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Optimization-based design of an 
elastostatic cloaking device
Víctor D. Fachinotti   1, Ignacio Peralta   1,2 & Alejandro E. Albanesi1,2

We present a new method for the design of devices to manipulate the displacement field in Elastic 
materials. It consists of solving a nonlinear optimization problem where the objective function defines 
the error in matching a desired displacement field, and the design variables determine the required 
material distribution within the device. In order to facilitate fabrication, the material at a given point of 
the device is chosen from a set of predefined materials, giving raise to a discrete optimization problem 
that is converted into a continuous one using the Discrete Material Optimization technique. The 
candidate materials maybe simple, isotropic materials, but the device made of them behaves as a whole 
as a metamaterial, enabling the manipulation of the displacement field in ways that are inconceivable in 
nature. As an example of application, a device for elastostatic cloaking or unfeelability is designed.

Cloaking, that is hiding objects to certain fields, was first considered by Hashin and Shtrikman1, who found that 
spheres with an appropriate coating do not disturb the magnetic flow in the surrounding material.

In 2006, simultaneously and independently, Leonhardt2 and Pendry et al.3 introduced the use of conformal 
mapping to determine the inhomogeneous and anisotropic refractive index for electromagnetic cloaking, giving 
birth to the approach based on transformation optics for metamaterial design. The inhomogeneity and the ani-
sotropy of the cloaking medium are the result of applying the conformal mapping to a homogeneous medium 
under uniform electromagnetic field. The required materials may have extreme properties (for instance, negative 
refraction index). These properties are usually unconceivable in nature, and a composite has to be designed to 
mimic them; this is the so-called metamaterial.

Beyond electromagnetism, transformation optics was used for the design of metamaterials for heat conduc-
tion4,5, mass diffusion6,7, and acoustics8–10.

Applied to Elasticity, Milton et al.11 showed that transformation optics produces anisotropic Cosserat mate-
rials12. Later, Norris and Shuvalov13 demonstrated that the transformation method produces Willis materials14, 
having Cosserat materials as simplified particular cases. Considering the little knowledge on the realization of 
specific Willis or Cosserat materials, Bückman et al.15 proposed the “direct lattice” transformation approach for 
the design of realizable mechanical metamaterials from lattices.

As alternative for the design of realizable metamaterials, we proposed the optimization-based approach for 
metamaterial design16. It consists of solving an optimization problem where the objective function measures the 
accomplishment of the task (e.g., cloaking) assigned to a metamaterial device and the design variables define the 
distribution of parameters describing the microstructure of the metamaterial in the device. Like the direct-lattice 
transformation approach15, the optimization-based approach directly prescribes how to fabricate the metamate-
rial at a point, but it excels the former in allowing not only lattices but any quantitatively characterized material.

However, beyond the difficulty yet impossibility of fabricating a specific anisotropic metamaterial, all the 
above mentioned approaches produce inhomogeneous metamaterials, which is another major deterrent for the 
design of practical metamaterial devices.

In previous works17,18, we introduced the idea of considering a device for heat flux manipulation to behave as 
a metamaterial as a whole but being made of a few simple even isotropic materials. This rebuts the mainstream 
belief that it is imperative to use anisotropic inhomogeneous metamaterials for the manipulation of macroscopic 
fields.

Now, this way of designing what are maybe the easiest to fabricate devices for the manipulation of macro-
scopic fields is extended to elastostatic problems. Particularly, its capability is proven by means of the design of a 
device for elastostatic cloaking or unfeelability using only two isotropic elastic materials.
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Methodology
Let Ω be originally a body made of a given arbitrary material, and u0 be the displacement field in Ω under given 
tractions t and displacements u in the portions ∂Ωt and ∂Ωu, respectively, of the boundary ∂Ω of Ω. Then, let us 
assume that an inclusion of a second material, with either much less or more stiffness than the original one, is 
embedded in the region Ωincl ⊂ Ω, as shown in Fig. 1. The presence of the inclusion sensibly affects the displace-
ment field in Ω, which is now referred to as u.

Using the finite element method (FEM), the displacement u at any point x ∈ Ω is approximated as follows:

∑ϕ Φ= =
=

u x x u U( ) ( ) ,
(1)n

N

n n
1

nod

where ϕn is the shape function associated to the node n of the finite element mesh of Ω, n = 1, 2, …, Nnod, and un 
is the (unknown) displacement at this node; for ∈u Ndim (Ndim = 2 for plane strain and plane stress states, 
Ndim = 3 for general 3D problems), Φ ∈ ×N Ndim dof  is the matrix grouping the shape functions, Ndof = NdimNnod, 
and ∈U Ndof is the vector of nodal displacements, whose components un = u(xn) are prescribed for all the nodes 
xn ∈ ∂Ωu. On the other hand, the unknown components of U are determined as solution of the equilibrium 
equations:

=KU F, (2)

where K and F are the global stiffness matrix and the nodal load vector, respectively, given by
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with B as the strain/displacement matrix and C as the effective elastic moduli. The linear algegraic system of equa-
tions (2) is the FEM version of the equilibrium equations for linear elastic solids, whose solution is widely detailed 
in the literature (see for instance the book of Zienkiewicz and Taylor on the basics of FEM19).

Now, to cloak the inclusion Ωincl requires to have u = u0 at the points located in a certain region Ωcloak where 
the displacement is to be sensed. To this end, we must design the material inside a certain region Ωdev (from now 
on, referred to as the “device”) surrounding Ωincl. In general, such material by design or metamaterial has a varia-
ble microstructure throughout the device Ωdev.

Given Ω divided in finite elements, let the microstructure at each finite element Ω(e) ∈ Ωdev be quantitatively 
characterized by Npar scalar parameters grouped into the vector p(e); this means that any effective material prop-
erty at Ω(e) can be expressed as a function of p(e), as it is the case of the elastic moduli C = C(p(e)). The microstruc-
ture throughout the device is characterized by the vector P made of all the parameters p(e) of all the Ndev finite 
elements in the device Ωdev, so ∈P Nvar with Nvar = NparNdev. Consequently, being K = K(P) in the equilibrium 
equations (2), it immediately follows that u at any x ∈ Ω depends on P, i.e. u = u(x, P).

Then, the cloaking design problem consists of finding P (i.e., the microstructure distribution in Ωdev) such that 
u(x, P) = u0(x) for all x ∈ Ωcloak. To make such problem amenable to be numerically solved, instead of checking the 
accomplishment of the cloaking task at all the points x ∈ Ωcloak, let us do it at Ncheck predefined checking points 
X̄ i( ) ∈ Ωcloak. So, the discrete form of the cloaking design problem can be stated as: to find ∈P Nvar such that

Figure 1.  Domain, load and displacement boundary conditions in a body Ω with a inclusion Ωincl, to be cloaked 
using a device Ωdev with non homogeneous microstructure.
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Further, note that not every ∈p e N( ) par defines an admissible microstructure, which constrains the search of 
P to a feasible design set ⊂ Nvar . In general, it will not be possible to exactly accomplish the cloaking task (5) 
by looking for P in the set . Therefore, in order to obtain an optimal design, we propose to solve the following 
nonlinear constrained optimization problem:

∈
fP Pmin ( ), (6)obj

where P plays the role of decision or design variables, Nvar is the number of design variables, and fobj is the objec-
tive function, defined as
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which is the root mean square error (RMSE) in the accomplishment of the cloaking task (5).
Using the current approach, i.e. defining the cloaking task as the optimization problem (6), it is still possible 

to obtain a design for perfect cloaking if the feasible design set  is rich enough. If not, we will obtain a design for 
which the error in the accomplishment of the task reaches a minimum.

Parametrization of the microstructure.  In a broad range of materials, the so-called “quantitatively char-
acterized” materials20, the effective material properties depend on a few parameters: the thickness and the orien-
tation of layers in laminates16, the density and the irregularity factors in materials with isolated inhomogeneities20, 
the size of the prismatic inclusions in an elastic composite21, the fiber orientation in fiber-reinforced polymers22, 
the size of particles or beads in coating of dental implants23, etc. These parameters are the components of the 
vector p(e) at a finite element.

The metamaterials designed using the direct lattice transformation approach15 are quantitatively character-
ized materials where p(e) defines the topology of the unit cell of the lattice at the element Ω(e). Actually, Cosserat 
materials like those designed using the transformation optics approach can be represented by assuming the com-
ponents of p(e) to be the effective material properties (or their components if they are tensors), following the free 
material optimization (FMO) approach24. By this way, the current optimization-based approach for metamaterial 
design is capable of embodying the previous design approaches as particular cases.

After designing a device for thermal cloaking using variable metamaterial distribution16, and realizing the 
difficulty of fabricating it, we proposed18 that the material at any point of the device should be chosen from a list of 
previously defined candidate materials. This approach, leading to easy-to-make solutions, is adopted in this work.

Then, after adopting a set of candidate materials consisting of Ncand linear elastic solids with known elastic 
moduli Cm, m = 1, 2,…, Ncand, the effective elastic moduli C(e) at a finite element Ω(e) ∈ Ωdev is defined by the 
mixture law:
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where φm
e( ) is the fraction of the candidate material m at the finite element Ω(e). Since the material at Ω(e) must be 

one of the candidates instead of a mixture of them, φm
e( ) should be either one or zero. This makes (5) an integer 

Figure 2.  Geometry and load for the example of mechanical cloaking under a single load.
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optimization problem, which is too expensive to solve when the number of design variables is large (as it is the 
case when there are Ncand variables per finite element in a fine enough mesh).

Then, we transform this integer optimization problem into a continuous one, which can be efficiently solved 
using gradient-based algorithms. To this end, we use the “discrete material optimization” (DMO) technique25, 
where φm

e( ) is defined as a continuous function of the real variables ρ ∈ [0, 1]m
e( )  as follows:

Figure 3.  Single load case. Material distribution and displacements for the homogeneous plate without hole, 
the homogeneous plate with hole and the plate with the cloaked hole; displacements are given in millimeters.
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, and ρm

e( ) playing now the role of design variables. Note that the continuous optimiza-
tion problem (6) is subject to the box constraints ρ≤ ≤0 1m

e( ) . Like in topology optimization26, intermediate 
values of the material fraction φm

e( ) are penalized by setting p ≥ 3 in (9).

Results
Let us apply the current methodology for the design of a mechanical cloaking device similar to that one designed 
by Bückmann et al.15 using the lattice transformation approach. Given a holed plate Ω made of nylon, compressed 
under the load 100 kN/m applied at two opposite faces (see Fig. 2), the problem consists of cloaking the hole Ωincl 
using a coating ring that occupies the region Ωdev.

As candidate materials for building the cloak, we chose two isotropic materials: aluminum, with Young modu-
lus E = 69 GPa and Poisson ration ν = 0.32, and polytetrafluoroethylene (PTFE), with E = 0.5 GPa and ν = 0.4. The 
stiffness of these materials are sensibly different than that of the base material (nylon has E = 3 GPa and ν = 0.4).

The plate Ω is assumed to be under plane stress conditions and modeled using a mesh of 200 × 200 bilinear 
square finite elements.

Considering the nylon plate without the hole, the FEM solution for the displacement field, that is u0, is that 
given in Fig. 3(b,c).

For the nylon plate with the hole Ωincl, let us take the previous mesh and then discard the finite elements whose 
centers lie in Ωincl. In this case, the FEM solution for the displacement is that shown in Fig. 3(e,f), and the error in the 
accomplishment of the cloaking task is = . = . uRMSE 1 845mm 0 685maxnocloak 0  , with = .umax 2 693mm0 .

Now, let us design a device Ωdev around the hole Ωincl such that the displacements approach u0 at all the 
Ncheck = 19972 nodes outside Ωdev. Using the current approach, we seek to accomplish the cloaking task with 
a minimum error by solving the optimization problem (6) with the design variables P defining the material 
at all the Ndev = 15084 finite elements whose centers lie in Ωdev. So, the total number of design variables is 
Nvar = 2Ndev = 30168. In this work, this large nonlinear constrained optimization problem (6) is solved using the 
interior-point algorithm known as IPOPT27. As suggested by Sigmund28, a smoothed Heaviside density filter was 
applied to reduce both checker-board type instabilities and “grey zones” (those where the material is none of the 
candidates but a composite of them).

Figure 3(g) shows the so-computed optimal material distribution in the cloaking device, giving the displace-
ment field depicted in Fig. 3(h,i), with RMSE = 0.00417RMSEnocloak.

To eliminate the grey zones that are observed in the optimal design shown in Fig. 3(g), let us apply the simple a 
posteriori black-and-white filter proposed by Fachinotti et al.17: if the aluminum fraction at an element is greater 
than a certain threshold φ* ∈ (0, 1), the element is assumed to be fully made of aluminum; otherwise, it is made of 
PTFE. By this way, the device becomes easier to fabricate at the expense of deteriorating the accomplishment of 
the cloaking task since the material distribution is not longer optimal. A priori, the natural choice for φ* should be 
φ* = 0.5, that is equivalent to assume that the material at an element is that having the highest fraction; however, 
the corresponding device (Fig. 3(j)) poorly performs the cloaking task, with RMSE = 0.5495RMSEnocloak. Actually, 
the lowest error in the cloaking task is achieved for the quite low threshold φ* = 0.015, giving raise to the device 
shown in Fig. 3(m), for which RMSE = 0.0610RMSEnocloak.

Figure 4.  Geometry and load for the example of mechanical cloaking under two loads.
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For easier fabrication, let us eliminate the narrow aluminum areas at the top and at the bottom of the device 
shown in Fig. 3(m), obtaining that shown in Fig. 3(p), for which RMSE = 0.0896RMSEnocloak. This device has an 
aluminum core with a variable thick coat of PTFE, the whole acting as a compliant mechanism to cloak the hole.

Considering the measure of the error in the task accomplishment as defined by Bückmann et al.15, that is

Δ =
∑ −

∑

=

=

u x P u x

u x

( , ) ( )

( )
,

(10)

i
N i i

i
N i

1
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0
( ) 2

1 0
( ) 2

check

check

we obtain Δ = 0.40% for the optimal device (that of Fig. 3(g)) and Δ = 8.56% for the simplest device (that of 
Fig. 3(p)). This is a very good cloaking performance compared to that obtained by Bückmann et al.15, for whom 
Δ ≈ 20%.

Figure 5.  Multiple load case. Material distribution and displacements under horizontal compression for 
the homogeneous plate without hole, the homogeneous plate with hole and the plate with the cloaked hole; 
displacements are given in millimeters.
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Extension to multiple loads.  This methodology can be easily applied to accomplish another tasks by just 
changing the objective function. Further, to change the involved geometries (either that of the device, the inclu-
sion or the body where it is embedded) or the boundaries conditions (loads and displacements) only implies to 
modify the finite element model, without altering to any extent the current optimization-based design procedure. 
So, complicated, maybe three-dimensional, real industrial or engineering problems can be straightforwardly 
accounted for.

For instance, to account for multiple loads implies an easy redefinition of the objective function. Let u0 = u0(x, 
F(α)) be the displacement caused by the external force F(α) in the domain Ω without the inclusion, and u = u(x, P, 
F(α)) be the displacement caused by that force in Ω in presence of the inclusion Ωincl together with the cloaking 
device occupying Ωdev, where the material distribution is defined by P. In presence of multiple loads 

…F F F, , , N(1) (2) ( )load , the objective function representing the error in the accomplishment of the global cloaking 
task can be defined as the weighted sum of the RMSEs in the accomplishment of the individual tasks, that is

∑ ∑ω= −
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α
α α

= =
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N
u x P F u x F1 ( , , ) ( , ) ,
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where ωα is the weight assigned to the task accomplishment for the external force F(α); typically, ωα = 1/Nload.
As an application example, let us consider the problem described in the previous section when a vertical ten-

sion is added, as shown in Fig. 4. Now, cloaking has to be achieved for horizontal compression (as in the previous 
example) as well as for vertical tension. In the holed plate fully made of nylon, i.e., without a cloaking device, the 
error in the accomplishment of the global task is = = . = .f f u1 8493mm 0 6868 maxobj nocloak 0 , with 

=RMSEnocloak
hcomp  . u0 6853 max 0  for the horizontal compression and = . uRMSE 0 6853 maxnocloak

vtens
0  for the ver-

tical tension.
The optimal device is that shown in Fig. 5(g), for which fobj = 0.00212fnocloak, = .RMSE 0 00207RMSEhcomp

nocloak
hcomp , 

and = .RMSE 0 00219RMSEvtens
nocloak
vtens . Although this device accomplished the cloaking task very well, it is 

severely affected by grey zones.
If we define a fully discrete device by assuming that those finite elements in the optimal device having an alu-

minum fraction greater than φ* are completely made of aluminum, the best design is that obtained for φ* = 0.033, 
shown in Fig.  5(j), for which the global error is fobj = 0.1101fnocloak, and the individual errors are 

= .RMSE 0 1120RMSEhcomp
nocloak
hcomp  and = .RMSE 0 1081RMSEvtens

nocloak
vtens .

If, for easier manufacturability, we eliminate from this device those little PTFE areas adjacent to the hole 
obtaining the device shown in Fig. 5(m), the accomplishment of the task is slightly affected, with fobj = 0.1104fno-

cloak, = .RMSE 0 1124RMSEhcomp
nocloak
hcomp , and = .RMSE 0 1084RMSEvtens

nocloak
vtens .

Let us remark that, because of the highly non-discrete nature of the optimal device (Fig. 5(g)), the accom-
plishment of the cloaking task is considerably affected by the black-and-white filtering. However, this is still 
satisfactory as it can be realized when computing the error Δ in the cloaking task as defined by Bückmann et 
al.15 (see equation (10)): Δ = 10.74% for cloaking the horizontal compression, and Δ = 10.40% for cloaking the 
vertical tension.

Note that the displacements shown in Fig. 5 are those produced by the horizontal compression, say uhcomp. 
Since the devices (the optimal as well as the discrete ones) are practically symmetric with respect to the center, the 
displacements produced by the vertical tension, say uvtens, are easily derivable from uhcomp: actually, the horizontal 
and vertical components of uvtens have color maps almost identical to those shown in Fig. 5 but their thresholds 
are interchanged. Not surprisingly, the current devices accomplish the cloaking task almost equally for both loads.

It is also not surprising, and worth noting, that a device designed for multiple loads performs the cloaking task 
for each individual load poorly than the device specifically designed for such load, as done in the previous section.
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