organelles, capable of self-replicating
their genome and representing the powerhouse of the cell. Mitochondria are essentially in-
volved in numerous cellular processes including the generation of reactive oxygen species
(ROS) as by-products of ATP synthesis [1]. To this end, the mitochondrial respiratory
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chain is the main site of ROS production in the cell [2]. Although mitochondria possess a
powerful antioxidant system, an excess of ROS cannot be completely neutralized, and cu-
mulative oxidative damage may lead to decreasing mitochondrial efficiency in energy
production but increasing ROS excess [3], which is known to cause a critical imbalance
in antioxidant/oxidant mechanisms [4] and a “vicious circle” in mitochondrial injury [5].
By insufficient energy production, chronic exposure to ROS overproduction consequently
leads to the oxidative damage of life-important biomolecules, including nucleic acids,
proteins, lipids, and amino acids, among others. Consequently, mitochondrial dysfunc-
tion is associated with accelerated aging, neurodegeneration, tumorigenesis, metabolic
syndromes, and mood disorders, among others [1,6].

1.2. Liquid Biopsy Is Instrumental for the Paradigm Change from Reactive to Predictive,
Preventive, and Personalized Medicine (PPPM/3PM)

Liquid biopsy is a non-invasive or minimally-invasive, cost-effective, painless, precise,
and real-time analysis of specific biomarkers obtained from non-solid tissues (biofluids),
such as blood, urine, tears, and/or cerebrospinal fluid [7–10]. In this review, we discuss
the applicability of liquid biopsy to the overall management of mitochondriopathies and
disorders known to be associated with mitochondrial dysfunction. Further, based on the
accumulated knowledge on the pathomechanisms of mitochondrial injury, we exemplify
health conditions that might be involved in the “vicious circle” of mitochondrial damage,
which would allow the paradigm shift from reactive measures (treatment of clinically man-
ifested pathologies) to the advanced concepts of predictive approach, targeted prevention,
and the personalization of medical services [7–18].

1.3. Aim of Study

The aim of this review is to provide a comprehensive overview of the impact of
mitochondrial dysfunctions and associated oxidative damage or energy production disor-
ders in connection with the identification of new liquid biopsy biomarkers facilitating the
management of selected diseases.

1.4. Source of Data

Data were recovered from the biomedical literature by the use of “mitochondria” and
“ROS” and “ATP” and “marker“ or “liquid biopsy” or “mitochondrial syndromes” or other
associated terms as either keywords or medical subject heading (MeSH) terms in searches
of the PubMed bibliographic database. We emphasized the most recent scientific papers
from the years 2015–2020.

2. Mitochondria as the Powerhouse of the Cell: Energy Production and ROS
Formation Insights

Mitochondria are unique organelles, responsible for the production of energy in
eukaryotic cells. Mitochondria harbor their own genetic material [19] that encodes 13 of
80 proteins that are important for the mitochondrial respiratory complexes [3]. The electron
transport chain (ETC) is an essential process for the synthesis of energy through oxidative
phosphorylation (OXPHOS) [19]. OXPHOS consist of five protein complexes (I–IV and ATP
synthase) and two factors (coenzyme Q10 and cytochrome c) in the inner mitochondrial
membrane. High energy phosphate production is performed through coupling electron
transfer to proton translocation across the inner mitochondrial membrane, which results
in an electrochemical gradient, producing a power force for the synthesis of ATP by ATP
synthase [20].

During OXPHOS, electrons prematurely leaking from the ETC are captured by oxygen,
resulting in the generation of ROS [19,21]. Figure 1 shows mechanisms of mitochondrial
ROS formation and antioxidant mechanisms.
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Figure 1. Mitochondrial reactive oxygen species (ROS) formation and antioxidant mechanisms.
Complexes I and III of the electron transport chain (ETC) are the main sites of electron leakage
to oxygen, yielding the superoxide anion (·O2-) [22]. The formation of ·O2- is associated with
the acceptance of a unique electron by ground state oxygen and any electron transfer involving a
unique electron can be susceptible to the generation of ·O2-, particularly in membranes due to the
high oxygen solubility [2]. Then, ·O2- is converted to hydrogen peroxide (H2O2) by spontaneous
dismutation or by an enzyme, superoxide dismutase (SOD) [23]. H2O2 is inactivated by catalase
or by reaction with glutathione, catalyzed by glutathione peroxidise (GPX) [22]. Other antioxidant
enzymes that contribute to ROS scavenging include peroxiredoxin and thioredoxins [24]. Highly
reactive hydroxyl radical (·OH) can be produced from H2O2 in the presence of metals (iron, copper)
by Haber–Weiss or Fenton reactions [22]. The generation of ROS has in an inverse association with the
rate of electron transport and increases exponentially in the case of complex I or III impairment [22].
Mitochondrial dehydrogenases are also involved in ROS formation [2,3].
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3. Molecular Interplay Shifted towards Excessive ROS Formation but Diminished
Energy Production—A Critical “Vicious Circle” of Mitochondrial Injury

Under physiological conditions, mitochondria serve a primary role in cellular bioen-
ergetic activity and energy maintenance; however, their function of governing levels of
mitochondria-derived ROS is no less important. The mitochondrial scavenging system,
which includes SOD2, Grx2, GPx, Trx, and TrxR, is a key part of cellular redox tone.
This mitochondrial antioxidant system serves to tightly control the levels of the primary
ROS signaling in the mitochondrial respiration and mitochondrial dynamics [25].

However, a variety of conditions causing excessive ROS production, such as ex-
posure to genotoxic environments, multi-factorial stress, suboptimal health conditions,
and metabolic syndromes [26–34], may lead to unrepaired mitochondrial DNA (mtDNA)
damage and concomitant functional defects in mitochondrial complexes I and III, associ-
ated with significantly increased uncontrolled formation of extremely aggressive ·O2- [3].
The arising imbalanced overproduction of ROS and consequent oxidative damage to mi-
tochondrial structures impairs the ability of mitochondria to synthesize an appropriate
amount of ATP [18] and, therefore, significantly reduces the energy resources of the cell
needed to perform all the vital functions including highly energy-consuming DNA re-
pair [35]. Molecular interplay shifted towards excessive ROS formation but diminished
energy production and unrepaired DNA initiates a critical “vicious circle” in mitochondrial
injury. Mitochondrial oxidative damage can also result in increased release of proteins
such as cytochrome c into the cytosol by mitochondrial outer membrane permeabilization
and thus activate apoptosis. Moreover, mitochondrial ROS affect the mitochondrial per-
meability transition pore that renders the permeability of the inner membrane to small
molecules [35]. In addition, ROS induce alterations of mitochondrial Ca2+ homeostasis
and oxidation of proteins. Peroxynitrite can inactivate key mitochondrial enzymes and
trigger calcium release from mitochondria, thus affecting the energy status of the cell.
An elevated level of Ca2+ also affects mitochondrial potential, leading to the production of
·O2- that further supports the “vicious circle” of the mitochondrial injury and development
of pathologies related to mitochondriopathy [3].

In tumorigenesis, the depression of respiratory activity is an evident consequence of
disruptive mtDNA mutations, further linked to enhanced generation of ROS. By acting
as both mutagens and cellular mitogens, ROS contribute directly to cancer development
and progression. Therefore, an impaired respiratory chain is a link between both an
oxidative stress and energy failure characteristic for the mitochondrial injury on one hand,
and tumorigenesis on the other hand [5]. In particular, a destabilization of complex I
and secondary enhanced generation of ROS have been proposed to provoke a “vicious
circle“ amplifying mitochondrial dysfunction. An excellent model to dissect the role of
pathogenic, disassembling mtDNA mutations in tumor progression and their contribution
to the metabolic reprogramming of cancer cells (glycolysis vs. respiration) is provided by
an often underdiagnosed subset of tumors, namely, the oncocytomas, characterized by
disruptive mutations of mtDNA, especially of complex I subunits. Such mutations almost
completely abolish complex I activity, which slows down the Krebs cycle, favoring a high
ratio of α-ketoglutarate/succinate and consequent destabilization of hypoxia inducible
factor 1α (HIF1α). On the other hand, if complex I is partially defective, the levels of
NAD(+) may be sufficient to implement the Krebs cycle with higher levels of intermediates
that stabilize HIF1α, thus favoring tumor malignancy [5].

The “vicious circle” of mitochondrial dysfunction related to impaired mitochondrial
oxidative metabolism, the uncontrolled release of excessive ROS and compromised energy
production have been also exemplified by renal lipotoxicity and glomerular diseases of the
kidney, which is one of the most energy-demanding organs [36].

Another prominent example of deteriorating mitochondria is cardiac ischemia-reperfusion
injury (IRI). Mitochondrial injury is one of the main players in the pathology of IRI through
energy stress and the overproduction of toxic ROS, leading to oxidative stress, elevated
calcium, and apoptotic and necrotic cell death [37]. Therefore, various cardioprotective
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interventions that modulate mitochondrial stability, dynamics, and turnover, including
various pharmacologic agents, specific mitochondrial antioxidants and uncouplers, and is-
chemic preconditioning can be considered the main strategies to protect mitochondrial and
cardiovascular function and thus enhance longevity.

Finally, inflammation and mitochondrial dysfunction contribute to the pathogenesis
of neurological diseases through a “vicious circle“—inflammatory mediators impair mito-
chondrial metabolism and defective mitochondria elicit and potentiate an inflammatory
response. In detail, cytokines impede mitochondrial oxidative phosphorylation and asso-
ciated ATP production and instigate mitochondrial ROS production. On the other hand,
severely injured mitochondria can release their contents into the cytosol and extracellular
environment and thereby amplify the inflammatory process [38]. Characteristic features of
mitochondriopathies are detailed below.

4. Mitochondriopathies
4.1. Definition and Main Characteristics

Mitochondrial dysfunction (mitochondriopathy) is characterized by declined mi-
tochondrial biogenesis, alterations in the mitochondrial membrane potential, reduced
mitochondrial number, and changes in the activity of oxidative capacity due to ROS ac-
cumulation [1]. Despite the fact that an appropriate level of ROS is important for cell
survival [39], there is an association between pathophysiological changes in mitochondria
in aging or neurodegenerative disorders and impaired mitochondrial functions such as
oxidative capacity/antioxidant imbalance, diminished OXPHOS, and reduced production
of ATP [1]. Cellular dysfunction induced by a reduced ATP/ADP ratio is accompanied
by increased production of ROS in mitochondria. Therefore, reduced ATP production and
promoted oxidative stress triggers senescence dysfunction of highly-demanding cells such
as neurons, skeletal muscle cells, and cardiac myocytes [40]. The damaging of mitochon-
dria, the main producers of ROS, results in the accumulation of dysfunctional components
caused by radicals generated by mitochondria themselves [41]. Moreover, the damaging
of mtDNA after exposure to oxidative stress is worse and persist longer compared to
nuclear DNA, probably due to the lack of histones and repair mechanisms in mtDNA;
the occurrence of very few non-coding sequences, which increases the likelihood of the
event affecting genes; and the location of mtDNA near the inner mitochondrial membrane,
which is the main site of ROS generation [42]. In addition, more frequent replication of
mtDNA in comparison with nuclear DNA also contributes to the higher rate of mutations.
The highly polyploid state of mtDNA within each cell is associated with the occurrence of
mutations that can exist in a subset of total cellular mtDNA. The replication of mtDNA
molecules occurs during mitosis, but they also replicate continuously and independently
of the cell cycle [43]. Interestingly, an imperfect replication process has recently been sug-
gested to be the main source of mtDNA point mutations; DNA polymerase gamma (POLG)
gene, which encodes DNA polymerase, which is responsible for the replication of mtDNA,
could be involved in the majority of these mutagenic events [44]. Indeed, mtDNA mutator
mice with exonuclease/proofreading inactive catalytic subunit of mtDNA polymerase
gamma, PolgD257A/D257A, exerted an accumulation of mtDNA mutations in various tissues,
suggesting that these may be a driving force in premature aging [45–48].

4.2. mtDNA Defects

Mitochondrial disorders are described as genetically determined syndromes associ-
ated with defective OXPHOS caused by mutations of genes encoded by mitochondrial
or nuclear DNA [49]. The major cause of most mitochondrial disorders is a failure to
produce an appropriate amount of ATP, which results in multisystemic disorders. Thus,
extremely severe clinical manifestations are observed in highly energy-demanding tis-
sues such as the central nervous system and skeletal and heart muscle. Nevertheless,
mitochondrial dysfunction can affect any organ [50]. Mitochondrial disorders lead to
major disability and also frequently result in premature death or can progress slowly in a
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chronic condition [49]. The clinical manifestation of mitochondrial dysfunctions suggest a
specific disease phenotype and mtDNA defect [50]. Mitochondrial encephalomyopathy
lactic acidosis and stroke-like episodes (MELAS) represent a clinical syndrome associated
with mitochondrial point mutations (most commonly T8993G or T8993C mutations in
the ATP6 gene) that is characterized by stroke-like episodes with seizures, episodes of
encephalopathy, vomiting, diabetes mellitus, migraine, cardiomyopathy, cerebellar ataxia,
pigmentary retinopathy, lactic acidosis, myopathy, hearing impairments, etc. [50–52]. A dra-
matic drop in mitochondrial ATP synthesis was associated with two MELAS mutations
in the tRNALeu gene [52]. MELAS is related to deficiency in complex I/IV, resulting in
ROS production. The detection of ROS in patients’ brain tissues and skin fibroblasts was
performed through the detection of 8-hydroxy-2′-deoxyguanosine (8OH2′dG), decreased
glutathione/oxidised glutathione (GSH/GSSH) ratio, and increased oxidative damage
to lipids [53]. Other clinical syndromes associated with mtDNA mutations include neu-
rogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), myoclonic epilepsy
and ragged-red fibers (MERRF), and Leber hereditary optic neuropathy (LHON) [42,50].
Although defective OXPHOS is a key characteristic of mitochondrial disorders caused by
variants of mtDNA, the pathogenesis of specific variants such as MERRF extend beyond
the impaired production of ATP [54]. Mitochondrial disorders related to mitochondrial
mutations are usually maternally inherited or sometimes sporadic (such as single mtDNA
macrodeletions) [49]. Moreover, due to the dual genetic control of nuclear and mtDNA,
mutations in nuclear DNA can also contribute to mitochondrial disorders such as Leigh
syndrome (LS) [50].

5. Liquid Biopsy Application in MELAS Management

The diagnostics of mitochondrial disorders include clinical examination and structural
and functional imaging [55]. In addition, elevated lactate is usually observed in patients
with MELAS and LS when compared with chronic progressive external ophthalmople-
gia (CPEO) and LHON [50]. However, mitochondrial research currently offers a wide
spectrum of other potential biomarkers available in cerebrospinal fluid (CSF) or other
biofluids, especially blood, for the diagnosis, follow-up, and evaluation of the response to
treatment of patients with mitochondrial disorders [49]. CSF represents a good source of
biomarkers with diagnostic accuracy [56]; however, the disadvantage of CSF is the need
for an invasive lumbar puncture that can lead to post-lumbar puncture complications [57].
Thus, the identification of usable biomarkers from more available biofluids is currently a
widely discussed topic.

Fibroblast growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF-15)
have gained an attention as promising diagnostic biomarkers for mitochondrial disor-
ders [58]. FGF21 is a regulator of lipid metabolism that is observed to be increased in adult
mitochondrial disorders and which is also associated with the degree of mitochondrial
dysfunction. GDF-15 is induced in response to defects in energy metabolism. In ad-
dition to FGF21 and GDF-15 obtained from CSF or blood [59,60], cell-free circulating
mtDNA can also serve as a novel MELAS biomarker [49]. Other potential biomarkers for
mitochondrial disorders include microRNA (miRNA) or small molecule reporters [55].
The utilization of small molecule reporters enables the measurement of mitochondrial func-
tion, mitochondrial-specific metabolites, and ROS generation in vivo [58]. Small molecule
reporters are intravenously administered tailor-made probes that accumulate in the mi-
tochondria of an intact organism and react with a substrate of interest. After the reaction
with the substrate, probes are modified to produce an exogenous marker that can be ex-
tracted and quantified to provide inferences about the reacting substrate [55,58]. Moreover,
in order to establish a marker of MELAS activity, Nukui et al. recently developed an ATP
assay utilizing the luciferase luminous reaction [61]. In addition, the quantification of ROS
concentration can be performed using the SNAP-tag technique based on the small molecule
reporter SNAP-peroxy-green, which allows molecular imaging for H2O2 in living cells [62].
Despite so far being evaluated only preclinically, this technique can be applicable also in
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drug delivery and the monitoring of drug activity in mitochondria [58]. In addition, molec-
ular genetic testing can prove mitochondrial disorders. Despite the common detection of
mutations in the blood, skeletal muscle is also advisable for the detection of mitochondrial
mutations [50]. Table 1 provides a detailed description of the above-discussed biomark-
ers that are potentially utilizable for the management of MELAS or other mitochondrial
disorders.

Table 1. Detailed description of studies evaluating potential mitochondrial encephalomyopathy lactic acidosis and stroke-
like episodes (MELAS) biomarkers.

Biomarker Study Details Results Reference

FGF21 and GDF-15 Serum, CSF (case study)

Correlation between serum/CSF FGF21 and GDF-15 and MELAS
vs conventional markers (lactate and pyruvate), of which the
level decreased with the disease progression. FGF21 and GDF-15
were high in serum in the initial stage and greatly increased at the
terminal stage of the disease

[59]

FGF21 Serum (99 adult carriers of
the m.3243A. G mutation)

FGF21 in adult carriers of m.3243A >G mutation (mtDNA
mutation associated with MELAS) demonstrated little value in
the monitoring and prediction of of the disease course

[60]

FGF21, GDF-15, ccf-mtDNA Blood (cohort of 123
mitochondrial patients)

Increased FGF21, GDF-15, and ccf-mtDNA in MELAS; further
increased during acute events (useful biomarkers for monitoring
treatment effectiveness) vs. creatine, which only differentiated
severe mitochondrial patients

[49]

ROS-sensitive miRNA-9/9* MELAS cybrids

ROS-sensitive miRNA-9/9* used to control the expression of
mitochondrial tRNA-modyfing enzymes and also to be involved
in molecular mechanisms of MELAS in cybrid cells. Oxidative
stress-mediated induction of miRNA-9/9* post-transcriptionally
negatively regulates mt-tRNA-modification enzymes.
Downregulation of these enzymes by miRNA-9/9* contributes to
MELAS phenotype

[63]

ATP assay (luciferase luminious reaction) Inverse correlation between CSF ATP with disease activity [61]

ROS quantification Pre-clinical evaluation SNAP-tag technique based on small molecule reporter
SNAP-peroxy-green (molecular imaging for H2O2 in living cells) [62]

Abbreviations: ATP, adenosine triphosphate; ccf-mtDNA, cell free circulating-mtDNA; CSF, cerebrospinal fluid; FGF21, fibroblast growth
factor 21; GDF-15, growth/differentiation factor 15; MELAS, mitochondrial encephalomyopathy lactic acidosis, and stroke-like episodes;
miRNA, microRNA; ROS, reactive oxygen species.

In conclusion, the above-discussed advances in molecular medicine in the use of
biomarkers for the management of mitochondrial syndromes may in the future contribute
to the identification of biomarkers associated with specific pathogenic processes, including
ROS or the effect on ATP, which could improve the management of patients in terms of 3P
medicine.

6. Mitochondrial Dysfunction in Neurodegenerative Disorders
6.1. Oxidative Stress and Mitochondrial Dysfunction Are Central for Neurodegeneration

Oxidative stress and mitochondrial dysfunction are described as a central character-
istic of brain degenerative diseases [42,64]. The brain, a structure enriched in oxidizable
substrates, high oxygen demand, and relatively fewer antioxidant enzymes, contributes to
the more pronounced vulnerability to oxidative stress [65]. These highly energy-demanding
cells are closely associated with the mitochondria. Thus, the uptake of oxygen utilized
in the mitochondrial respiratory chain allows not only the generation of energy but also
ROS as by-products [66]. In addition, the brain is rich in redo-active metals including
copper and iron that contribute to ROS generation. Brain cell membranes are more prone
to lipid peroxidation due to their content of polyunsaturated fatty acids (PUFAs) [65].
Neurodegeneration is associated with the disruption of mitochondrial processes, including
the production of ATP, membrane potential, calcium uptake, and permeability transition
pore activation, which results in cell death [42,67]. Alzheimer’s disease (AD), defined as a
progressive loss of memory, and Parkinson’s disease (PD), associated with impairments
in movement, represent two main neurodegenerative diseases [64]. The involvement of
mitochondria in neurodegenerative diseases was supported by the identification of com-
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plex I deficiency in the substantia nigra and platelet mitochondria of patients with PA and
complex IV deficiency in AD. However, respiratory deficiencies could be secondary to
pathogenic initiating factors, such as mutations in nuclear genes encoding non-respiratory
proteins [42].

6.1.1. Alzheimer’s Disease (AD)

Despite its multifactorial etiology, mitochondrial dysfunction and enhanced apoptosis
are emerging hallmarks of AD [64]. The mitochondrial functions negatively affected in
AD include OXPHOS, responsible for ATP production and ROS generation [22]. Oxidative
damage related to abnormal marked accumulation of amyloid beta (Aβ) plaques and the
deposition of neurofibrillary tangles is observed in the brains of AD patients. Biometals
are suggested to play an important role in neurodegeneration due to high-affinity binding
sites for copper and zinc on Aβ and its amyloid precursor protein (APP). As copper is
described as a potent mediator of ·OH, it contributes to the elevated oxidative stress charac-
teristics of the AD brain. A high concentration of copper is present in amyloid plaques [68].
Aβ plaques bind to red blood cells and impair their function through phosholipid peroxi-
dation while these processes injure the vasculature, potentially reducing the delivery of
oxygen to the brain, facilitating AD [69]. In addition, Aβ and APP levels are increased in
the brains of AD patients, whereas mutations in the APP gene enhance Aβ production.
Elevated ROS accompanied by decreased ATP was observed in SH-SY5Y cells with the
mutant APP gene [70]. Oxidative base damage of both nuclear and mtDNA was reported
in the brains of post-mortem AD patients. A mitochondrial origin of ROS in AD has
been suggested, due to the high oxygen consumption of neurons and the accumulation of
damaged mitochondria in AD brains [22]. Dysfunctional mitochondria produce ATP less ef-
fectively but are more effective in the production of ROS; therefore, these mitochondria are
suggested to represent a main source of oxidative imbalance in AD [71]. The exacerbated
ROS production, resulting in oxidative stress, increases abnormalities in neuronal cells that
are often followed by apoptosis and consequent cognitive dysfunction and dementia [72].

6.1.2. Parkinson’s Disease (PD)

PD is a complex, multifactorial disease affected by diverse genetic, biological, and
environmental factors [73]. The progressive loss of dopaminergic neurons in the nigro-
stratial system is the main feature of PD. Mitochondrial impairments and oxidative damage
are described as alleged mechanisms resulting in the aggregation of α-synuclein (α-Syn)
that promote dopaminergic neurotoxicity [74]. Enhanced oxidative stress in PD brains
is associated with mitochondrial dysfunction, impaired iron metabolism, and elevated
ROS production as a result of increased dopamine turnover [75]. PD is assumed to be
triggered by mitochondrial impairment, especially through complex I dysfunction, a main
entry point of the respiratory chain. Reduced activity of complex I was observed in
mitochondria platelets and the substantia nigra and frontal cortex of PD patients [76].
In addition, reduced activity of complex IV was observed in post-mortem homogenates of
PD patients [21]; however, a recent study revealed no significant difference in complex IV in
PD [77]. Mitochondrial dysfunction involved in PD can result from impaired mitochondrial
biogenesis, increased ROS generation, defects in mitophagy, dysfunction in the ETC,
calcium imbalance, disrupted mitochondrial dynamics, or a combination of these [73].
The disrupted equilibrium between oxidant/antioxidant levels demonstrated in PD is
suggested to be associated with the assumption that mitochondrial oxidative stress is
mediated by dopamine metabolism, whereas dopamine’s ability to undergo auto-oxidation
allows the production of free radicals and active quinines that interact with ROS scavengers,
respiratory chain complexes, and proteins of mitophagy pathways [21]. Impaired OXPHOS
leads to an increased level of ROS/RNS, which initiates a “vicious circle” that is further
exacerbated by the presence of dopamine. In addition, mutations in DJ-1, a ROS scavenger,
promote mitochondrial oxidative stress that acts on complex I [21]. In addition, PINK1
deficiency leads to impairments in the respiration and inhibition of complex I and increased
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ROS production [67]. Moreover, the accumulation of iron in the substantia nigra of sporadic
PD patients causes enhanced ROS generation and increased α-Syn aggregation. In addition,
defects in other genes, such as LRRK2 and CHCHD2, were associated with ROS generation
in PD [73].

6.2. Mitochondria-Associated Liquid Biopsy Biomarker Panels in Neurodegenerative Disorders

Neurodegenerative disorders represent a serious problem for society due to the com-
promising of the quality of life, especially for the aging population. The traditional diag-
nosis of neurodegenerative diseases is not always sufficient. For example, the diagnosis
of PD is feasible in case when 60%–80 % of the substantia nigra dopaminergic region is
lost [75]. The diagnostics of AD are traditionally performed through the identification of
specific symptoms, such as mild cognitive dementia, and labeled as probable AD; however,
a definite AD diagnosis can be confirmed only after the observation of autopsy-revealed
amyloid plaques or tau-based neurofibrillary tangles [78]. Nevertheless, alternatives to tra-
ditional AD diagnostics could represent new approaches such as the detection of amyloid
Aβ and τ pathology through imaging of the brain [79], the development or optimization of
screening tools [57], CSF assays [79], or the identification of other non-invasive biomark-
ers. Moreover, once diagnosed, there is a lack of non-invasive biomarkers to predict the
disease progression or to achieve a prognosis [80]. Therefore, the inexistence of estab-
lished biomarkers for the prediction of disease progression contributes to the challenges
associated with neurodegenerative diseases. Indeed, the development of new biomarkers
applicable in the management of neurodegenerative diseases is highly necessary. Although
CSF is a good marker of pathological processes associated with the central nervous system,
other biofluids such as blood and saliva represent a less invasive and repeatedly utilizable
source of biomarkers to monitor disease progress or the responses to neurodegenerative
diseases [75]. A high number of mitochondria is present in cells with a high energy de-
mand (e.g., neurons); however, the increased risk of cardiomyopathy in AD and PD suggest
systemic mitochondrial dysfunction. Systemic dysfunction can be observed in different
cell types, for example in blood cells [81]. Furthermore, ROS are highly reactive, unstable,
and have a short half-life, and it is thus difficult to measure them directly. Therefore,
oxidized molecule products of ROS are commonly used as biomarkers, or ROS can be
measured indirectly through evaluating antioxidant activity [71].

6.2.1. Alzheimer’s Disease

An examination of bio-fluids offers a variety of biomarkers applicable in the manage-
ment of AD, such as apolipoprotein E4 (ApoE4) obtained from CSF. ApoE4 is a major risk
for sporadic AD and was demonstrated to impair mitochondrial function, cause oxidative
stress, and damage synapses, resulting in cognitive deficits [82–84]. Moreover, mtDNA
in CSF could serve as a useful biomarker for presymptomatic patients carrying a PSEN1
mutation, which is associated with mitochondrial membranes and thus may affect mito-
chondrial functions [85,86]. PSEN1 mutation has been recently found to be associated with
increased ROS production [87]. In addition to CSF, blood cells offer several opportunities to
improve AD management [79], for example by measuring oxidative stress through specific
biomarkers such as specific products of lipid peroxidation (lipofuscin-like pigments) [88]
or the level of H2O2, organic hydroperoxides, glutathione/glutathione disulfide ratio,
glutathione transferase activity, and ATP levels [89]. Moreover, diminished cytochrome
c oxidase (COX) activity observed in AD platelet mitochondria was associated with the
overproduction of ROS and the underproduction of ATP [90]. Furthemore, the risk of devel-
opment of late-onset AD is affected by several genetic and non-genetic factors. A familial
aggregation is described in many late-onset AD cases; first degree family history of the
disease, especially a parent, is the main risk factor for late-onset AD among cognitively nor-
mal individuals. Indeed, reduced COX activity in platelet mitochondria has been observed
only among those cognitively normal individuals with a maternal history of late-onset AD.
Therefore, this association between maternal history of late-onset AD and COX suggests a
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transmission through maternally inherited mtDNA [91]. In addition, increased oxidative
damage has been observed in mitochondria isolated from lymphocytes of subjects with
mild cognitive impairment [92]. Similarly, mitochondrial aconitase (ACO2), a Krebs cycle
enzyme sensitive to oxidative damage, was found to be reduced in peripheral lymphocytes
of AD and mild cognitive impairment subjects and to correlate with antioxidant protec-
tion [93]. These results highlight the potential importance of oxidative stress markers in
the peripheral system to reflect brain damage and to serve as a marker for AD diagnosis,
progression, or treatment [92,93]. Despite the undeniable importance of clinical testing for
the identification of new potential AD biomarkers, animal studies can also provide interest-
ing findings that can be applicable in further clinical trials. Indeed, AD-specific plaques
that consist of Aβ peptides are formed from the cleavage of APP by β- and γ-secretases,
whereas presenilin-1 (PS-1) is a part of the γ-secretase complex [94]. González-Domínguez
et al. observed an important role of oxidative stress in AD pathogenesis, demonstrated
by reduced levels of antioxidants such as uric acid, glutathione, and homocarnosine in
an APP/PS1 transgenic mouse model [95]. Table 2 provides a detailed overview of the
above-discussed biomarkers evaluated in AD.

Table 2. Details of the evaluation of biomarkers potentially utilizable in Alzheimer’s disease (AD).

Biomarker (Biofluid) Study Participants (Details) Result Reference

ApoE (CSF)
AD and MCI patients, and normal
control from the ADNI study
(n = 287)

Level of ApoE→ discrimination between AD and
normal controls [84]

mtDNA (CSF)

Selected from a cohort of 282
subjects (AD and other cognitive
disorders Unit of the Hospital
Clinic of Barcelona)

Low mtDNA in presymptomatic patients with
PSEN1 mutation [85]

Lipofuscin-like pigments (blood) AD patients (n = 44) and
age-matched controls (n = 16)

Increased lipofuscin-like pigments (productsof lipid
peroxidation) in AD vs. controls [88]

Oxidant and antioxidant
metabolites (blood)

AD patients (n = 12), age-mached
controls (n = 14), and young adult
controls (n = 14)

Increased oxidative stress, hydrogen peroxide,
organic hydroperoxide levels and reduced
glutathione/glutathione disulfide ratio, glutathione
transferase activity, and ATP in AD patients and
age-matched control vs. young adult control

[89]

COX (mitochodnria isolated
platelets) AD and age-matched controls Decrease in COX activity, diminished platelet ATP

levels, and increased ROS in AD [90]

COX
Cognitively normal (n = 36)
individuals divided into 3 groups
(parental history of late-onset AD)

Reduced COX activity in platelet mitochondria
among cognitively normal individuals with maternal
history of late-onset AD

[91]

Oxidative stress markers
(mitochodnria isolated from
lymphocytes)

Subjects with mild cognitive
impairment (n = 12) and controls
(n = 10)

Increased oxidative stress markers (protein
carbonyls, 3-nitrotyrosine) [92]

Mitochondrial aconitase
(lymphocytes)

AD (n = 28), subjects with mild
cognitive impairment (n = 22),
older adults with normal
cognition (n = 21), and younger
adults with normal cognition
(n = 19)

Mitochondrial aconitase reduced in AD and mild
cognitive impairment [93]

Antioxidants (uric acid,
glutathione, homocarnosine)

In vivo model of AD (APP/PS-1
transgenic mice)

Reduced uric acid, glutathione, homocarnosine
(marker of systemic oxidative stress as a hallmark
of AD)

[95]

Abbreviations: AD, Alzheimer’s disease; ApoE, Apolipoprotein E4; APP, amyloid precursor protein; COX, cytochrome c oxidase; CSF,
cerebrospinal fluid; MCI, mild cognitive impairment; mtDNA, mitochodnrial DNA; PS-1, presenilin-1.

Despite the above-discussed evaluation of AD biomarkers related to oxidative stress
and ATP, current research on the pathogenesis of AD has produced novel insights that
could be applicable for the detection of other specific biomarkers. Due to the the relevance
of AD and mitochondrial dysfunction, focusing on such mechanisms could help to iden-
tify new biomarkers. Notably, blood represents a valuable source of reliable diagnostic
biomarkers [96]. A decrease in endogenous basal respiration rates and in the maximal
capacity of the electron transport system, and increased respiratory rates after inhibition
of complex I of the electron transport system have been observed in intact platelets of
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AD patients. In addition, AD was associated with increased activity of complex I and
decreased complex IV activity, as well as decreased plasma Q10 concentration. These
results suggest the insufficiency of substrates entering OXPHOS and functional imbalance
in the electron transport system, which contributes to the decreased respiration in intact
platelets and mitochondrial dysfunction in the initial AD [97]. Moreover, Lunnon et al.
observed altered mitochondrial genes in the blood of early AD patients [98]. Similarly,
an integrated analysis of ultra-deep proteomes in the cortex, CSF, and serum revealed a
mitochondrial signature in AD [99]. Furthermore, an identification of genes related to
AD from blood is essential for the early diagnosis of the disease and could predict AD
classification [100]. Moreover, differential expression of mRNAs related to prodrome and
the progression of AD revealed that mitochondrial and ribosomal dysfunction in peripheral
blood represent early signs in AD patients [101]. Finally, Perrotte et al. strengthened the
potential applicability of specific oxidative stress markers as non-invasive blood-based
biomarkers for AD management [102]. Conclusively, current approaches evaluating novel
biomarkers for AD management could contribute to the further identification of biomark-
ers of specific pathological processes including mitochondrial dysfunctions and related
ROS/ATP impairments, which may be used in individualized 3P medicine.

6.2.2. Parkinson’s Disease

The identification and implementation of novel biomarkers is necessary for the im-
provement of PD management. Current research offers several biomarkers associated with
mitochondrial oxidative stress or ATP that could potentially be applicable in PD, such as
proteins DJ-1 and α-Syn. DJ-1 protects dopaminergic neurons against neurodegeneration
in PD, as well as protecting mitochondria against oxidative stress [103] and modulating
the mitochondrial response against oxidative stress. Cultured fibroblasts of a 47-year-
old woman affected by a multisystem disorder characterized by progressive, early-onset
parkinsonism and other impairments associated with a novel homozygous mutation in
DJ-1 showed lowered ATP synthesis, high ROS levels, and reduced subunits of complex I,
and abnormal markers of oxidative stress in the blood [104]. α-Syn is a component of Lewy
bodies [73], the histopathological hallmark of PD described as fibrillar aggregates [105],
and was identified as the first genetic familial PD gene. An increase in wild-type α-Syn
and α-Syn with PD-associated mutations induced mitochondrial fragmentation and ROS
production in vivo and in vitro [73]. Despite its invasive nature, CSF represents a source of
DJ-1 and α-Syn as biomarkers utilizable for PD management [106,107]. However, neither
DJ-1 nor α-Syn was found to be a useful plasma biomarker for PD diagnosis [106]. Products
of oxidative damage of cellular components could also serve as PD biomarkers related
to oxidative stress [75], such as advanced oxidized protein products [108], biopyrin mea-
sured in urine [109], the level of mitochondrial ROS in monocytes, SOD [110], glutathione
peroxidase activity, oxidized glutathione, and malondialdehyde contents in blood [111].
In addition, serum uric acid has been studied in PD pathogenesis due to its role as a
biomarker, as well as an antioxidant iron scavenger [112]. Current meta-analysis revealed
lowered serum levels of uric acid in PD patients, whereas a further decrease was observed
with disease progression [113]. Table 3 provides detailed overview of the above-discussed
biomarkers potentially utilizable in the management of PD.
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Table 3. Details of the evaluation of biomarkers potentially utilizable in Parkinson’s disease (PD).

Biomarker Study Participants Result Reference

DJ-1 (CSF)
PD patients (n = 43) and MSA
patients (n = 23), and
non-neurological control (n = 30)

CSF DJ-1 levels to distinguish MSA from PD [107]

DJ-1 and α-Syn (blood and
recently determined CSF levels)

PD patients (n = 126) and normal
controls (n = 122)

Despite accessibility in CSF, DJ-1 and α-Syn are not
applicable as useful plasma biomarkers for PD
diagnosis

[106]

Advanced oxidized protein
products (CSF, serum)

PD patients (n = 60) and control
subjects (n = 45)

Higher advanced oxidized protein products (which
originate as a result of the activity of free radicals) in
PD patients vs negative controls

[108]

Biopyrin (urine) PD patients (n = 234) and controls
(n = 65)

Increased biopyrin (oxidative product of bilirubin) in
idiopathic PD patients [109]

ROS, SOD (blood) Increased level of mitochondrial ROS in monocytes
and reduced level of antioxidant SOD in blood [110]

Oxidative stress markers (blood)
PD patients (n = 45), elderly
subjetcs (n = 34), and adult
healthy subjects (n = 20)

Decreased glutathione peroxidase activity, increased
oxidized glutathione and malondialdehyde contents [111]

Uric acid (blood) Early PD patients (n = 42) Lower levels of serum uric acid associated with later
occurrence of mild cognitive impairments [112]

Abbreviations: CSF, cerebrospinal fluid; PD, Parkinson’s disease; MSA, multiple system atrophy patients; ROS, reactive oxygen species;
SOD, superoxide dismutase; α-Syn, α-synuclein.

Due to the inexistence of accepted markers for the diagnosis and prognosis of PD,
the identification of molecular signatures could improve further management of the disease
and the establishment of novel markers associated with specifically monitored processes.
Peripheral cells from blood share transcriptional changes that occur in the neurodegenera-
tive brain and thus represent easily accessible tissue that could serve as a valuable source to
clarify particular processes of PD [80]. Pinho et al. investigated gene expression profiling of
peripheral blood and revealed that the altered expression of genes involved in various PD
processes, including those associated with mitochondria, can discriminate rapid from slow
PD progression [80]. The translational approach, initiated by the analysis of secretomes
cultured under controlled conditions, followed by the identification of PD-related proteins
with this pipeline, further translated into the evaluation of plasma samples, allows for the
identification of circulating biomarkers that correlate with PD. This approach revealed a
changed level of two mitochondrial-related proteins in PD patients when compared with
controls [114]. In addition, primary skin fibroblasts were described as a patient-relevant
model, capturing PD molecular mechanisms, and could be therefore used to identify new
prognostic markers [115]. Currently, the researchers of neurodegenerative diseases are
discussing the applicability of mitochondrial-derived vesicles generated by mitochondrial
quality control, secreted in biofluids, in order to provide an important insight into the
processes associated with PD [74,116]. The above-discussed rapid advancement in the
identification of new biomarkers could potentially result in the establishment of novel
markers used to evaluate the association of PD and specific processes such as mitochondrial
dysfunction and the impact of ROS.

7. Mitochondrial Injury in Carcinogenesis: The Clue and Related Biomarker Panels

In comparison with healthy cells, cancer cells’ mitochondria can produce increased
amount of ROS. Glucose deprivation in the tumor microenvironment promotes oxidative
stress in tumor cells [117]. Although healthy cells primarily utilize OXPHOS to produce
ATP, cancer cells preferably undergo aerobic glycolysis, even under normoxic conditions.
This metabolic reprogramming of cancer cells, known as the Warburg effect, is defined by
increased glucose uptake and lactate secretion, crucial for the adaptation to the hypoxic
environment and hyperproliferation [118–120]. Cancer cells are characterized by increased
production of ROS due to enhanced proliferation and glycolytic activity. Excessive ROS
production in cancer cells exerts beneficial effects through promoting proliferation, aber-
rant metabolic activities, and angiogenesis. Tumorigensis can be promoted by oxidative
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stress through the accumulation of mutations [120]. Mitochondrial ROS contribute to
the nuclear or mtDNA mutations and thus could promote neoplastic transformation or
cancer progression [121]. In addition, elevated levels of mitochondrial ROS in cancer
stem cells potentiate cancer invasiveness and metastasis through fatty acid β-oxidation,
which results in the epithelial-mesenchymal transition [122]. The survival of cancer cells is
highly affected by their ability to control antioxidant activity [120]. Cancer cells possess
higher antioxidant capacity as a selective advantage to survive in pro-oxidant conditions,
such as anti-cancer therapy [117]. Therefore, cancer cells are able to actively modify their
metabolism and optimize the level of ROS and thus improve their survival [123]. Table 4
provides a brief overview of selected oxidative damage markers evaluated in lung, breast,
colorectal, and prostate cancer [124–127], as these represented the most commonly diag-
nosed cancer types for both men and women in 2018 [128]. In conclusion, cancer offers a
wide range of potential liquid biopsy markers of oxidative damage, allowing improved
management of the disease.

Table 4. Liquid biopsy biomarkers associated with oxidative damage in the top four cancer types (incidence).

Cancer Type Biofluid Result Reference

LC Blood samples, LC patients (n = 40)
and healthy controls (n = 40) Higher 8OHdG in LC vs healthy control [126]

BC Blood samples (serum), BC patients
(n = 35) and healthy controls (n = 35)

Higher MDA, GSSG in BC vs control.
Lower GSH, TAC, GSH/GSSG ratio in BC vs control. [125]

CRC
Blood samples, CRC pacients recruited
into a population-based study in
Germany (n = 3361)

Higher d-ROMs and lower TTL→ poorer prognosis [124]

PC Blood samples, high-risk individuals
(n = 20), healthy controls (n = 20) Higher 8OHdG in high-risk subjects [127]

Abbreviations: 8OHdG, 8-hydroxy-2′–deoxyguanosine; BC, breast cancer; CRC, colorectal cancer; d-ROMs, Diacron reactive oxygen
metabolites; GSH, glutathione (total, reduced); GSSG, glutathione disulfide; LC, lung cancer; MDA, malondialdehyde; TAC, total antioxidant
capacity; TTL, total thiol level; PC, prostate cancer.

Based on the above, although the excessive accumulation of mitochondrial ROS
promotes aging, the development of neurodegenerative and metabolic disorders, and par-
ticipates in mitochondrial syndromes, all of which are associated with the fatal damage of
cellular structures, in cancer, due to its high adaptability and dynamism, tumor cells can
use increased ROS generation to their advantage in order to survive.

8. Antioxidant Diet Recommendations

Vegetable, fruit, whole grains, and medicinal plants are rich in a wide spectrum
of phytochemicals. Phytochemicals can be classified into five groups including pheno-
lics, carotenoids, alkaloids, organosulphur compounds, and nitrogen-containing com-
pounds [129,130]. A significant benefit of phytochemicals, either isolated or in mixtures
in whole plants, is associated with the wide range of biological effects in the preven-
tion or management of various pathologies, which are based on their anti-inflammatory,
antibacterial, anti-viral, anti-cancer, antioxidant, and many other health-beneficiary ac-
tivities [130–142]. The function of phytochemicals as natural antioxidants is utilizable
not only in cancer [143–150], but also in other pathologies associated with oxidative dam-
age [151]. Despite inefficient ATP production, dysfunctional or damaged mitochondria
also excessively generate ROS [97]. Mitochondrial dysfunction and associated enhanced
oxidative damage represent one of the key mechanisms of aging, neurodegenerative or
mitochondrial disorders [1,6,152,153]. However, the ability of phytochemicals to act as
ROS scavengers or to modulate metabolic function can be utilized in the management of
such diseases [154]. Flavonoids are described as important scavengers of ROS and also
attenuate mitochondrial ROS formation [155]. The efficiency of numerous phytochemi-
cals to protect cells against oxidative damage within the scope of pathologies associated
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with mitochondrial dysfunction has been noted, for example, in aqueous extracts of As-
paragus cochinchinensis root [156], quercetin [157], and curcumin-loaded nanostructured
lipid carrier [158] in models of AD, tyrosol [159] and Mucuna pruriens extract [160] in PD
models, and Taurine and coenzyme Q10 in MELAS [53]. Phytochemicals also exert potent
anti-cancer activity mediated through antioxidant effects [161,162].

In conclusion, a plant-based diet rich in phytochemicals offers a wide usability in the
management of diseases associated with mitochondrial dysfunctions and overproduction
of ROS, such as neurodegenerative or mitochondrial disorders or cancer.

9. Conclusions and Future Perspectives in the Context of 3P Medicine
9.1. Mitochondriopathies as an Attractive Diagnostic and Treatment Target

Mitochondrial injury and dysfunction (also known as mitochondriopathy) is primarily
caused by inherited mutations to chromosomal and/or mtDNA and secondarily by geno-
toxic exogenous factors such as a toxic environment, chronic stress conditions, metabolic
syndromes, etc. With an onset varying from birth to late adulthood, mitochondriopathies
are represented by a spectrum of systemic diseases demonstrating a chronic progressive
course with a multiorgan involvement. Although different functions including signaling,
assembling, and transport can be impaired, functions of the respiratory chain are most
frequently affected in mitochondriopathies, leading to imbalanced oxygen utilization,
uncontrolled ROS release, and reduced energy production, acquiring the character of a
“vicious circle“ (more excessive ROS, less energy production).

Different forms of mitochondriopathy may affect the brain (leucencephalopathy, cal-
cifications, stroke-like episodes, atrophy with dementia, epilepsy, upper motor neuron
signs, ataxia, extrapyramidal manifestations, fatigue) and heart, the peripheral nervous and
endocrine systems, the eyes (cataract, glaucoma, pigmentary retinopathy, optic atrophy,
etc.) and ears (tinnitus and deafness), gut and kidney, as well as the bone marrow [163].
Consequently, mitochondriopathies have been proposed as an attractive diagnostic target
to be investigated in any patient with unexplained progressive multisystem disorder.

9.2. Mitochondriopathies in the Context of Prediction, Targeted Prevention, and Personalization of
Medical Services

Mitochondriopathies are challenging for diagnostics and treatment, due to the broad
spectrum of mitochondrial impairments. Due to an absence of causative therapies and cures
for individual forms of mitochondriopathies, predictive approaches, individualized patient
profiling, targeted prevention, and personalization of medical services are instrumental in
the overall management of mitochondriopathies.

Keeping in mind the above-detailed pathomechanisms, we draw attention to some
specific conditions and tools to be considered at the clinic side, in order to identify pre-
disposed individuals and to introduce targeted mitigating measures against potential
mitochondrial injury and the cascaded development of related disorders.

A. Conditions

• Multi-factorial stress conditions [26,27]
• Genotoxic environment [28]
• Suboptimal health conditions such as primary and secondary vasospasm leading

to mitochondrial damage, due to systemic ischemic-reperfusion injury [26,31]
• Vasoconstriction and disease predisposition to Sicca syndrome, eye disorders,

“young stroke” of unclear etiology, and aggressive cancer-subtypes [15,30,32,164,165]
• Inappropriate diet [31]
• Metabolic syndromes such as diabetes mellitus type 2, due to multi-factorial dam-

age to mitochondria [33] and hyperhomocysteinemia, due to chronic oxidative
stress [34]

• Chronic inflammation and predisposition to impaired healing, cancer, and neu-
rodegeneration [166,167]
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• Autoimmune disorders such as Sjögren’s syndrome with contributing inflamma-
tory and vascular components [168]

• Acute infectious diseases such as COVID-19; viral infections provoke necro-
sis, which amplifies anti-viral immune responses, releasing damage-associated
molecular patterns. Severely affected cells and tissues intrinsically secrete cell-
free nucleic acids such as mtDNA. Indeed, COVID-19 patients with increased
mtDNA levels are at elevated death risk and have to be intubated. Consequently,
cell-free mtDNA is a potential biomarker for individualized survival status
prediction in COVID-19 patients, as a model for a predictive approach under
pandemic conditions [10,169,170].

B. Corresponding analytical tools

• Application of specialized surveys [26,29,30]
• Broad application and comprehensive analysis of liquid biopsy [7,9,10]
• Individualized patient profiling and innovative screening programs focused on

young populations [11,12,167]
• Risk assessment, predictive, and companion diagnostics [10]
• Multi-omics, multi-parametric analysis, and machine learning [171–173]

C. Mitigating measures [15,30–32,174]

• Comprehensive targeted prevention
• Life-style related expert recommendations based on individualized patient pro-

files
• Dietary habits and supplements including natural scavengers and pre- and

pro-biotics

Considering the enormous socio-economic burden of mitochondriopathies and associ-
ated disorders, the paradigm change from reactive medicine to PPPM strategies is strongly
recommended in order to advance health policy in this area [13].
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Abbreviations

O2− Superoxide anion
OH Hydroxyl radical
8OH2′dG 8-hydroxy-2′-deoxyguanosine
AD Alzheimer’s disease
ADP Adenosine diphosphate
ApoE4 Apolipoprotein E4
APP Amyloid beta precursor protein
ATP Adenosine triphosphate
Aβ Amyloid beta
Ca2+ Calcium ions
CPEO Chronic progressive external ophthalmoplegia
CSF Cerebrospinal fluid
DNA Deoxyribonucleic acid
ETC Electron transport chain
FGF21 Fibroblast growth factor 21
GDF-15 Growth/differentiation factor 15
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GPx Glutathione peroxidases
GPX Glutathione peroxidise
Grx2 Glutaredoxin-2
GSH Glutathione
GSSH Oxidised glutathione
H2O2 Hydrogen peroxide
HIF1α Hypoxia inducible factor 1α
IRI Ischemia-reperfusion injury
LHON Leber hereditary optic neuropathy
LS Leigh syndrome
MELAS Mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes
MERRF Myoclonic epilepsy and ragged-red fibers
miRNA MicroRNA
mtDNA Mitochondrial DNA
NAD(+) Nicotinamide adenine dinucleotide
NARP Neurogenic muscle weakness, ataxia and retinitis pigmentosa
OXPHOS Oxidative phosphorylation
PD Parkinson’s disease
PPPM/3PM Predictive, preventive, and personalized medicine
PS-1 Presenilin-1
PUFA Polyunsaturated fatty acids
RNS Reactive nitrogen species
ROS Reactive oxygen species
SOD Superoxide dismutase
SOD2 Superoxide dismutase 2
Trx Thioredoxin
TrxR Thioredoxin reductase
α-Syn α-synuclein
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