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Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from

cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate

a variety of metabolic functions via modulating nuclear and membrane receptors.

Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA

homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting

BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver

diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver

diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been

rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis

and non-alcoholic steatohepatitis. This review provides an updated literature review on

BA homeostasis and FXR modulator development.
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INTRODUCTION

Bile acids (BAs) serve critical physiological functions, including elimination of cholesterol,
absorption of fat and fat-soluble vitamins, regulation of the gut microbiome, and serving as
important signaling molecules. BAs are endogenous ligands of farnesoid X receptor (FXR),
Takeda G protein receptor 5 (TGR5), and sphingosine-1-phosphate receptor 2 (S1PR2). In the
liver and intestine, BAs suppress their own synthesis, regulate glucose and lipid homeostasis,
and inhibit inflammation and fibrogenesis. Disruption of BA homeostasis leads to severe
pathological outcomes, including cholestasis, hepatic steatosis, fibrosis, and liver tumors.
Regulating BA pathways has become a novel strategy to treat cholestasis and non-alcoholic
steatohepatitis (NASH).

OVERVIEW OF BAS

Synthesis
BAs are amphipathic molecules synthesized from cholesterol in the liver mainly through two
pathways, the classical and the alternative pathway (1). In the classical pathway, the initial and
rate-limiting step is the 7α-hydroxylation of cholesterol by a cytochrome P450 enzyme, cholesterol
7α-hydroxylase (CYP7A1) (2, 3). The crucial role of CYP7A1 has been demonstrated with Cyp7a1
knockout (KO) mice that have a high incidence of postnatal death due to abnormal neurological
development following vitamin deficiencies (4). Afterwards, microsomal 3β-hydroxy-15-C27-
steroid dehydroxylase (3β-HSD) converts 7α-hydroxycholesterol to 7α-hydroxy-4-cholestene-
3-one (C4) (5), which can be converted by sterol 12α-hydroxylase (CYP8B1) to cholic acid

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.00544
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.00544&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guo@eohsi.rutgers.edu
https://doi.org/10.3389/fmed.2020.00544
https://www.frontiersin.org/articles/10.3389/fmed.2020.00544/full


Stofan and Guo Bile Acids, FXR, Liver Diseases

(CA) or alternatively catabolized by cytosolic 1
4-3-oxosteroid

5β-reductase (AKR1D1) and 3α-hydroxysteroid dehydrogenase
(AKR1C4), yielding a sterol intermediate, 5β-cholestan-3α,7α-
diol, which is further converted to chenodeoxycholic acid
(CDCA) (5, 6). Cyp8b1 KO mice eliminated CA synthesis,
suggesting that CYP8B1 is required for CA synthesis and is
responsible for the CA-to-CDCA ratio in the classical pathway
(7). Additionally, the C4 intermediate can be used as a serum
marker for assessing BA synthesis levels in vivo (8).

In the alternative or acidic pathway, cholesterol is oxidized
by mitochondrial sterol 27-hydroxylase (CYP27A1) to produce
27-hydroxycholesterol and 3β-hydroxy-5-cholestenoic acid,
which is further hydroxylated by oxysterol 7α-hydroxylase
(CYP7B1) to form the intermediate 3β, 7α-dihydroxy-5-
cholestenoic acid (6, 9). Subsequent enzymatic conversions
produce CDCA.

There is clear species difference of the composition of BAs
between humans and mice (Figure 1). Human primary BAs are
CA and CDCA, that form a relatively hydrophobic BA pool
consisting of 40% CA, 40% CDCA, and 20% deoxycholic acid
(DCA) (9). Mouse primary BAs are CA and muricholic acid
(MCA) that is from 6-hydroxylation of CDCA. Hydroxylation
significantly changes the physicochemical properties of BAs,
resulting in a BA pool that is more hydrophilic, less potent
as detergents, and cytotoxic. More significantly, this additional
conversion in mice markedly changes BA signaling properties,
converting the most potent endogenous FXR agonist (CDCA)
to antagonists (MCAs) (9). Three seminal studies discovered
the mouse 6β-hydroxylase, CYP2C70, converting CDCA to
MCA (10–12). Furthermore, the DCA levels are much higher
in humans than in mice because humans are unable to
rehydroxylate DCA and lithocholic acid (LCA)whereasmice can.
A study by Honda et al. reported that mouse CYP2A12 is the
enzyme responsible for 7α-rehydroxylation of taurodeoxycholic
acid (TDCA) and taurolithocholic acid (TLCA), solving another
unknown of the species difference between humans and
mice (12).

Conjugation is considered to be the terminal step in BA
synthesis and involves the addition of an amino acid, glycine or
taurine, through an amide linkage at carbon 24 (13). Humans
and rodents both utilize the enzyme bile acid-CoA:amino acid
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N-acyltransferase (BAAT) for conjugation; however, primary
human BAs are mainly conjugated with glycine and, to a less
extent, taurine, while rodent primary BAs are taurine conjugates
(14, 15). Conjugation of BAs ultimately increases their solubility
and amphipathicity (13).

Enterohepatic Circulation
BAs undergo constant enterohepatic circulation. Conjugated
BAs are transported across the canalicular membrane into
the bile and stored in the gallbladder in both humans
and mice (9). Cholecystokinin, a hormone, is secreted by
the duodenum following a meal to stimulate gallbladder
contraction, leading to the release of BAs into the intestine
(9), where BAs help absorb dietary lipids and fat-soluble
vitamins. In the ileum, about 95% BAs are reabsorbed and
transported back to the liver through portal circulation (9).
Daily, ∼0.5 g of BAs, or 5% of the total BA pool, is excreted
in the feces, with BAs being recycled 4–12 times a day;
this entire process comprises the enterohepatic circulation of
BAs (9).

BA transporters are responsible for dynamically moving
BAs during the enterohepatic circulation. Efflux of BAs from
the hepatocytes into canaliculi is mainly mediated by the bile
salt export pump (BSEP; ABCB11/Abcb11) (16). The multidrug
resistance-associated protein (MRP2; ABCC2/Abcc2) effluxes
divalent BAs along with other organic substrates, bilirubin
conjugates, glutathione, and drugs (17). Like BSEP, MRP2 is
an ATP-binding cassette transporter localized to the canalicular
membrane of hepatocytes (17). There seems to be a species
difference between humans and mice regarding the roles of BSEP
and MRP2. Mice use mainly BSEP and, to a smaller extent,
MRP2, to efflux BAs into the bile, whereas humans mainly
rely on BSEP to efflux BAs into the bile, which could at least
partially explain the more severe cholestasis development in
human patients with BSEP mutation compared to mice with
BSEP deficiency (18). Mutation of the ABCB11 gene causes BSEP
deficiency and progressive familial intrahepatic cholestasis type
2 (PFIC2) (19). PFIC2 is an inherited disorder characterized
by severe cholestasis beginning at infancy that can progress to
cirrhosis, hepatic failure, hepatocellular carcinoma (HCC), and
death (20, 21). Due to the species differences mentioned above,
the PFIC2 phenotype cannot be achieved in Abcb11 KO mice.
This leaves a void for a translational model for PFIC2 to study
potential therapies as the standard treatment remains to be
liver transplantation.

Reabsorption of BAs in the terminal ileum mainly
occurs through the uptake mediated by the apical sodium-
dependent bile salt transporter (ASBT; SLC10A2/Slc10a2)
(22), intracellular binding to intestinal bile acid-binding
protein (IBABP) (23), and basolateral BA efflux into the portal
circulation by the organic solute transporters OSTα and OSTβ

heterodimer (24).
At the basolateral (sinusoidal) membrane of hepatocytes,

the major BA uptake transporter is the sodium taurocholate
co-transporting polypeptide (NTCP; SLC10A1/Slc10a1) (25).
Interestingly, human NTCP seems to have higher affinity than
does the rat transporter, allowing more efficient BA extraction
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FIGURE 1 | Species difference in bile acid (BA) synthesis and composition. In

hepatocytes, primary BAs, cholic acid (CA) and chenodeoxycholic acid

(CDCA), are made from cholesterol. In mice, CDCA is converted to muricholic

acid (MCA) by CYP2C70. CA and CDCA are conjugated and then efflux via

ABCB11 to the intestine through the uptake transporter ASBT, where they

facilitate lipid absorption. Most BAs are transported back by effluxion out of

enterocytes via the organic solute transporter (OST)α/OSTβ complex to the

liver through portal circulation and taken up into hepatocytes mainly via

sodium taurocholate co-transporting polypeptide (NTCP), with a small amount

being converted to deoxycholic acid (DCA) and lithocholic acid (LCA), the

secondary BAs in the large intestine. In mice, DCA can be transported back to

the liver and converted to CA by CYP2A12.

at low plasma levels (25). Sodium-independent basolateral
BA uptake into hepatocytes is mediated by organic anion
transporting polypeptides (OATPs) (16). Only 25% of the hepatic
BA uptake is estimated to be mediated by Na+-independent
mechanism and responsible for mainly unconjugated BA
uptake (16).

Although not directly involved in enterohepatic circulation,
an important canalicular membrane flippase encoded by the
multidrug resistance gene (MDR3;ABCB4 in humans and
Mdr2;Abcb4 in mice) is responsible for phospholipid secretion
into the bile (26, 27). Disruption of Mdr2 prevents the secretion
of phospholipids, a component of BA mixed micelles, thus
increasing the concentration of free BAs that can damage the
biliary epithelium (21). Defects in ABCB4 are associated with
progressive familial intrahepatic cholestasis type 3 (PFIC3),
intrahepatic cholestasis of pregnancy, and adult biliary cirrhosis
(28, 29). Mdr2 KO mice develop severe biliary fibrosis and are a
well-established model for primary sclerosing cholangitis (PSC)
(30, 31).

The gut microbiota play an important role in BA
biotransformation and are responsible for secondary BA
formation. Conjugated BAs that remain in the intestine are
deconjugated by bacterial bile salt hydrolases (BSHs) (32).
In the large intestine, bacterial 7α-dehydroxylase converts
CA to DCA and CDCA to LCA through the removal
of the hydroxyl group at the C-7 position (32). These
secondary BAs are more cytotoxic. While LCA is highly
insoluble and mostly excreted by fecal excretion, DCA can
be reabsorbed through passive diffusion (33). As mentioned
above, mouse hepatocytes can rehydroxylate DCA to CA
by CYP2A12 (12). Species differences in the gut microbiota
may affect the generation of secondary BAs and should be
considered when using animal models to study human BA
signaling (21).

BAs are important for the intestinal absorption of lipids and
lipid-soluble nutrients, removal of excess cholesterol, regulating
bile flow, modulating the gut microbiome, and modulating
energy homeostasis. Many of these functions are performed by
modulating a nuclear receptor (NR) FXR in a tissue-specific
manner. Additional NRs and membrane-bound receptors that
have been identified to be activated by BAs include pregnane X
receptor (PXR), vitamin D receptor (VDR), Takeda G protein-
coupled receptor (TGR5), and sphingosine-1-phosphate receptor
2 (S1PR2) (34–36).

FARNESOID X RECEPTOR

FXR is the most important NR to regulate BA homeostasis.
NRs are ligand-activated transcription factors that regulate the
expression of genes involved in various processes, including
cell growth, differentiation, and metabolism (37). The general
structure of NRs consists of an N-terminal DNA-binding
domain (DBD) and a C-terminal ligand-binding domain (LBD),
with the DBD being the most conserved area that contains
two zinc finger motifs (9). These zinc fingers allow the
NR to bind to DNA elements, known as hormone response
elements (HREs), composed of direct, inverted, or everted
repeats of the sequence AGGTCA and separated by a variable
number of nucleotides (38). NR activation also requires
either homodimerization or heterodimerization with retinoid X
receptor (RXR) (39).

FXR was originally labeled as an orphan NR (38). After
multiple groups demonstrated that physiological concentrations
of free or conjugated BAs could activate FXR, with CDCA
being the most potent, followed by DCA, CA, and LCA,
BAs were recognized to be the endogenous ligands of
FXR and FXR is now considered an “adopted” NR (40–
42). FXR is highly expressed in the liver, ileum, kidneys,
and adrenal glands (40). The most common FXR response
element (FXRE) consists of an inverted AGGTCA repeat
separated by one nucleotide (IR1); FXR could also bind to an
everted repeat separated by two nucleotides (ER2) (43). Both
steroidal and non-steroidal FXR agonists are being developed
in the treatment of various liver diseases and include semi-
synthetic BA obeticholic acid (OCA), cilofexor, and tropifexor,
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FIGURE 2 | Farnesoid X receptor (FXR) regulates bile acid (BA) synthesis in a

tissue-specific manner. In the intestine, FXR activation induces fibroblast

growth factor (FGF)15/19, which can go to the liver and activate the

FGFR4/β-klotho dimer to activate signaling pathways in order to inhibit the

expression of genes in the classical BA synthesis pathway. Hepatic FXR

activation also inhibits BA synthesis, albeit to a smaller degree.

with OCA being used clinically to treat primary biliary
cholangitis (PBC).

Regulation of BA Homeostasis
It has been well-established that FXR is involved in the regulation
of BA homeostasis. As shown in Figure 2, there is a clear tissue-
specific role of FXR in the liver and intestine to regulate BA
synthesis (44). Activation of intestinal FXR plays a major role
and activation of liver FXR serves a minor role in suppressing
CYP7A1/Cyp7a1 gene expression through the induction of the
ileal hormone fibroblast growth factor 19 (FGF19) in humans and
FGF15 in mice and hepatic small heterodimer partner 1 (SHP-1),
respectively (42, 44–47). In contrast, Cyp8b1 gene repression via
FXR is almost equally dependent on both intestinal and liver FXR
(44). Furthermore, FXR is critical in regulating the enterohepatic
circulation of BAs by inducing the expression of BSEP, IBABP,
and OSTα/β and suppressing those of NTCP and ASBT (48–52).

Regulation of Lipid and Glucose
Homeostasis
FXR also shows critical effects in regulating lipid and glucose
homeostasis. In general, FXR activation leads to lower lipid levels
in the circulation as it suppresses de novo fatty acid synthesis
(53, 54), decreases very low-density lipoprotein (VLDL) hepatic
secretion (55), and increases triglyceride hydrolysis and clearance
as well as fatty acid oxidation (56–60). Activation of FXR may
reduce glucose intolerance by reducing hepatic gluconeogenesis
and glycolysis and increasing glycogen synthesis (61). FXR
activation may decrease gluconeogenesis via SHP-mediated

suppression of the critical transcription factors involved in
gluconeogenesis (62). In contrast, a different study utilizing
human and rat hepatocytes and mouse livers showed that FXR
agonism induced phosphoenolpyruvate carboxykinase (PEPCK)
expression and glucose levels (63). Our genome-wide ChIP-
seq analysis also suggests that FXR could regulate glucose
homeostasis, but there may be species differences among humans
and mice (43, 64). Despite conflicting evidence, it is apparent
that FXR may play important roles in glucose homeostasis
as FXR KO mice develop fatty livers, elevate circulating free
fatty acids (FFAs) and serum glucose levels, and present insulin
resistance (65). In both diabetic db/db and wild-type mice, FXR
activation or hepatic overexpression significantly lowered the
blood glucose levels, decreased the FFA levels, and increased the
insulin sensitivity (66), suggesting FXR activation may improve
metabolic syndrome.

Role in Inflammation and Fibrosis
During liver injury, FXR has been shown to play an anti-
inflammatory role (67, 68). Monocyte chemoattractant protein-1
(MCP-1/CCL2) is a key chemokine that regulates the migration
and infiltration of monocytes/macrophages (69). In the
methionine/choline-deficient (MCD) diet-induced NASH
model, the synthetic FXR agonist WAY-362450 decreased
MCP-1 expression and significantly decreased inflammatory cell
infiltration in the liver (68). Nuclear factor kappa-light-chain
enhancer of activated B cell (NF-κB) is a transcription factor
that induces the expression of various pro-inflammatory genes
(70). FXR KO mice displayed strong hepatic inflammation
after treatment with lipopolysaccharide (LPS), confirmed by
massive liver necrosis and the significant increase in the hepatic
cytokine signaling molecules inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), and interferon-γ (IFN-γ)
(67). Ultimately, the pretreatment of HepG2 cells and mouse
primary hepatocytes with FXR agonists suppressed the NF-κB-
mediated inflammation in an FXR-dependent manner (67). FXR
could suppress inflammation via an indirect mechanism by
reducing cholestasis and the levels of toxic BA production and
accumulation in the liver, as described above.

FXR activation suppresses the development of hepatic
fibrosis. In addition to regulating hepatic lipid metabolism
and reducing hepatic fibrosis, FXR seems to directly inactivate
hepatic fibrosis by inducing anti-fibrotic gene expression in
hepatic stellate cells (HSCs). Activation of FXR induces SHP
to increase the peroxisomal proliferator-activated receptor γ

(PPARγ) expression in HSCs, and PPARγ is well-known to
inactivate HSCs (71, 72). Recently, we have shown that FGF15
deficiency reduces hepatic fibrosis through increasing FXR
activation following loss of FGF15-mediated suppression of BA
synthesis (73, 74). Interestingly, in a human HSC cell line,
LX2, FGF19 does not suppress fibrogenic gene expression,
but suppresses inflammation, likely through modulating the
inhibitor of nuclear factor kappa B (IκB) activity (74). These
studies provide another group of evidence to support the role of
FXR as a homeostatic regulator to suppress liver inflammation
and fibrosis.
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Role in Cholestasis
There is conflicting evidence regarding the role of FXR in
cholestatic diseases. In an early study, the synthetic FXR agonist
GW4064 was investigated in rat models of extrahepatic and
intrahepatic cholestasis through bile duct ligation (BDL) and
α-naphthylisothiocyanate (ANIT) administration, respectively
(75). Significant reductions in liver injury were observed in
GW4064-treated animals in both cholestatic models, revealed
by the reduced alanine aminotransferase (ALT) and aspartate
transaminase (AST), necrosis, inflammation, and bile duct
proliferation (75). The observed protective effects of GW4064
suggest that FXR agonists may be helpful in treating cholestatic
diseases (75).

However, another group found that FXR KO mice were
protected from obstructive cholestasis achieved through
BDL (76). In FXR KO mice after BDL, mortality and liver
injury were reduced as serum bilirubin was not significantly
elevated (76). FXR KO mice had reduced serum total BA
concentrations and had a marked induction of the basolateral
transporter multidrug resistance-associated protein 4 (Mrp4),
suggesting that these animals had a greater capacity to
export BAs back into circulation and reduce hepatoxicity
(76). This study supports the potential clinical use of
FXR antagonists in the treatment of obstructive cholestatic
diseases (76).

Looking further into the role of FXR during intrahepatic
cholestasis, ANIT-induced injury was utilized in wild-type
(WT), FXR KO, and PXR KO mice (77). Serum ALT, alkaline
phosphatase (ALP), and bilirubin were elevated in all genotypes
after ANIT administration, with the highest ALP levels seen
in FXR KO mice (77). ANIT-treated FXR KO mice had
higher concentrations of serum and liver unconjugated BAs
across all genotypes (77). While ANIT treatment induced
the messenger RNA (mRNA) expressions of Mdr2, Bsep, and
ATPase, class I, type 8B and member 1 (Atp8b1) in WT
and PXR KO mice, no upregulation was observed in FXR
KOs (77). It was concluded that FXR deficiency, not PXR
deficiency, was responsible for the increased susceptibility to
injury in the ANIT-induced intrahepatic cholestasis model
due to the reduction of hepatobiliary efflux transporters and
the accumulation of unconjugated BAs (77). Furthermore,
pretreatment of the FXR agonist GW4064 was also investigated
in ANIT-treated WT mice (77). GW4064 treatment was
shown to be protective as it reduced necrosis compared to
ANIT treatment alone (77). This reproduces what Liu et al.
had found in BDL and ANIT-induced injury in rats and
further supports FXR as a therapeutic target for intrahepatic
cholestasis (77).

Through the use of reversible BDL (rBDL) in the rat to model
cholestasis, FXR activation by OCA worsened the biliary injury,
shown by a considerable increase in ALT and ALP compared
to the controls (78). OCA treatment in rBDL rats upregulated
Bsep, multidrug resistance-associated protein 3 (Mrp3), Mrp4,
and Ostβ transporters (78). The 8-fold induction of the FXR
target gene Bsep was suggested to be the cause of biliary injury
as BAs would be pumped via BSEP into an already obstructed
biliary tree (78).

Cholangiocytes
Cholangiocytes are epithelial cells which line the bile ducts
of the biliary tree (79). Through absorptive and secretory
transport systems in cholangiocytes, bile is modified to become
more fluid and alkaline (80). Bile then enters the gallbladder
for concentration and storage or delivered to the intestinal
lumen (80). Cholangiocytes have also been shown to be actively
involved in bile homeostasis (81). Compared to hepatocytes,
cholangiocytes have no or low expressions of Cyp7a1 and
Cyp8b1, but considerable expression of Cyp27a1, suggesting
that cholangiocytes are involved in cholesterol metabolism
(81). Measurement of the mRNA levels revealed that Fgf15
was expressed at higher levels in cholangiocytes compared
to hepatocytes, while the fibroblast growth factor receptor
4 (Fgfr4) expression was lower (81). As FXR is known to
regulate Fgf15/FGF19 levels, investigation of a similar regulation
in cholangiocytes was achieved through treatment of rat
cholangiocytes with CDCA and the FXR agonist GW4064,
with both treatments inducing the expression of Fgf15 (81).
Additionally, cultured human cholangiocytes treated with CDCA
induced the secretion of FGF19 in the medium (81). FGF15/19-
mediated repression of Cyp27a1 in cholangiocytes was found to
differ from hepatocytes and is mediated through p38 kinase (81).
Ultimately, understanding BA metabolism in cholangiocytes
may help provide therapeutic pathways for cholangiopathy
treatments (81).

One of the most common biliary complications after liver
transplantation (LT) is non-anastomotic strictures that develop
after biliary epithelial damage and can result from BA toxicity
(82). To investigate the mechanism of cholangiocyte BA
transport following LT, a rat LT model was utilized. After
transplantation, a prolonged biliary transport time of BAs
was observed, while the expression of FXR was dramatically
decreased and was related to cold ischemic time of the donor
liver. Furthermore, in vitro-cultured human biliary epithelial
cells under hypoxic conditions exhibited a repression of FXR
expression and DNA binding activities (82). Hypoxic conditions
also altered the expressions of BA transporters as hypoxia slightly
induced Asbt expression and repressed both Ostα and Ostβ
(82). This led to the intracellular accumulation of BAs, increased
cell apoptosis, and increased expression of profibrotic factors in
cholangiocytes (82). It was concluded that, after LT, repression of
FXR under ischemic/hypoxic conditions led to the disruption of
BA transport of cholangiocytes and, thus, biliary damage (82).

FIBROBLAST GROWTH FACTORS 15/19

Fibroblast growth factors (FGFs) make up a family of at least
22 proteins that regulate various biological processes including
growth, development, and differentiation (83, 84). FGF15 and
its human ortholog FGF19 belong to the subfamily of endocrine
FGFs that act as hormones due to their low or no affinity for
heparin sulfate, which allows them to enter systemic circulation
(84, 85). FGF19 was originally identified in the fetal brain during
a screen for novel FGFs (86). Although FGF15 and FGF19 are
orthologs, they interestingly only share∼50% amino acid identity
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(86). For high-affinity receptor binding, the endocrine FGFs
require klotho proteins that interact with fibroblast growth factor
receptors (FGFRs) (87). β-Klotho specifically binds to FGF15/19
which has high affinity for fibroblast growth factor receptor 4
(FGFR4) and less for fibroblast growth factor receptor 1 (FGFR1)
that are highly expressed in hepatocytes and white adipose tissue
(WAT), respectively (88, 89). Low levels of FGFR4 expression are
also detected in other cell types, including HSCs, macrophages,
and some central neurons (90). FGF15/19 is expressed in ileal
enterocytes, where it is strongly induced by FXR activation (84).
Once released into blood circulation, FGF15/19 acts on the liver
to repress BA synthesis, as described above.

However, mouse FGFR4 does not recognized human FGF19
(91). Therefore, when using high dosage of FGF19 in mice, the
observed effects may be due to the activation of FGFR1 or other
FGFRs, but not FGFR4 by FGF19.

Role in Energy Expenditure
To investigate the role of FGF19 in physiological homeostasis,
transgenic mice expressing human FGF19 were utilized (92).
FGF19 transgenic mice had a significant reduction in fat mass
arising from an increase in energy expenditure (92). When fed
a high-fat diet, FGF19 transgenic mice did not become obese
or diabetic (92). The results suggest two mechanisms by which
FGF19 may increase energy expenditure through an increase
in brown adipose tissue (BAT) and through a decrease in liver
enzyme acetyl CoA carboxylase 2 (ACC2) (92). Reduction in
ACC2, the rate-limiting enzyme for fatty acid entry into the
mitochondria, also resulted in reduced liver triglyceride levels
(92). In an additional study, FGF19 increased the metabolic rate
in mice fed a high-fat diet while reducing body weight and
diabetes in leptin-deficient mice (93). FGF19 also acts in the
central nervous system to improve insulin sensitivity by reducing
hypothalamic agouti-related peptide (AGRP)/neuropeptide Y
(NPY) neuron activity (94). In summary, FGF15/19 increases
insulin sensitivity, thermogenesis, and weight loss and decreases
serum cholesterol and triglyceride levels.

Protein and Glycogen Synthesis
FGF15/19 also regulates hepatic protein and glycogen synthesis
(95). Fgf15 KO mice were shown to be glucose-intolerant and
store half as much hepatic glycogen compared to control wild-
type mice (95). In diabetic mice lacking insulin, FGF19 treatment
restored the hepatic glycogen concentrations to normal levels,
indicating that FGF19 activates an insulin-independent pathway
to regulate glycogen metabolism (95). It was determined that
FGF15/19 uses a RAS/extracellular signal-regulated protein
kinase (ERK)/p90RSK pathway to induce hepatic glycogen and
protein synthesis in vivo (95). FGF19 also shows a positive effect
on muscle weight, revealed by a study showing that FGF19
stimulates the phosphorylation of the ERK1/2 and the ribosomal
protein S6 kinase (S6K1), an mTOR-dependent master regulator
of muscle cell growth (96).

Gluconeogenesis
Energy homeostasis is additionally regulated through FGF15/19
repressing gluconeogenesis, like insulin (97). While insulin

peaks in serum 15min after feeding, FGF15/19 peaks ∼45min
later due to the increase of BAs in the small intestine (97).
In vivo, FGF15/19 blocks the expression of gluconeogenesis
genes through the dephosphorylation and inactivation of the
transcription factor cAMP regulatory element-binding protein
(CREB) (97). This then inhibits the expression of peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α) and
other downstream hepatic metabolism genes (97).

Fatty Acid Synthesis
Lastly, FGF19 inhibits hepatic fatty acid synthesis. Primary
hepatocytes incubated with recombinant FGF19 protein in the
presence or absence of insulin showed that FGF19 suppressed
the insulin-dependent stimulation of fatty acid synthesis (98).
Similar to the SHP-mediated suppression of sterol regulatory
element-binding protein 1c (SREBP1c) following FXR activation,
FGF19 was shown to decrease SREBP1c through increasing
the signal transducer and activator of transcription 3 (STAT3)
and decreasing the peroxisome proliferator-activated receptor-γ
coactivator-1β (PGC-1β), while also increasing the expression of
SHP (98). This favorable inhibition of hepatic fatty acid synthesis,
along with the promotion of protein and glycogen synthesis
and the repression of gluconeogenesis, supports the beneficial
effects of FGF15/19 on metabolic syndrome and warrants further
investigation of FGF15/19 in the prevention and treatment of
NASH. Indeed, modified FGF19 has been shown to be beneficial
in mouse models of NASH and cholestasis (99, 100).

FXR AS DRUG TARGETS—FXR AGONISTS

There are many FXR modulators that have undergone clinical
trials for the treatment of chronic liver diseases. The focus
for most of these trials is the efficacy of FXR activation
on cholestasis, NASH, and obesity; however, there are some
studies focused on minor indications, including bile acid
diarrhea or association with reactivation of latent pro-virus
(clinical trials.gov). Currently, two types of FXR agonists—
steroidal represented by OCA vs. non-steroidal represented by
tropifexor—are front-runners for obtaining U.S. Food and Drug
Administration (FDA) approval for the treatment of NASH.

The first FDA-approved FXR agonist for the treatment of PBC
is OCA, which is a steroidal FXR agonist modified from CDCA
(101). When compared to CDCA, OCA was shown to be ∼100
times more potent (101). In a model of cholestasis, male Wistar
rats were administered LCA through an intravenous infusion to
impair bile flow. Administration of OCA alone did not induce
cholestasis, while co-infusion of LCA and OCA fully reversed
bile flow impairment and protected hepatocytes from necrosis
(101). This initial study confirmed OCA as a selective, potent
FXR agonist and warranted further investigation of additional
therapeutic uses.

The traditional first-line treatment for PBC is ursodeoxycholic
acid (UDCA) as it has been shown to improve liver tests and
transplant-free survival withminimal side effects (102). However,
not all patients respond to UDCA (102). In a randomized,
double-blinded, 12-week, phase II clinical trial, the efficacy
of OCA in PBC patients who did not respond favorably to
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UDCA was evaluated (103). Patients (n = 165) were randomly
assigned to receive 10, 25, or 50mg of OCA or placebo once
daily in addition to an existing dose of UDCA (103). The
primary endpoint was level change of ALP from baseline until
the conclusion of the study (103). All three doses significantly
reduced the levels of ALP, γ-glutamyltransferase (GGT), and
ALT compared to placebo. However, pruritus was reported in all
groups, with severity correlating to the dose of OCA (103). Based
on the efficacy and tolerability, the once daily dose of 10mg OCA
was determined to be the most effective (103).

In the randomized, double-blinded, phase III POISE trial,
217 PBC patients who had an inadequate response to UDCA
were assigned to receive 10mg OCA, 5–10mg OCA, or placebo
once daily for 12 months (104). Patients still received UCDA
as a background therapy (104). The primary endpoint was a
reduction in ALP from baseline and a normal total bilirubin
level, which was reached in more patients in both OCA groups
compared to placebo (104). As seen previously in the phase
II trial, an OCA dose-dependent increase in the incidence of
pruritus was reported (104). Based on the favorable effects of
OCA on important biochemical markers, the FDA approved
OCA for the treatment of PBC patients with an inadequate
response of intolerance to UDCA in 2016 (105).

Another phase II study investigated OCA as a monotherapy in
PBC patients (106). Patients received 10mg OCA, 50mg OCA,
or placebo once daily for 3 months and then followed up for up
to 6 years (106). OCA treatment as a monotherapy significantly
improved ALP and other biochemical markers associated with
improved clinical outcomes (106). However, severe pruritus was
reported in almost all patients who received 50mg OCA (106).
Compared to UDCA co-therapy, no additional benefits for OCA
as a monotherapy were reported (107).

A multiyear study (COBALT) to determine the effects of OCA
in PBC patients with more advanced liver disease is ongoing
(104). In 2017, after 11 cases of serious liver injury and 19
cases of death associated with OCA were reported, the FDA
released a black box warning for the use of OCA in patients with
decompensated cirrhosis (105). Many of the cases of increased
liver injury appeared to be due to inappropriate high dosing of
OCA (105).

Due to arising side effects including pruritus and increased
risk of liver decompensation in cirrhotic PBC patients
administered OCA, a study to determine whether OCA
worsened liver injury under cholestatic conditions was carried
out (108). BDL and ANIT treatment were studied in rats (108).
In both models, OCA treatment exacerbated liver injury in a
dose-dependent manner and downregulated the expression of
basolateral transporters (108). The non-steroidal FXR agonist
GW4064 was also tested in the ANIT cholestasis model. In
contrast, GW4064 administration decreased the severity of
cholestatic injury compared to OCA and reduced AST, ALT,
GGT, and bilirubin (108). This is again consistent with the
results published by Liu et al. (75) and suggests that the safety of
FXR agonists is impacted by their pharmacokinetic properties
(108). OCA, as a semi-synthetic derivative of CDCA, has a high
rate of intestinal absorption, which allows it to recirculate like
endogenous BAs (108). While synthetic GW4064 undergoes

taurine conjugation in the liver which is then not recognized
by intestinal transporters thus reducing its bioavailability (108).
Under cholestatic conditions, OCA accumulates in the liver
where it may reach toxic concentrations (108, 109). In mice,
genetic KO of FXR or inhibition of FXR both resulted in
protection from injury induced by OCA in an ANIT model of
cholestasis (108). After RNAseq analysis, FXR antagonism was
shown to reverse the transcription of over 2,000 genes, including
V-Maf avian musculoaponeurotic fibrosarcoma oncogene
homolog G (Mafg) and its partner nuclear factor erythroid
2-related factor 2 (Nrf2) (108). Mafg expression has been shown
to be induced in cholestatic diseases and represses genes involved
in the synthesis of antioxidant glutathione (110, 111). The
modulation of these transcription factors was then investigated.
Pharmacologic or genetic inhibition of Mafg prevented damage
caused by ANIT and OCA, while Nrf2 induction was protective.
These results support that the negative side effects of OCA
treatment are FXR-mediated (108).

There is currently no approved treatment for PSC, and the
efficacy of UDCA for PSC remains uncertain (112). Thus, the
efficacy and safety of OCA in PSC patients were assessed in
a phase II randomized, double-blind, placebo-controlled, dose-
finding study (113). Patients (n = 76) were assigned to receive
1.5–3.0mg OCA, 5–10mg OCA, or placebo once daily for
24 weeks (113). At 24 weeks, treatment with 5–10mg OCA
significantly reduced serum ALP compared to placebo (113).
Dose-related pruritus was reported as the most common side
effect, consistent with the earlier clinical studies (113).

The safety and efficacy of the non-steroidal FXR agonist
cilofexor (GS-9674) were evaluated in a phase II double-blinded,
placebo-controlled study in PSC patients (114). Randomized
patients received 100mg cilofexor, 30mg cilofexor, or placebo
once daily for 12 weeks (114). Treatment with cilofexor was
generally well-tolerated, safe, and improved the biochemical
markers of cholestasis and inflammation (114). Significant
dose-dependent reductions in serum ALP, GGT, ALT, and
AST with cilofexor compared to placebo were reported (114).
The effect of cilofexor on ALP was independent of UDCA
use, and adverse events were similar between treatment
groups (114).

Cilofexor was also evaluated in a double-blind, placebo-
controlled, phase II trial in patients with NASH (115). Non-
cirrhotic patients (n = 140) were randomized to receive 100mg
cilofexor, 50mg cilofexor, or placebo once daily for 24 weeks
(115). Cilofexor was safe and significantly improved hepatic
steatosis, liver biochemistry (e.g., GGT), and bile acids (115).
Compared to OCA treatment that resulted in increases in
serum LDL-C and total cholesterol, cilofexor treatment had
no significant effects on serum lipids (115). Moderate to
severe pruritus was reported in 14% of the 100-mg cilofexor
group and 4% of the 30-mg group (115). In contrast, 23%
of the OCA-treated patients reported pruritus (116). However,
cilofexor treatment only had modest beneficial effects on liver
biochemistry compared to OCA treatment, indication of a
potential limitation for efficacy (115).

To evaluate the effect of FXR activation by OCA on insulin
resistance and liver lipid metabolism, Zucker (fa/fa) rats that
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contain a loss-of-function mutation in the hunger hormone
leptin receptor were utilized (117). This mutation leads
to hyperphagia and hyperleptinemia, resulting in diabetes,
insulin resistance, obesity, and liver steatosis; therefore,
Zucker (fa/fa) rats are considered a non-alcoholic fatty
liver disease (NAFLD) model (117). Daily OCA treatment
(10 mg/kg) over 7 weeks reversed insulin resistance and
prevented body weight gain and liver fat deposition (117).
Moreover, OCA treatment reduced blood triglyceride and
plasma aminotransferases and improved liver histopathology
(117). Reversal of insulin resistance after the administration of
OCA is further supported by in vitro data showing that OCA
significantly increases insulin secretion in mouse β-TC6 cells
and human pancreatic islets (118). Additionally, OCA activation
of FXR in mouse β-TC6 cells leads to AKT (protein kinase
B)-dependent translocation of glucose transporter 2 (GLUT2),
thus increasing the glucose uptake by these cells (118). Taken
together, OCA activation of FXR improves hyperglycemia
through enhanced insulin secretion and glucose uptake by the
liver (118).

OCA has also been shown to exhibit anti-inflammatory
and anti-fibrotic properties. While investigating the NF-
κB signaling pathway, a key inflammation pathway,
pretreatment of HepG2 cells with OCA (3µM) inhibited
the expression of the cytokine-inducible enzymes COX-2
and iNOS after stimulation with LPS or tumor necrosis
factor alpha (TNFα) (67). Inhibition of iNOS by OCA
was also confirmed in LPS-treated primary mouse
hepatocytes (67).

After animal studies showed that OCA decreased insulin
resistance and hepatic steatosis, the efficacy and safety of
OCA were first evaluated in a phase IIa study in patients
with type II diabetes and non-alcoholic fatty liver disease
(119). The participants were randomly assigned to placebo
(n = 23), 25mg OCA (n = 20), or 50mg OCA (n = 21)
groups for the 6-week treatment period (119). Both OCA
groups exhibited reduced GGT and ALT levels along with
decreased bodyweight (119). Furthermore, treatment of OCA
led to improved insulin sensitivity and elevated FGF19 serum
levels. This, in conjunction with the decreased BA precursor
C4 and endogenous BAs, again confirmed OCA’s FXR agonist
activity (119).

Based on previous favorable results, OCA was further
investigated in the phase IIb Farnesoid X Receptor Ligand
Obeticholic Acid in NASH Treatment (FLINT) trial (116). In
this multicenter, double-blind, randomized clinical trial, patients
with non-cirrhotic NASH were assigned to receive 25mg OCA
(n = 141) daily or placebo (n = 142) for 72 weeks (116).
OCA treatment was shown to improve the biochemical and
histological features of NASH when compared with placebo;
specifically, 45% of OCA patients improved their NAFLD
activity score by two points or greater without worsening
of fibrosis compared to the 21% improvement in placebo
patients (116). However, there was no significant difference in
the histological resolution of NASH between the OCA-treated
and placebo groups (120). Adverse outcomes of pruritus and

unfavorable dyslipidemia manifested in the OCA treatment
group (116). Additionally, the favorable effects on ALP, lipids,
and blood glucose seen in the placebo group associated with
weight loss were absent or reversed in the OCA-treated
patients (120).

Currently, OCA is being evaluated by Intercept in a phase
III trial REGENERATE (121). To assess OCA’s effect on
liver histology and clinical outcomes, 2,065 biopsy-confirmed
NASH patients were randomized into a 10-mg OCA, 25-
mg OCA, or placebo group (121). Total study duration is
estimated to be 6 years, with interim biopsies performed
after the first 18 months to evaluate improvement of fibrosis
stage and resolution of NASH with no worsening fibrosis
(121). Although OCA was recently approved by the FDA
for treating PBC, the current American Association of the
Study of Liver Diseases guidelines do not recommend the
off-label treatment of OCA in NASH patients until further
safety and efficacy data are available (122). In February 2019,
Intercept announced that OCA achieved the primary endpoint
of improving liver fibrosis without worsening of NASH after
18 months (p = 0.0002). This marks the first and largest
successful phase 3 study in fibrosis patients due to NASH.
Intercept filed a New Drug Application (NDA) with the FDA
in September 2019. As of June 2020, the FDA issued a
complete response letter stating that the predicted benefit of
OCA did not outweigh the potential risks in patients with
fibrosis due to NASH and that long-term outcome needs to be
evaluated (123). Thus, accelerated approval was not granted at
this time.

Tropifexor is a representative of non-steroidal FXR agonists.
In mouse models of NASH, tropifexor significantly reduced
oxidative stress, steatosis, inflammation, and fibrosis (124). It will
be very interesting to see whether, as a non-steroidal FXR agonist,
tropifexor will present similar adverse effect to the steroidal
FXR agonists.

CONCLUSION

As a key regulator of BA homeostasis, FXR activation suppresses
BA synthesis mainly through the induction of FGF15/19 in
the gut and promotes enterohepatic BA circulation. FXR
agonism also regulates lipid metabolism, reduces hepatic
gluconeogenesis and glycolysis, and increases glycogen
synthesis while playing an anti-inflammatory role during
liver injury. FGF15/19 favorably increases energy expenditure
and glycogen synthesis while decreasing gluconeogenesis
and fatty acid synthesis. While FXR and FGF19 have been
considered promising targets for the treatment of cholestasis
and NASH, the molecular mechanism by which these two
factors regulate liver BA transport, steatosis, and inflammation
needs to be further determined, and most importantly,
an individualized treatment plan is paramount to develop
drugs and treatment strategy with better efficacy and less
toxic effects.
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