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A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli
can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search
and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical
stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual
training procedure. A hierarchical framework is proposed to facilitate the colearning between rats andmachines. In the framework,
the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the
training action transitions triggered by rat’s behavioral states, and an adaptive adjustment policy is developed to adaptively adjust
the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our
knowledge, this study is the first to tackle automatic training of animal cyborgs.

1. Introduction

With advances in brain-machine interfaces (BMIs), neural
engineering, and artificial intelligence, biorobots are becom-
ing more and more attractive. A biorobot uses an animal as
a host and controls the host via neural interfaces. Biorobots
are superior in many aspects to traditional mechanical
robots, such asmobility, perceptivity, adaptability, and energy
consumption. In the recent two decades, biorobots have
been implemented on different kinds of creatures, such as
cockroaches [1], moths [2, 3], sharks [4], rats [5–8], geckos
[9], and beetles [10].

Rat cyborg is one of typical biorobots [5]. It has shown a
great potential in various applications, including search and
rescue in disaster areas, geographic information collection,
explosives detection, and landmine detection [11, 12]. Nowa-
days researchers primarily use three navigation commands
(FORWARD, LEFT, and RIGHT) to steer a rat cyborg [5, 7,
13–15], pioneered by Talwar et al. [5]. Lin et al. developed
the STOP navigation command by electrical stimulation in
the dorsolateral periaqueductal gray (dlPAG) of the brain

[16]. Although the optical neural control technology [17] has
been explored for rat cyborg control, electrical stimulation is
currently the primary way to control a rat cyborg.

Before a rat cyborg can be used for navigation, a manual
training process is needed to reinforce the desired behaviors
(turning left, turning right, and moving forward) by pair-
ing the behaviors with the corresponding electrical stimuli
(LEFT, RIGHT, and FORWARD). Navigation training is
necessary not only for new rat cyborgs, but also for trained
rat cyborgs. A new untrained rat cyborg needs to go through
an entire training procedure to establish connections between
the behaviors and the electrical stimuli, which often takes 1-2
weeks, with 1-2 hours per day. A trained rat cyborg also needs
retraining to keep the connections.

During the manual training, the trainer has to keep
watching the rat cyborg and send the control commands of
electrical stimuli repeatedly. There are three major problems
of manual training. First, the trainer should be professional
in rat cyborg training. It is hard for an inexperienced person
to train a rat cyborg well. Second, the trainer is required to
be highly concentrated all the time. The fatigue may lead to
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somemanualmisoperation, since thewhole procedure is very
time-consuming and tedious. Third, the learning states and
behaviors of the rat cyborg cannot be recorded for quan-
titative analysis and personalized parameter configuration,
which may be very helpful for further research.

To address these problems, we develop a vision-based
automatic training system, which aims to free the trainers
and present a better training result compared to manual
training. In the system, the behaviors of a rat cyborg are
monitored by a camera and analyzed by a computer in real
time. Then, based on the analyzed states, the computer will
continuously make decisions to generate training tasks for
the rat cyborg. A hierarchical training frameworkwhich has a
reactive layer and a deliberative layer is introduced. Based on
the framework, our training system is able to output real-time
electrical stimulation to train rat cyborgs. The experimental
results on navigation show that our method successfully
trained the rat cyborgs in a short time. In addition, the
behavior changes and learning curves recorded during the
training procedure are also discussed.

2. An Overview of Manual Navigation Training

2.1. Principles of Navigation Training. Our rat cyborgs were
developed based on the previous work in [7]. An illus-
tration of the rat cyborg is shown in Figure 1. A pair of
microstimulating electrodes were implanted into the medial
forebrain bundle (MFB) of the rat’s brain. The other two
pairs were implanted into the whisker barrel fields of left and
right somatosensory cortices (SI). After 5 days of recovery, a
wireless microstimulator was mounted on the back of the rat
to deliver electrical stimuli into the brain via the implanted
electrodes.This allowed the user, using a computer, to deliver
the stimulus pulses (pulse interval: 10ms, pulse duration:
1ms, pulse number: 10–15, and pulse amplitude: 1–10V, per
train) to any of the implanted brain sites from distances of up
to 100m away via Bluetooth. The intensity of stimulus pulses
is determined by the pulse number and pulse amplitude.
Stimulation in MFB can excite the rat cyborg by increasing
the level of dopamine in its brain, and stimulation in the left
or right SI makes the rat cyborg feel as if its whiskers were
touching a barrier in the corresponding side [18, 19].

Operant conditioning is often used to train a desired
behavior in an animal [20]. In the rat cyborg navigation
training, MFB stimulation is used as the reward as well as
a cue (FORWARD) to move ahead [21–23]. Left and right
SI stimulation are used as the cues (LEFT and RIGHT)
to turn left and turn right. In order to get the reward,
the rat cyborg needs to learn to do the correct behaviors
corresponding to the cues. The behavior of moving ahead
is trained by “FORWARD-moving ahead-reward” procedure,
the behavior of turning left is trained by “LEFT-turning
left-reward” procedure, and the behavior of turning right is
trained by “RIGHT-turning right-reward” procedure. After
sufficient behavior training, a rat cyborg would turn left
(right) in response to the LEFT (RIGHT) cue andmove ahead
in response to the FORWARD cue. A well-trained rat cyborg
can follow the remote brain stimulation as instructions to
direct its movements. During the training procedure, the
intensity of LEFT or RIGHT remains unchanged for SI
stimulation just acts as a cue, but the intensity (determined
by the pulse number and pulse amplitude) of the reward
stimulation (FORWARD) should be increased (to activate
the rat cyborg) or decreased (to inactivate the rat cyborg)
according to the learning states of the rat cyborg.

2.2. Training Procedures. The manual training procedure is
illustrated in Figure 2. The microstimulating electrodes were
implanted into the brain in surgery procedure. The retrain
arrows indicate that a trained rat cyborg needs retraining.The
two procedures enclosed in the rectangle in red dot are the
most important parts and will be described in detail below.

The stimulation parameters adjustment procedure is to
heuristically find a set of optimal stimulation parameters
for a rat cyborg. It consists of bar-pressing and left-right
adjustment. If a stimulation is too mild, it will be inadequate
to excite the rat cyborg; otherwise, if it is too strong, the rat
cyborg will be injured. The optimal intensity of the reward
stimulation was figured out in the bar-pressing procedure,
and the optimal intensity of the somatosensory cue stimula-
tion was figured out in the left-right adjustment procedure.

Behavior reinforcement procedure is to teach the rat
cyborg to make the correct response to the corresponding
stimulation.The training environment used in this procedure
is an eight-arm radial maze, which has been used in many
behavior studies and can be seen as a consecutively joined
structure of eight T mazes. There are three tasks in this
procedure:

(i) Forward (T0). A task named T0 was to train the
behavior of moving ahead. With the individual cue
of FORWARD, the rat cyborg should go through all
the eight arms of the maze one by one clockwise or
anticlockwise without any incorrect turns.

(ii) Turn Left and Turn Right (T1).A task named T1 was to
train the behaviors of turning left and turning right,
respectively. With reward and LEFT, the rat cyborg
should go through the eight arms one by one clock-
wise without any incorrect turns; with reward and
RIGHT, the rat cyborg should go through the eight
arms one by one anticlockwise without any incorrect
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Figure 2: Manual training procedure.

turns. Concretely speaking, when the rat cyborg is
going to leave the current maze arm (namely, in the
front end of the maze arm), the LEFT or RIGHT cue
will be sent to instruct it. If the rat cyborg turns to
the correct arm, the FORWARD stimulation will be
sent to reward it. The individual reward stimulation
will induce the rat cyborg to move to the tail end of
the arm first and then to the front end of the arm
again. On the other hand, if the rat cyborg turns to
a wrong arm, it will not get any reward. When the rat
cyborg turns around in the wrong arm, the individual
FORWARD stimulation will be sent to induce the rat
cyborg to return to the front end of the arm. Due
to the surgery impact, before there is any training,
under the reward stimulation, some rat cyborgs prefer
to turn left while others prefer the opposite. If a rat
cyborg preferred to turn left, in T1we trained it to turn
left first; otherwise right-turning training goes first.
The first subtraining task in T1 was labeled as T1

𝑎
, and

the second was labeled as T1
𝑏
.

(iii) Mixed Turn (T2). A task named T2 was to reinforce
the behaviors of turning left and turning right simul-
taneously. With reward and random cues, the rat
cyborg should turn to the left (right) arm under LEFT
(RIGHT) stimulationwithoutmaking anymistakes in
8 consecutive turns.

During the behavior reinforcement procedure, the trainer
might adjust the intensity of the reward stimulation based on
his own experience in rat cyborg navigation training. Upon
completion of the T2 task, the rat cyborg will be ready for
navigation.

3. Automatic Navigation Training

Manual training of a rat cyborg needs a lot of effort. We
attempt to automate it with a computing system, replacing
the manually time-consuming training procedure. Our basic
idea is to keep the rat cyborg under surveillance via a camera
and being trained by a computer in real time. The live rat
cyborgs have self-consciousness, and they might underreact
or overreact in the training procedure. Meanwhile, the body
of a rat cyborg is nonrigid and it has various postures.
Therefore, assigning the automatic training to a computer
faces four major issues: (1) how to set training tasks in order
to ensure that a rat cyborg is qualified for navigation; (2) how

to sense motion and behaviors of the rat cyborg in real time;
(3) how to detect abnormal learning states (underreaction or
overreaction) of the rat cyborg in the training procedure; (4)
and developing a smart stimulation strategy which is able to
provide adaptive electrical stimuli. In this section, we first
reset the training tasks in automatic training to settle the first
issue and then propose an automatic training framework to
settle the other three issues.

3.1. Training Tasks. In our previous work on automatic train-
ing [24], we found that training of moving ahead behavior
in the bar-pressing procedure and forward procedure (T0)
was redundant, for this behavior was also trained in T1 and
T2. We eliminated these two procedures, so different to the
manual training, the training tasks in our automatic training
consisted of only T1 and T2. In addition, without training in
T1 first, we had failed to train two rat cyborgs directly with T2
in the previous work. It suggests that the process of rat cyborg
training should follow in order and advance step by step.
The whole procedure of automatic training is illustrated in
Figure 3. The stimulation parameters adjustment procedure
was to get the optimal intensity of the reward stimulation and
somatosensory cue stimulation by manual test. The behavior
reinforcement procedure, which took most of the training
time (1-2 weeks) in the manual training, was automated in
this study.

3.2. The Framework. A hierarchical automatic training
framework is shown in Figure 4. The input of the framework
is the images captured by a bird-eye camera mounted above
the rat cyborg; the output is the adaptive stimuli. This
framework has two layers. The reactive layer provides a
real-time training guidance to the rat cyborg based on the
sensing module and task model. It decides which stimulus
(LEFT, RIGHT, or FORWARD) to send andwhen to stimulate
the rat cyborg. The deliberative layer is responsible for
adaptive adjustment of the reward stimulation according to
the learning states of the rat cyborg. Each module of this
framework is described in detail below.

3.2.1. Sensing Rat Cyborgs. There are two main traditional
methods for rat tracking. One is marking the rat head and
rat body with a bright color [11]; the other one is placing
pressure sensors under the rat foot. However, the color
markers are easily to be covered by the rat body in the
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Figure 4: Automatic rat cyborg training framework.

former method, while it is hard for the latter method to get
accurate head position and body position of the rat. Replacing
these two defective tracking methods, we developed new
methods based on optical flow to get motion parameters
(head position, body position, and heading direction) and
behaviors of the rat. These methods were implemented with
OpenCV library [25].

(1) Sensing Motion. First of all, we need to know where
the rat cyborg is (body position and head position) and to
which direction it is heading in the training environment.The
details of our motion-sensing algorithm are as follows.

(i) Body Position. After background subtraction, a small
rectangle which is big enough to cover a rat cyborg is
used to search the entire image, and the rectangle (R1)
which has the most target pixels is saved. The mean
position of the target pixels in R1 is calculated as the
body position (P

𝑏
).

(ii) HeadPosition.When tracking amoving target, feature
points like corners are usually used [26]. Because
the rat cyborg has a backpack, most of the corners
appear around the backpack area which is very close
to the head. Thus we can take the mean position
of these corners as the head position. We adopted
Shi-Tomasi feature detection algorithm so that good
corners resulted as long as the smaller of the two
eigenvalues was greater than a minimum threshold
[27]. After we get the valid corners of a rat cyborg
in R1, a smaller rectangle which is half of R1 is used

Modified eight-arm 
radial maze

Rat cyborg

Figure 5: Motion parameters calculated by our method. The red
point is the body position (P

𝑏
), the yellow point is the head position

(P
ℎ
), and the blue line is the heading direction of the rat cyborg (Θ

𝑟
).

to search the entire area of R1, and the rectangle
(R2) which has the most corners is saved. The mean
position of the corners in R2 is calculated as the head
position (P

ℎ
).

(iii) Heading Direction. The direction from P
𝑏
to P
ℎ
is

taken as the heading direction of the rat cyborg (Θ
𝑟
).

Figure 5 is a demonstration of our tracking method. The
position of the yellow rectangle would be updated according
to the body location of the rat cyborg. This method has a
tracking accuracy of 89.26%, as measured from ground-truth
manual annotations of ten thousands video frames of the
automatic training procedure.The correct tracking is defined
as follows: P

𝑏
locates the body part of the rat cyborg, P

ℎ

locates the head part of the rat cyborg, and the deviation of
Θ
𝑟
is no greater than 30 degrees. Most of the wrong tracking

occurred at the tail end of themaze armswhere the rat cyborg
bent its body. The computation time between two frames
varies from 15ms to 47ms, and the average computation time
is 26.21ms. The video frame rate in our system is 30 frames
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Figure 6: (a) An overhead view of the modified eight-arm radial maze and state division. A: at the tail end of the maze arms. B: in the passage
of the arm and going inside. C: in the passage of the arm and going outside. CL: in the center circle and the current task is to turn left. CR:
in the center circle and the current task is to turn right. D: in the center circle of the maze. E: out of the maze. (b) Task model. WA: other 5
wrong arms, f: FORWARD, l: LEFT, and r: RIGHT.

per second, leaving the time interval between frames equal
to 33.33ms.Thereby our rat cyborg tracking approach fits the
speed of image acquisition.

(2) Sensing Behaviors. After we get the basic motion parame-
ters, we also need to know what the rat cyborg is doing (i.e.,
behaviors). Rat cyborgs have various behaviors in the training
environment, such as immobility, grooming, and climbing up
the plexiglass wall [28]. In the manual training procedure,
when a rat cyborg is in immobility, only the reward should be
sent to excite the rat cyborg; when a rat cyborg is grooming
or climbing, no stimuli should be sent. However, we did
not automatically recognize grooming and climbing in our
automatic training system (these two behaviors were counted
manually for behavioral analysis). The reasons are as follows:
first, real-time and accurate recognition of grooming and
climbing in our training system is difficult for there is only
one low-resolution camera mounted above the modified
eight-arm radial maze; second, both grooming and climbing
are short-time behaviors, so the failure to detect them should
not have an impact on the automatic training.

A rat cyborg in immobility must be detected for it
would hold still for a long time if it did not get any reward
stimulation. Instead of using the locomotion speed of the
body position to recognize the behavior of immobility, amore
effective method was proposed in this study. Corners which
were “easy to track” were calculated by Shi-Tomasi feature
detection algorithm and among them we implemented Pyra-
mid Lucas-Kanade’s optical flow algorithm to get the number
of the moving corners (𝑁

𝑚
) in the next frame [25]. The

immobility behavior is detected if𝑁
𝑚
is always equal to zero

in the 100 consecutive frames (about 3.33 s). Performance
of immobility recognition was tested using 700 video clips

Table 1: Immobility recognition.

Immobility Movement
Immobility 82 2
Movement 18 598

(about 40 minutes). Our method achieves a precision of
82.0%, a recall of 97.6%, and an accuracy of 97.1%. Detailed
results are shown in Table 1.

3.2.2. Task Model. Task model decides which stimulus to
send and when to stimulate the rat cyborg. The task environ-
ment of the automatic training is a modified eight-arm radial
maze (see Figure 6(a)). Therefore the training tasks can be
divided into eight subtasks. Taking training the behavior of
turning right as example, it can be divided into eight subtasks:
arms 1→2, 2→3, 3→4, 4→5, 5→6, 6→7, 7→8, and 8→1. Each
subtask can be further divided into the transitions of five
primary training states. Taking subtask 8→1 as example, it can
be divided into D→C, C→A, A→B, B→D, and D→CR. The
training states depend on the body position, head position,
and heading direction of the rat cyborg, and their transitions
depend on the current training tasks.

Rat cyborgs have their self-consciousness to move. They
might move to another state without receiving any stimulus
or move to a wrong state even with the correct stimulus.
Thus training state transitions of our automatic training can
be modeled as the task model shown in Figure 6(b). The
state transitions in blue solid arrows are what we expect to
see in the training procedure. With the hint of the direc-
tion stimulus (FORWARD, LEFT, or RIGHT), a rat cyborg
that moves in accordance with the transitions indicated by
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the blue solid arrows would always get reward stimulation,
but one that moves in accordance with the transitions
indicated by the red-dotted arrows would not get any reward
stimulation. A parameterized state machine which bases
its state transitions on sensor readings and heuristics was
chosen, since the structure of it is similar to the manual
training and the expertise can be incorporated easily [29].
It can be easily implemented with a series of if/else rules.
A number of parameters of the state machine are shown
in Table S1 of the Supplementary Material available online
at http://dx.doi.org/10.1155/2016/6459251. Default values of
these parameters were set based on observation frommanual
training trials, discussions with expert trainers, and pre-
experiment in our previous work [24].

3.2.3. Learning States Evaluation. The task model provides a
real-time training guidance to the training rat cyborg when it
is in normal locomotion.When the rat cyborg is demonstrat-
ing some abnormal training behaviors, the learning states
evaluation module will come into play. This module detects
the abnormal learning states (underreaction or overreaction)
of the rat cyborg based on the behavior of immobility and
the current locomotion speed. In the training procedure, the
rat cyborg tends to hold still if it had been familiar with the
training environment. As mentioned before, if the rat cyborg
is in immobility, the reward stimulation should be sent to
excite the rat cyborg. Moreover, if the immobility behavior
is too frequent in a trial, which means the rat cyborg is in
underreaction, the intensity of reward stimulation should be
increased. In addition, if a rat cyborg is moving too fast,
which means the rat cyborg is in underreaction, it may miss
the guidance of the training commands (LEFT, RIGHT, and
FORWARD), especially at the turns of the maze. In such
case, the reward intensity should be decreased to calm the rat
cyborg down. In this module, the number of the immobility
behavior in each trial (labeled as 𝑁

𝑞
) and the locomotion

speed (labeled as𝑉
𝑟
) of the rat cyborg are always recorded.𝑉

𝑟

is calculated by the mean displacement of the body position
in 1800 consecutive frames (about 60 seconds).

3.2.4. Adaptive Adjustment. Adaptive adjustment of the
reward intensity does not always happen, but it is important.
This module would be triggered by the learning states
evaluationmodule to provide the adaptive intensity of reward
stimulation based on two rules written by the training expert.
The two rules are as follows: too frequent emergence of the
immobility behavior (i.e., underreaction) in a trial would
trigger the increase of the reward intensity, and too fast a
speed (i.e., overreaction) would trigger the decrease of the
reward intensity.

Based on the stimulation response of each rat cyborg, we
divided the reward stimulation into different reward levels
(𝐿) [30]. Each rat cyborg had a different safe range of the
reward level in [1, 𝑡], which was figured out by manual test
in the stimulation parameters adjustment procedure. Level
1 is the minimum reward level to excite the rat cyborg, and
level 𝑡 is the maximum reward level to protect the rat cyborg
from being injured by excessively strong reward stimulation.

Video
input

Adaptive electrical
stimuli

Bluetooth

Camera

Modified eight-arm radial maze

Rat cyborg

Computer

Automatic
rat cyborg
training
framework

Figure 7: Automatic rat cyborg training system.

In the safe range, we assume that the higher the level is,
the more excited the rat cyborg will be. Note that in the
automatic training, the initial reward level of each rat cyborg
is not level 1, but the level which has the best reward-
seeking response. Each level is adjusted by the parameters
of pulse number (𝑆) and pulse amplitude (𝑍). Mathematical
relationship between the different levels is shown in (1), and
the two rules are formalized in (2a) and (2b):

𝑆
𝑘+1
= 𝑆
1
+ [
1

4
𝑘] ,

𝑍
𝑘+1
= 𝑍
1
+
1

4
𝑘,

0 ≤ 𝑘 ≤ 𝑡 − 1

(1)

𝐿 = 𝐿 + 1, for 𝑁
𝑞
≥ 4 (2a)

𝐿 = 𝐿 − 1, for 𝑉
𝑟
≥ 80. (2b)

4. Experiments

4.1. System Implementation. The automatic rat cyborg train-
ing system is shown in Figure 7. A bird-eye camera monitors
the whole experimental process and sends real-time video
frames to the computer. The automatic training software
running on the computer processes the video frames timely
and sends adaptive electrical stimuli to the rat cyborg via
Bluetooth. The camera we used is The Imaging Source’s
DFK21BU04. It can capture 30 frames per second, with
a resolution of 640 by 480 pixels. The task environment
is an eight-arm radial maze which has been modified to
facilitate the automatic rat cyborg training (see Figure 8).The
automatic training software is implemented in C++ with a
user-friendly interface written by Qt.

4.2. Steps of Experiments. This study was approved by the
Ethics Committee of Zhejiang University (Agreement num-
ber Zju201402-1-02-034). All applicable institutional and/or
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Modified eight-arm radial maze

Rat cyborg

Figure 8: A side view of the modified eight-arm radial maze for
automatic training. Two high plexiglass walls (40 cm × 15 cm) have
been added to each arm (60 cm × 15 cm) to prevent the rat cyborg
from climbing up the arm, and the width of each arm is set small
enough to prevent the rat cyborg from turning around. Because the
plexiglass walls is shorter than each arm, the rat cyborg can turn
around at the tail end.

national guidelines for the care and use of animals were
followed. We carefully conducted our experiments in four
steps. In step 1, the best manually trained rat cyborg named
F05 was manually navigated by an experimenter along some
defined routes in the modified eight-arm radial maze, and
the outputs of our automatic training system were checked
but not sent to F05. This step ensured the correctness of the
electrical stimulus outputs. In step 2, we tested our training
framework on F05. It successfully finished T1 and T2 tasks
in less than 10 minutes. This step preliminarily ensured the
effectiveness of our training system. Steps 1 and 2 were to
validate our automatic training system. After the surgery
and stimulation parameters adjustment procedures, three
adult Sprague Dawley rats (>250 g), namely, T03, DH06, and
DH08, proceeded to the automatic navigation training in
step 3, which consisted of 4 trials per day with 30 minutes
per trial in consecutive days. The sequence of the training
was T1a→T1b→T2. The completion time of each task and the
behavior changes of each rat cyborg were recorded. A demo
video of this step is shown in Video S1 of the Supplementary
Material available online, and the experimental data of this
step are presented in Table S2 of the Supplementary Material
available online. Finally, in step 4, rat cyborgs which had
successfully completed the training tasks took a manual nav-
igation test in a complex maze (see Figure 9).This step was to
exclude the contingencies of training tasks accomplishment
and compare the navigation performance of the three rat
cyborgs with that of F05. In this step, the rat cyborgs would
bemanually navigated to four goals one by one from the same
starting point (start→goal 1, start→goal 2, start→goal 3, and
start→goal 4), and the total time spent was recorded. A demo

Start 

Goal 1

Goal 2

Goal 3

Goal 4

Figure 9: Navigation test maze. This maze is made of wood and
comprises 10 × 10 unit squares (15 cm × 15 cm per unit square). The
walls of the maze are 15 cm high and the outside walls enclose the
entire maze. The starting point and four goals are also presented.

video of this step is shown in Video S2 of the Supplementary
Material available online.

5. Results and Discussion

In this section, we first analyze the completion time of each
rat cyborg in the training tasks and compare it with that of
manual training. Then we measure the total time spent by
each rat cyborg in the navigation test and compare it with
that of the best manually trained rat cyborg (i.e., F05). In
addition, learning curves and behavior changes of each rat
cyborg in the automatic training are also presented. These
two results which are lacking in the manual training will
provide a new insight into the navigation training. Note that
we do notmake a comparison betweenmanual and automatic
training for the same subjects because it is difficult to avoid
the interference between these two training procedures.
Once a rat cyborg goes through sufficient manual navigation
training, it will have the connections established between
electrical stimulation and navigation behaviors. Its memory
of the previous training will accelerate the training procedure
of the automatic training.

5.1. Completion Time. Table 2 shows the completion time,
which is measured in days and trials, of each training task.
Three rat cyborgs all finished the training tasks in no more
than 3.5 days, which are less than about 6 days of the manual
training and 10 days of Lee et al.’s work [20]. As mentioned
in Section 2.2, the first turning task (T1

𝑎
) in T1 is decided by

the direction rat cyborgs prefer to turn to. T1
𝑎
task for T03
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Table 2: Completion time of each training task.

Rat cyborg
Completion time

T1
𝑎

T1
𝑏

T2 Total
Days Trials Days Trials Days Trials Days Trials

T03 1 4 1 4 1 4 3 12
DH06 0.75 3 2 8 0.5 2 3.25 13
DH08 0.25 1 3 12 0.25 1 3.5 14

Table 3: Total time spent in the navigation test.

Manual Automatic
F05 T03 DH06 DH08

Total time spent (s) 232 245 330 225
F05 is the best manually trained rat cyborg.

and DH08 is to turn left; for DH06 it is to turn right. From
Table 2we found that rat cyborgs could finishT1

𝑎
task quickly

(DH06 took 3 trials and DH08 took 1 trial), but they need
more time to finish T1

𝑏
task (DH06 took 8 trials and DH08

took 12 trials). After T1 task, these three rat cyborgs finished
mixed turn task (T2) which seemed to be more complex in
a short time (DH06 took 2 trials and DH08 took 1 trial). It
indicates that the key to the navigation training is to teach the
rat cyborgs to turn to the direction they do not prefer, namely,
completing T1

𝑏
training task.

5.2. Navigation Test. Asmentioned in Section 4.2, navigation
test is to test the navigation performance of the trained rat
cyborgs. Table 3 shows the total time spent in the navigation
test. All of the three rat cyborgs were successfully navigated
from the same starting point to the four goals one by one
without any mistake. In terms of the total time spent, DH08
even has a better performance compared to F05. This result
is an evidence to prove the effectiveness of our automatic
training system and demonstrates that our automatic well-
trained rat cyborgs can be used in practical navigation
applications.

5.3. Learning Curves. Figure 10 shows two learning curves
(Accuracy and MaxCorrect/8) with the curve of Turns/Min.
Turns/Min. means the average counts of arms which have
been gone through by the rat cyborg in 1 minute. Accuracy
means the ratio of correct turns in a trial. MaxCorrect means
the maximum consecutive correct turns in a trial, and a value
of 8 means the accomplishment of the current task. The two
learning curves (in blue triangle and in green square) can
evaluate the learning ability of the rat cyborgs in the training
tasks. Aswe can see fromFigure 10, they present an increasing
trend in each training task (T1

𝑎
, T1
𝑏
, and T2) and show a

positive correlation with each other (the Pearson’s correlation
coefficients between the two learning curves of T03, DH06,
and DH08 are 0.6404, 0.8005, and 0.9244, resp.). In addition,

the curve of Turns/Min. (in red circle) can evaluate, to some
extent, the degree of the reward-seeking desire. This curve
also shows a positive correlation, although not obvious, with
the two learning curves. We speculate that a rat cyborg is
more likely to finish the training if it has a strong desire of the
reward-seeking.These results are consistent with our manual
training experience.

5.4. Behavior Changes. Figure 11 shows the changes in
numbers of the three behaviors (immobility, climbing, and
grooming) in each trial. Numbers of climbing and grooming
behaviors were hand counted through observation, and
numbers of immobility behavior were counted automatically
by our automatic training system.The curve of the immobility
behavior (in blue triangle) and the curve of Turns/Min. (in
red circle) show a negative correlation with each other (the
Pearson’s correlation coefficients between these two curves of
T03, DH06, and DH08 are −0.3679, −0.4907, and −0.0328,
resp.). This is consistent with the fact that a rat cyborg would
not stay in immobility if it has a strong desire for the reward.
In addition, compared to the other two rat cyborgs, T03 has
a large number of the climbing behavior. This phenomenon
is probably due to the surgery impact. Most important of
all, during the training procedure of DH08, the adaptive
adjustment module was triggered to raise the reward level in
trial 6, from level 6 (pulse number: 11, pulse amplitude: 5.25)
to level 7 (pulse number: 11, pulse amplitude: 5.5) because
the number of the immobility behavior reached 4 (pointed
by a black arrow). After this reward level adjustment, the
number of the immobility behavior was nomore than 1 in the
succeeding trials. The adjustment of the reward level rarely
appeared in our automatic training procedure, the reason
being that the initial reward level of each rat cyborg was the
one with the best reward-seeking response.

6. Conclusions and Future Work

In this study, we build a vision-based automatic training
system for rat cyborgs to replace the time-consumingmanual
training procedure. Training tasks in the navigation training
are reset as T1

𝑎
, T1
𝑏
, andT2, new sensingmethods for the tiny

rat cyborgs are adopted, and a hierarchical automatic training
framework which has a reactive layer and a deliberative layer
is proposed. Coadaptation enables continuous, synergistic
adaptation between living beings and machines working in
changing environments [31–35]. The framework provides
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Figure 10: Learning curves of the automatic training.

a coadaptive learning method for cyborg intelligent systems
which combine living beings and machines via BMIs [36–
39]. The training rat cyborgs learn to do the behaviors that
can obtain the reward, and the machines learn to adjust
the electrical stimulation according to the training states
and learning states. The experimental results show that our
method successfully built the correspondence between the
stimuli and the desired behaviors and consumed less training
time than that in the previous manual training.

In future work, in order to recognize more behaviors
like grooming and climbing, cameras will be mounted beside
or under the maze to monitor the rat cyborgs from other
perspectives. Our system could be combined with other
actuators (such as ultrasonic, vibration generator, and LED
photic stimulator) instead of the mild electrical stimuli in
SI as directional cues. Furthermore, the parameterized state
machine control algorithm could be housed on a wireless
backpack stimulator instead of in the computer.
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Figure 11: Behavior changes in the automatic training.
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