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Abstract
Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research
of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To opti-
mise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene
contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at
200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene
(3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks’ administration of 70 % ethanol FD extract (125, 250 and
500 mg/kg/d) to streptozotocin–nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2,
lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenol-
pyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD signifi-
cantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic
glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence
for the traditional use of FD as an antidiabetic agent.
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Diabetes is a widespread, chronic and possibly life-threatening
endocrine disease if left untreated. Globally, its prevalence
continues to increase due to ageing and socio-economic
changes(1). According to the International Diabetes
Federation (2010–2012), more than 300 million people have
diabetes, representing 6 % of the world’s adult population,
and the global incidence is rapidly increasing. An additional
seven million people develop the disease each year. The
International Diabetes Federation estimates that 380 million
people will be diagnosed with diabetes by 2025, with the great-
est burden in low- and middle-income countries. Diabetes
causes devastating complications, including amputations, kid-
ney disease and heart disease, which can cause premature
death in both children and adults. The cost of diabetes is a
challenge for healthcare systems, even in the wealthiest
countries(2).
Type 2 diabetes mellitus (T2DM) is a serious health threat,

particularly in modern society, and it is associated with
impaired glucose metabolism (hyperglycaemia). It causes
many complications, including CVD, blindness, renal failure
and peripheral nerve damage(3). Accordingly, intensive
research and drug intervention strategies have been applied
to develop potentially effective treatments for T2DM(4).
Insulin resistance is a characteristic feature in the pathogen-

esis of T2DM and is characterised by defects in the peripheral
glucose utilisation and development of hyperglycaemia.
Therefore, insulin sensitisers, such as thiazolidinediones (or
glitazones) have been widely used for T2DM treatment(5).
Numerous factors have been reported to impair the insulin
signalling pathway by inhibiting the activation, or by suppres-
sing the expression of signalling molecules. A key negative
regulator of insulin signalling is protein tyrosine phosphatase
1B (PTP1B) that causes dephosphorylation of activated insulin
receptor and induction of insulin resistance. Based on the
overwhelming evidence, PTP1B inhibitors are anticipated to
become potential therapeutic agents to control T2DM(6,7).
One of the most popular and well-known plants with a long

history of use among the Malays is Ficus deltoidea var. deltoidea
Jack (FD), a plant of the family Moraceae. FD has been
used as a medicine for various ailments in the Malay archipel-
ago as well as distributed and formulated as capsules, teas and
tonics throughout Malaysia(8).
FD has been used to relieve headache, fever and toothache.

A decoction of the whole plant has been used as a herbal drink
to strengthen the uterus after birth in women(9,10).
Accumulating data have reported the blood glucose-lowering
effect of FD due to an insulin-mimetic or insulinotropic activ-
ity(11,12). Moreover, FD was demonstrated to inhibit intestinal
α-glycosidase activity and block hepatic glucose production(13).
However, until this moment, there has been no report on the
effect of FD on PTP1B activity or expression as a target insu-
lin receptor signalling cascade.
The present study aims to elucidate the other molecular

mechanisms of FD and to determine the possible involvement
of PTP1B modulation in its glucose-lowering action against
T2DM. To establish a relationship between pharmacological
effects and bioactive constituents, phytochemical screening
of various FD leaf extracts was performed via a bio-guided

fractionation of the active extract to re-isolate and characterise
novel triterpenes from FD and to evaluate their
PTP1B-inhibiting activity.

Materials and methods

Chemicals

Ptp1b (human, recombinant), p-nitrophenyl phosphate,
EDTA, citric acid, dithiothreitol, gallic acid (≥98·0 %) and
ursolic acid (≥98·0 %) were obtained from Sigma Aldrich.
Materials for chromatographic studies included pre-coated sil-
ica plates (60 GF 254; 20 × 20 cm) (Fluka for TLC, Diaion HP
20; Sigma-Aldrich Co.). Silica gel H (Merck) and Lichroprep
RP-18 silica gel (15–25 µm; Merck) were used for vacuum
liquid chromatography, and silica gel 60 (70–230 mesh
ASTM; Fluka) and Sephadex LH-20 (Sigma-Aldrich Co.) for
column chromatography. The following solvent systems were
used for developing the chromatograms. S1: n-hexane–ethyl
acetate (9:1, v/v); S2: methylene chloride–methanol (9·5:0·5,
v/v); S3: ethylacetate–methanol–water (10:1·6:1·2, by vol.).
Spots were visualised by spraying with p-anisaldehyde–sulfuric
acid or natural products–polyethyleneglycol reagent (NP/
PEG). 1H-NMR and 13C-NMR spectra were recorded on a
Bruker high-performance digital Fourier transform-NMR
spectrophotometer operating at 400 (1H) and 100 (13C)
MHz in DMSO-d6 as a solvent and chemical shift were
given in δ (parts per million) relative to solvent as an internal
standard. The 1H-NMR was run for 1 h and 13C-NMR was
run for 6 h at room temperature. Mass spectra were measured
on a MS QQQ mass spectrometer equipped with an electro-
spray ion source in negative ion mode.

Plant material and preparation of the crude extracts

The leaves of FD were obtained from HCA Products Sdn Bhd
in spring 2015. The plant was kindly identified by Forest
Research Institute, Malaysia. A voucher specimen
(7-08-2015) was kept in the herbarium of the
Pharmacognosy Department, Faculty of Pharmacy, Cairo
University, Cairo, Egypt.
The powdered air-dried leaves of FD were extracted using

water, and 50, 70, 80, 90 and 95 % ethanol (50 g powder
for each solvent). The liquid–material ratio was 60:1 in a three-
stage procedure (each in a ratio of 20:1), each time continued
for 30 min using an ultrasonic bath at 60°C(14). The combined
extracts for each solvent were concentrated under reduced
pressure using a rotary evaporator at 40°C to yield solid resi-
dues weighing 8·55, 8·51, 7·12, 4·77, 4·70 and 4·52 g of water,
and 50, 70, 80, 90 and 95 % ethanol extracts.

Estimation of total phenolics

The total phenolic content in the prepared six crude extracts of
FD was estimated using Folin–Ciocalteu reagent(15). The total
phenolic content of each extract was separately calculated
using the standard curve and expressed as gallic acid equiva-
lents in mg/g of the extracts.
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Estimation of total triterpenes

Colorimetric estimation of total triterpene content was done
according to Hiai et al.(16) using vanillin reagent. The concen-
tration of triterpenes was calculated as ursolic acid equivalents
in mg/g extract with reference to a pre-established standard
calibration curve.

Fractionation and purification of active compounds

An amount of 5000 g FD leaves was extracted in 70 % ethanol
as described in the previous section. Then, the extract was vac-
uum filtered, concentrated using a rotatory evaporator and lyo-
philised to yield a brownish yellow powder. Approximately
400 g of the dry extract suspended in 600 ml distilled water
was subjected to liquid–liquid partitioning with dichloro-
methane (4 × 1 litre) then evaporated using a rotary evapor-
ator at 40°C. A quantity of 300 g of the dry extract was
fractionated in a Diaion HP 20 chromatography column (60
cm length × 5 cm diameter, 500 g) using water–methanol mix-
tures (100:0, 75:25, 50:50, 25:75, 0:100, v/v) for elution.
Desired fractions were pooled and evaporated at 40°C to
yield 139·7, 66·6, 11·1, 6·0 and 2·41 g, respectively.
About 100 g of the above dichloromethane extract were

separated in a vacuum liquid chromatography column using
silica gel H (5 cm length × 10 cm diameter, 200 g). Gradient
elution was performed using n-hexane, n-hexane–dichloro-
methane mixtures, dichloromethane, dichloromethane–ethyl
acetate mixtures, ethyl acetate, ethyl acetate–methanol mixture
and methanol. The polarity was increased by 5 % every 200 ml
till 100 % methanol. Fractions (200 ml, each) were collected
and monitored by TLC; similar fractions were pooled together
to yield three sub-fractions (A–B). The three sub-fractions A,
B and C were separately re-chromatographed over silica col-
umns using different ratios of ethyl acetate–n-hexane (9, 10
and 15 % ethyl acetate in n-hexane, respectively) to yield
three pure compounds F1, F2 and F3.
Fraction 75 %methanol in water fromDiaion (1·0 g) was sepa-

rated over a Sephadex column (LH-20; 30 cm length × 3 cm
diameter) using methanol as eluent to yield three sub-fractions
(I-III). These fractions were further purified on a Sephadex col-
umn (LH-20; 15 cm length × 2 cm diameter) using methanol–
water (1:1, v/v) to obtain three pure compounds F4, F5 and F6.

Protein tyrosine phosphatase 1B-inhibition assay

In vitro PTP1B-inhibition activity was determined using
p-nitrophenyl phosphate as substrate(17). Briefly, 50 mM-sodium
citrate (pH 6·0), 0·1 mM-EDTA, 1 mM-dithiothreitol, 2
mM-p-nitrophenyl phosphate, 0·1 µg PTP1B and varying concen-
tration of inhibitors (extracts, fractions, isolates or ursolic acid) up
to 200 µl, were incubated at 37°C for 30 min, then the reaction
was terminated by adding 10 M-NaOH. The amount of
p-nitrophenol was monitored at 405 nm. The results are means
of three measurements.

Animals

Adult male Wistar rats (150–175 g), 3 months old, were
obtained from the Animal House Colony at the National

Research Centre (NRC) Egypt. All animals were housed
under constant temperature and a 12-h light–dark cycle.
They were fed a standard chow diet (Al-Marwa for Animals
Feed Manufacturing) containing 19·80 % protein, 39·25 %
carbohydrate, 4·41 % fat and 13·25 % fibres. After 1 week
of acclimatisation, rats were randomly allocated into six groups
(n 7 each). Animal procedures were performed according to
the protocol approved by the Institutional Animal Care and
Use Committee at Cairo University (approval number:
CU-II-F-27-18) and the NRC Medical Ethics Committee
(approval number: MREC-17-081) and following the recom-
mendations of the National Institutes of Health Guide for
Care and Use of Laboratory Animals (publication no. 85-23,
revised 1985).
The experimental endpoint was set when the scientific aims

and objectives had been reached. During the experimental
study, we ensured that pain and distress were minimised. At
the end of the study, euthanasia of rats was done by means
that induce rapid unconsciousness and death without pain or
distress through an intraperitoneal overdose of pentobarbital
sodium (200 mg/kg, intraperitoneally).

Selection of Ficus deltoidea doses

A preliminary toxicity study was performed by giving a group
of rats FD extract, orally at a dose of 5 g/kg. No lethality was
recorded and so we examined the antidiabetic activity of FD at
one-tenth the highest dose which was non-toxic nor lethal, 1/
20 and 1/40 in the present study.

Experimental design

T2DM was induced by two consecutive injections of nicotina-
mide (NA) and streptozotocin (STZ)(18). NA was dissolved in
normal saline. Rats were intraperitoneally injected with NA
(110 mg/kg) 15 min prior to the intraperitoneal injection of
a freshly prepared solution of STZ (45 mg/kg) in 0·1
M-citrate buffer (pH 4·5) in overnight fasted rats(19). All rats
were injected with STZ–NA, except negative control rats,
which received only the vehicle, distilled water(20). After 6 h
of NA injection, rats were provided with free access to glucose
solution (10 %, w/v) for the next 24 h. After 48 h of STZ
administration, fasting blood glucose (FBG) level was mea-
sured according to Trinder(21). Rats having FBG values
>200 mg/dl (>11·1 mmol/l) were considered diabetic and
were assigned for the screening and assays(19). Diabetic ani-
mals were randomly allocated into six groups, of seven rats
each. Treatment was carried out for 4 weeks as follows: the
1st and the 2nd groups received only the vehicle (distilled
water) orally and served as the normal and diabetic control
groups, respectively. The 3rd group was orally administered
metformin (MET; 150 mg/kg per d) as a reference control
group. The 4th, 5th and 6th groups received 70 % ethanol
extract of FD (125, 250 and 500 mg/kg per d) orally. FBG
was measured 14 and 28 d after medication.
At the end of the 28th day, blood samples were withdrawn

from the retro-orbital venous plexus under light ether anaes-
thesia into two sampling tubes, one containing Na-EDTA at
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day 28 post-medication for the estimation of Hb(22). The
second blood sample was centrifuged at 3500 rpm for 15
min to separate sera for the estimation of insulin level(23).
Other biochemical parameters such as alanine transaminase
and aspartate transaminase activities in serum were mea-
sured(24). Serum levels of total bilirubin(25), total protein(26),
TAG(27), total cholesterol(28), HDL-cholesterol(29) and
LDL-cholesterol(30) were measured using commercially avail-
able kits (Quimica Clinica). Preparation of pancreatic hom-
ogenate was done according to Mansour et al.(31). The
activities of superoxide dismutase (SOD), glutathione peroxid-
ase (GPx) and catalase (CAT) in hepatic and pancreatic tissues
were estimated(32–34), respectively. Reduced glutathione
(GSH)(35), lipid peroxidation products were estimated by
determining malondialdehyde (MDA) content in the hepatic
and pancreatic tissue(36) and GLUT2 was determined using
commercial diagnostic kits (Chema Diagnostica)(37).

Histopathological examination

The pancreatic tissues from the different groups were fixed in
10 % neutral buffered formalin and routinely processed for
paraffin embedding to obtain 4 µm sections. The tissue sec-
tions were stained with haematoxylin and eosin stain(38). The
histopathological lesion scoring of the pancreas was
performed(39).

Immunohistochemical analysis

The immunohistochemical analysis was done following the
methods described by Abdel-Rahman et al.(40). The pancreatic
tissue sections were deparaffinised and rehydrated. The
endogenous peroxidase activity was blocked by adding a few
drops of hydrogen peroxide (Thermo Scientific). The antigenic
retrieval process was performed by pre-treating tissue sections
with 10 mM-citrate buffer (pH 6·0) for 10 min in a microwave
oven. Sections were incubated overnight at 4°C in a humidified
chamber with one of the following primary antibodies: mouse
monoclonal anti-insulin clone E11D7 (05-1066; Millipore) at a
dilution of 1:50, mouse monoclonal anti-glucagon antibody
clone 13D11.33 (MABN238; Millipore) at a dilution of
1:8000 and rat monoclonal anti-somatostatin antibody clone
YC7 (MAB354; Millipore) at a dilution of 1:100. The sections
were rinsed with PBS then incubated with a sheep anti-mouse
antibody (AQ300D; Millipore) and goat anti-rat antibody
(AP136P; Millipore) for 10 min. Finally, sections were incu-
bated with streptavidin peroxidase (Thermo Scientific). The
slides were incubated with 3,3′-diaminobenzidine tetrahy-
drochloride as chromogen (DAB; Sigma) for 10 min. The
slides were counterstained with haematoxylin and mounted.
In each field, the immunopositive (dark brown) area was
recorded. Percentage of positive stained area (%) was calcu-
lated as mean of ten fields/slide. The morphometric analysis
of the pancreatic islet cells composition was performed
according to methods described by Mu et al.(41) to determine
the percentage of insulin-positive β-cells to the total islet
area, glucagon-positive α-cells to the total islet area and the
somatostatin-positive δ-cells to the total islet area.

Gene-expression analysis

Total RNA was isolated from rat livers using an Rneasy Mini
Kit according to the manufacturer’s protocol (Qiagen).
First-strand cDNA synthesis from 1 µg total RNA was done
employing a reverse transcriptase kit and oligo(dT) (Thermo
Scientific). PTP1B, phosphoenolpyruvate carboxykinase
(PEPCK), glucose 6-phosphatase (G6Pase), GLUT2 (Slc2a2)
and insulin receptor (INR) target genes were amplified by
quantitative real-time-PCR using specific primers
(Supplementary Table S1). cDNA was added to a Quantifast
SYBR Green qPCR Master Mix (Qiagen) containing 30 pg/
ml of each primer. The thermal profile included forty cycles
of denaturation at 95°C for 15 s, annealing at 60°C for 15 s
and extension at 72°C for 45 s. During the first cycle, the
95°C step was extended to 1 min. The β-actin gene was amp-
lified in the same reaction as a reference gene to normalise
data. Relative gene expression was calculated using the Livak
& Schmittgen method(42).

Statistical analysis

All results are expressed as means and standard deviations.
Multiple group comparisons were performed by ANOVA fol-
lowed by Tukey’s multiple comparison post hoc test (two-sided)
at P≤ 0·05. GraphPad prism® software (version 6.00 for
Windows) was used.

Results

Estimation of total phenolic and triterpene contents

The 70 % ethanol extract contained the highest triterpene con-
centrations (420·49 (SD 1·08) mg ursolic acid equivalents/g
extract), and the highest phenolic concentrations (222·6 (SD
0·37) mg gallic acid equivalents/g extract) (Table 1).

Identification of isolated compounds

Three compounds were isolated from the methylene chloride
fraction: lupeol (F1), (24E)-stigmasta-5,8-dien-3β-ol (F2) and
3β,11β-dihydroxyolean-12-en-23-oic acid (F3) (Supplementary
Table S2). Four compounds were isolated from the 75 %metha-
nol fraction and were identified as gallic acid (F4), chryseriol-7O-

Table 1. Total phenolic and total triterpene contents of Ficus deltoidea
extracts

(Mean values and standard deviations; three replicates)

Total phenolics (mg

GA equivalents/g)

Total triterpenes (mg

UA equivalents/g)

Extract Mean SD Mean SD

Water 118·19 1·06 147·56 2·11
50% Ethanol 111·72 0·98 319·30 1·76
70% Ethanol 222·59 0·37 420·49 1·08
80% Ethanol 145·03 2·01 303·0 0·52
90% Ethanol 162·85 1·28 360·91 2·16
95% Ethanol 149·51 0·86 343·70 0·71
GA, gallic acid; UA, ursolic acid.
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α-rhamnoside (F5), vitexin (apigenin-8C-β-D-glucoside) (F6) and
isovitexin (apigenin-6C-β-D-glucoside) (F7) (Supplementary
Table S3). The isolated compounds were identified by analysing
the spectroscopic data from one- and two-dimensional NMR,
and MS experiments (Supplementary Table S4). The structures
of the isolated compounds are presented in Fig. 1(A). The
HMBC (heteronuclear multiple bond correlations) for F3 are
shown in Fig. 1(B).

Protein tyrosine phosphatase 1B-inhibitory effects of extracts
and fractions

As presented in Fig. 2(A), high in vitro PTP1B inhibition
(93·15, 92·0, and 94·36 %) was reported for 80, 70 and 50
% ethanol extracts, respectively. However, the aqueous, 90
and 95 % ethanol extracts showed relatively lower
PTP1B-inhibition activities, with 88·06, 89·11 and 87·73 %
inhibition, respectively.
The methylene chloride subfractions of the 70 % ethanol

FD extracts showed the highest in vitro PTP1B-inhibition
activity (97·88% inhibition), followed by 75 % methanol in
water Diaion fraction (50·48% inhibition) (Fig. 2(B)). It is
worthy to note that higher concentration could not be tested
due to the interference of the extract colour with the coloured
product of the PTP1B assay.
As shown in Table 2, compounds F1, F2, F3 and F7 inhib-

ited PTP1B activity in a dose-dependent manner, with half
maximal inhibitory concentration (IC50) values ranging from
2·88 (SD 0·16) to 83·67 (SD 14·85) µM. Moreover, the two
new pentacyclic triterpenes, F3 and F1, inhibited PTP1B activ-
ity (IC50 4·55 (SD 1·01) and 2·88 (SD 0·16) µM, respectively) to a
similar extent as the standard ursolic acid (IC50 3·64 (SD 0·53)
µM) due to their similarities in structure, which certainly affects
the binding to the active sites of the enzyme. A new triterpene,
3β,11β-dihydroxyolean-12-en-23-oic acid (F3), was isolated
which may be a potent PTP1B inhibitor.

Effect of Ficus deltoidea on fasting blood glucose levels

FBG levels were significantly increased by 171 % after 48 h of
STZ administration; this level was persistently and significantly
increased for 4 weeks (the end of the experiment) compared
with the normal blood glucose level. Treatment of diabetic
rats with 70 % ethanol extract of FD at doses of 125, 250
and 500 mg/kg significantly reduced FBG levels compared
with the diabetic control. Animals that had been treated with
the antidiabetic drug, MET, for 4 weeks displayed normal
FBG levels. Notably, FD lowered FBG levels to normal levels
after 2 weeks of treatment, indicating a significant difference
from MET (Table 3).

Effect of Ficus deltoidea on insulin and total Hb levels

Diabetic control rats exhibited significant decreases in blood
insulin and total Hb level to 66 and 28 % compared with
the normal control. All doses of FD significantly increased
plasma insulin levels compared with the diabetic control. Hb

reached normal levels after 4 weeks of FD treatment. MET
significantly increased insulin and Hb levels (Table 3).

Effect of Ficus deltoidea on hepatic markers

Diabetic rats showed significant increases in the levels of
enzyme markers of liver function and total bilirubin by
3- and 2-fold, respectively, whereas total protein content was
decreased by 50 % in the diabetic control compared with the
normal control group. Treatment for 4 weeks with 125, 250
and 500 mg/kg FD significantly reduced the levels of liver
enzymes in a dose-dependent manner and normalised total
bilirubin levels. A non-significant change in total protein
content was recorded in FD-treated rats compared with the
diabetic control. MET administration normalised the levels
of alanine transaminase, aspartate transaminase and total
bilirubin, with a significant elevation in total protein content
compared with diabetic rats (Table 4).

Effect of Ficus deltoidea on lipid profile

Diabetic control rats showed significant increases in total chol-
esterol, TAG and LDL levels by 41, 71 and 121 %, respect-
ively, but a significant reduction in HDL levels of 40 %
compared with normal rats. FD significantly reduced total
cholesterol and LDL levels and produced non-significant
changes in TAG levels compared with the diabetic control.
Normal HDL levels were recorded after the FD treatment.
The MET-treated group displayed significantly reductions in
lipid profile parameters to normal levels after 4 weeks of treat-
ment compared with the diabetic control (Table 5).

Effect of Ficus deltoidea on hepatic oxidative stress
biomarkers

Oxidative stress was confirmed in diabetic rats after STZ
administration as a significant decrease in GSH levels and
increase in MDA levels compared with normal rats. Besides,
STZ–NA diabetic rats displayed significantly decreased levels
of the antioxidant enzymes CAT, SOD and GPx by 70, 66
and 74 %, respectively, compared with normal rats. Oral
administration of 125, 250 or 500 mg/kg FD dose-
dependently and significantly elevated the GSH level com-
pared with diabetic rats. The FD treatment did not signifi-
cantly affect the MDA level, with the exception that 250
mg/kg FD significantly reduced the hepatic MDA level in dia-
betic rats. There were significant elevations in CAT, SOD and
GPx levels in all FD-treated groups compared with diabetic
rats. MET increased the GSH content and antioxidant enzyme
activities and decreased the MDA level compared with the dia-
betic control group (Table 6).

Effect of Ficus deltoidea on GLUT2 protein levels

Diabetic rats exhibited a significant, 80 and 73 % reduction in
GLUT2 levels in the liver and pancreas compared with normal
rats. Significant elevations in hepatic GLUT2 levels of 87, 237
and 287 % were recorded in diabetic rats treated with 125, 250
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or 500 mg/kg FD, respectively. Treatment with 250 and 500
mg/kg FD led to significantly elevated pancreatic GLUT2
levels by 102 and 130 %, respectively, whereas 125 mg/kg
FD had a non-significant effect on pancreatic GLUT2 levels.
Furthermore, MET significantly increased GLUT2 in both the
liver and pancreas, compared with the diabetic control (Figs 3
(A) and (B)).

Effect of Ficus deltoidea on pancreatic oxidative stress and
antioxidant enzymes

After STZ administration, pancreatic tissues showed a signifi-
cant, 38 % decrease in GSH levels and a 296 % increase in
MDA levels with significant decreases in the levels of the anti-
oxidant enzymes CAT, SOD and GPx of 65, 63 and 64 %,
respectively, compared with normal rats. Diabetic rats orally

treated with 125, 250 or 500 mg/kg FD exhibited dose-
dependent increases in GSH levels of 39, 40 and 49 %, and
significant increases in CAT levels of 60, 68 and 63 %, respect-
ively, compared with diabetic rats. Moreover, 500 mg/kg FD
significantly increased SOD activity by 54 % compared with
diabetic rats, whereas 250 and 500 mg/kg FD significantly
increased GPx levels by 66 and 75 %, respectively. In contrast,
150 mg/kg MET significantly increased GPx by 63 % com-
pared with diabetic control rats (Table 7).
On the other hand, the 250 and 500 mg/kg FD treatments

significantly decreased pancreatic MDA levels by 15 and 31 %,
respectively, whereas the 125 mg/kg FD treatment non-
significantly reduced the pancreatic MDA level in diabetic
rats. Moreover, the 150 mg/kg MET treatment significantly
increased the GSH content by 46 % but did not significantly
affect the MDA level in the pancreas of diabetic rats (Table 7).

Fig. 1. (A) Structures of the isolated compounds F1–F7. (B) Heteronuclear multiple bond correlations for F3.
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Histopathological examination

Histopathological examination of the pancreas of the control
group revealed a normal histology of the pancreatic acini
and pancreatic islets of Langerhans (Fig. 4(A)). The islets con-
tained a central core of β-cells surrounded in the periphery by
a large mantle of α- and δ-endocrine cells. In the diabetic
group, the number of β-cells in the pancreatic islets was mark-
edly reduced (Fig. 4(B)), and the more prominent cells were α-

and δ-endocrine cells. Pancreatic islets appeared disrupted.
Pancreatic ducts were severely dilated, with papillary hyperpla-
sia of the epithelial lining. Three different doses of FD mark-
edly improved the histopathological lesions in the islet of
Langerhans, particularly the β-cell loss, as shown in Figs 4
(C)–(E) and 5(A). Therefore, FD had a strong effect on main-
taining β-cell and insulin production in diabetic rats.

Immunohistochemical analysis of insulin, glucagon and
somatostatin protein expression and islet morphology

The non-diabetic control group showed positive β-cells that
occupied most of the pancreatic islets, with a diffuse distribu-
tion of the insulin content (Fig. 6(A)). Glucagon was localised
in α-cells present in the peripheral area of the pancreatic islet
(Fig. 7(A)). Somatostatin was localised in δ-cells that formed
an incomplete ring in the pancreatic islet (Fig. 8(A)). The dia-
betic group exhibited a substantial decrease in the insulin con-
tent of β-cells (Fig. 6(B)), with a marked increase in the
glucagon (Fig. 7(B)) and somatostatin (Fig. 8(B)) contents in
the α-cells and δ-cells in the peripheral and central regions
of the pancreatic islet, respectively. In the various treated
groups, the insulin content (Fig. 6) of the β-cells was signifi-
cantly elevated in the core of the islet, with a marked reduction

Fig. 2. Protein tyrosine phosphatase 1B-inhibitory effects of extracts (A) and fractions (B). EtOH, ethanol; MeOH, methanol.

Table 2. Protein tyrosine phosphatase 1B-inhibitory activities of the Ficus
deltoidea isolated compounds

(Mean values and standard deviations)

IC50 values (μM)

Compound Mean SD

F1 2·88 0·16
F2 73·68 7·51
F3 4·55 1·01
F4 –

F5 –

F6 82·57 12·48
F7 83·67 14·85
Ursolic acid 3·64 0·53
IC50, half maximal inhibitory concentration.
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in the glucagon and somatostatin contents in the α-cells and
δ-cells in the islet, respectively, particularly in the core, as
shown in Figs 7 and 8. The morphometric analysis of the pan-
creatic islets (Figs 5(B)–(D)) revealed that the percentage of
insulin-positive β-cells relative to the total islet area was sub-
stantially decreased in the diabetic group compared with the
non-diabetic control group. Moreover, the percentages of

glucagon-positive α-cells and somatostatin-positive δ-cells
relative to total islet area were significantly increased compared
with the non-diabetic control group. The various treatments
markedly increased the percentage of insulin-positive β-cells
relative to the total islet area and markedly decreased the per-
centages of glucagon-positive α-cells and somatostatin-positive
δ-cells relative to the total islet area (Figs 5(B)–(D)).

Table 3. Effect of Ficus deltoidea (FD) on fasting blood glucose (FBG), insulin and Hb

(Mean values and standard deviations; n 7)

FBG (mg/dl)§

Baseline 2 weeks 4 weeks Insulin (mIU/ml) Hb (g/l)

Groups‡ Mean SD Mean SD Mean SD Mean SD Mean SD

Normal control 96·5 6·72 93·0 11·42 79·5 10·78 18·9 4·12 142 10·1
Diabetic control 262·1* 52·34 203·0* 9·70 208·9* 5·08 6·3* 1·55 105* 8·8
MET 254·7* 60·96 164·7*† 41·16 82·0† 6·78 9·4* 1·78 135† 8·5
FD, 125 mg/kg 286·8* 32·99 73·8† 21·82 79·5† 11·00 13·1*† 1·69 133† 24·6
FD, 250 mg/kg 268·2* 34·21 80·5† 22·08 76·0† 8·07 12·0*† 1·93 141† 12·7
FD, 500 mg/kg 285·8* 35·35 72·0† 20·22 67·0† 11·97 10·7*† 1·76 147† 11·9
MET, metformin.

* Mean value was statistically significantly different from that of the normal control group at the corresponding time (P ≤ 0·05).
† Mean value was statistically significantly different from that of the diabetic control group at the corresponding time (P ≤ 0·05).
‡ Adult male Wistar rats received either distilled water (normal control) or streptozotocin (45 mg/kg) in citrate buffer (diabetic control) by intraperitoneal injection. Diabetic rats

received FD (125, 250 or 500 mg/kg, orally), MET (150 mg/kg, orally) for 4 weeks, 48 h after induction of diabetes.

§ To convert glucose in mg/dl to mmol/l, multiply by 0·0555.

Table 4. Effect of Ficus deltoidea (FD) on serum hepatic markers, bilirubin and total protein

(Mean values and standard deviations; n 7)

ALT (U/l) AST (U/l) Total bilirubin (mg/l) Total protein (g/l)

Groups‡ Mean SD Mean SD Mean SD Mean SD

Normal control 37·6 4·58 75·9 10·71 6 2·0 166 26·4
Diabetic control 126·4* 12·37 205·6* 15·91 12* 2·5 84* 5·60
MET, 150 mg/kg 42·7† 4·38 69·5† 3·62 4† 1·2 114* 15·2
FD, 125 mg/kg 58·4*† 7·61 106·6*† 6·09 7† 0·7 86* 3·0
FD, 250 mg/kg 58·1*† 3·97 111·3† 11·27 5† 1·6 81* 8·2
FD, 500 mg/kg 48·4*† 3·25 90·6† 2·57 6† 3·0 88* 2·9
ALT, alanine transaminase; AST, aspartate transaminase; MET, metformin.

* Mean value was statistically significantly different from that of the normal control group (P ≤ 0·05).
† Mean value was statistically significantly different from that of the diabetic control group (P ≤ 0·05).
‡ Adult male Wistar rats received either distilled water (normal control) or streptozotocin (45 mg/kg) in citrate buffer (diabetic control) by intraperitoneal injection. Diabetic rats

received FD (125, 250 or 500 mg/kg, orally), MET (150 mg/kg, orally) for 4 weeks, 48 h after induction of diabetes.

Table 5. Effect of Ficus deltoidea (FD) on serum lipid profile

(Mean values and standard deviations; n 7)

Total cholesterol

(mg/dl)§ TAG (mg/dl)§

HDL-cholesterol

(mg/dl)§

LDL-cholesterol

(mg/dl)§

Groups‡ Mean SD Mean SD Mean SD Mean SD

Normal control 62·9 6·34 51·0 8·96 28·5 3·80 19·3 2·40
Diabetic control 89·5* 6·15 87·5* 5·79 17·4* 3·3 42·2* 7·89
MET, 150 mg/kg 59·4† 5·19 57·8† 10·47 29·4† 2·66 20·8† 2·87
FD, 125 mg/kg 74·3*† 5·26 82·1* 10·30 25·0† 2·36 32·3*† 4·81
FD, 250 mg/kg 72·6† 9·45 86·3* 4·64 25·5† 4·70 32·5*† 1·75
FD, 500 mg/kg 69·9† 7·50 87·1* 6·28 30·4† 2·57 32·3*† 1·94
MET, metformin.

* Mean value was statistically significantly different from that of the normal control group (P ≤ 0·05).
† Mean value was statistically significantly different from that of the diabetic control group (P ≤ 0·05).
‡ Adult male Wistar rats received either distilled water (normal control) or streptozotocin (45 mg/kg) in citrate buffer (diabetic control) by intraperitoneal injection. Diabetic rats

received FD (125, 250 or 500 mg/kg, orally), MET (150 mg/kg, orally) for 4 weeks, 48 h after induction of diabetes.

§ To convert cholesterol in mg/dl to mmol/l, multiply by 0·0259. To convert TAG in mg/dl to mmol/l, multiply by 0·0113.

8

journals.cambridge.org/jns



Effects of Ficus deltoidea on glucose uptake and
metabolism-related gene expression

The expression of genes associated with glucose uptake and
metabolism in the diabetic group was analysed (Fig. 9).

PTP1B mRNA expression levels were significantly
increased in the diabetic group by 6·4-fold compared with
the control group. Groups treated with MET or 125, 250
and 500 mg/kg FD exhibited a marked decrease in PTP1B

Table 6. Effect of Ficus deltoidea (FD) on hepatic oxidative stress biomarkers

(Mean values and standard deviations; n 7)

GSH (μg/g tissue) MDA (nmol/g tissue) CAT (U/g tissue) SOD (U/g tissue)

GPx (mmol/g

tissue)

Groups‡ Mean SD Mean SD Mean SD Mean SD Mean SD

Normal control 249·9 23·48 105·4 8·08 6·29 0·47 5·59 0·81 4·64 0·72
Diabetic control 135·2* 5·80 187·3* 7·47 1·85* 0·28 1·76* 0·26 1·25* 0·20
MET, 150 mg/kg 201·9*† 34·67 158·9*† 6·71 4·33*† 0·39 4·21*† 0·36 3·08*† 0·09
FD, 125 mg/kg 173·7*† 20·24 185·9* 11·76 5·53† 0·43 5·43† 0·37 3·53*† 0·49
FD, 250 mg/kg 183·3*† 9·8 164·6*† 8·47 4·96*† 0·60 3·63*† 0·47 3·91*† 0·23
FD, 500 mg/kg 208·8*† 31·63 169·5* 0·53 5·44*† 0·19 4·91† 0·22 3·93† 0·44
GSH, reduced glutathione; MDA, malondialdehyde; CAT, catalase; SOD, superoxide dismutase; GPx, glutathione peroxidase; MET, metformin.

* Mean value was statistically significantly different from that of the normal control group (P ≤ 0·05).
† Mean value was statistically significantly different from that of the diabetic control group (P ≤ 0·05).
‡ Adult male Wistar rats received either distilled water (normal control) or streptozotocin (45 mg/kg) in citrate buffer (diabetic control) by intraperitoneal injection. Diabetic rats

received FD (125, 250 or 500 mg/kg, orally), MET (150 mg/kg, orally) for 4 weeks, 48 h after induction of diabetes.

Fig. 3. Hepatic (A) and pancreatic (B) GLUT2 concentrations. Values are means, with standard deviations represented by vertical bars. a,b Mean values with unlike

letters were significantly different (P ≤0.05). MET, metformin; FD 125, Ficus deltoidei 125mg/kg body weight; FD 250, F. deltoidei 250 mg/kg body weight; FD 500, F.
deltoidei 500 mg/kg body weight.

9

journals.cambridge.org/jns



expression levels to approximately 75, 92·8, 60, and 43 % of
the levels in the diabetic group, respectively (Fig. 9(A)).
Expression levels of the gluconeogenic key genes, G6Pase

and PEPCK, as glucose-metabolising genes, were significantly
elevated in the diabetic group by 7- and 24-fold compared with
the normal control level, respectively. Treatment with FD

significantly and dose-dependently reduced the expression of
hepatic G6Pase and PEPCK transcripts compared with the
diabetic group (Figs 9(B) and (C)).
As shown in Fig. 9(D), levels of Slc2a2 mRNA were signifi-

cantly decreased in the diabetic group to 34 % of the normal
level. MET and 500, 250, 125 mg/kg FD treatments increased

Table 7. Effect of Ficus deltoidea (FD) on pancreatic oxidative stress biomarkers

(Mean values and standard deviations; n 7)

GSH (μg/g tissue)

MDA (nmol/g

tissue) CAT (U/g tissue) SOD (U/g tissue)

GPx (mmol/g

tissue)

Groups‡ Mean SD Mean SD Mean SD Mean SD Mean SD

Normal control 192·4 13·60 24·0 3·65 5·34 0·61 4·76 0·67 3·88 0·17
Diabetic control 118* 2·04 95·6* 8·74 1·86* 0·46 1·74* 0·42 1·38* 0·31
MET, 150 mg/kg 171·9*† 14·43 86·2* 10·19 2·48* 0·34 2·33* 0·48 2·25*† 0·42
FD, 125 mg/kg 163·4*† 12·14 92·6* 7·26 2·99*† 0·46 2·19* 0·41 1·39* 0·26
FD, 250 mg/kg 166*† 10·46 81·3† 6·73 3·13*† 0·49 2·41* 0·54 2·29*† 0·32
FD, 500 mg/kg 176·1† 11·20 66·1*† 7·10 3·04*† 0·34 2·68*† 0·24 2·41*† 0·26
GSH, reduced glutathione; MDA, malondialdehyde; CAT, catalase; SOD, superoxide dismutase; GPx, glutathione peroxidase; MET, metformin.

* Mean value was statistically significantly different from that of the normal control group (P ≤ 0·05).
† Mean value was statistically significantly different from that of the diabetic control group (P ≤ 0·05).
‡ Adult male Wistar rats received either distilled water (normal control) or streptozotocin (45 mg/kg) in citrate buffer (diabetic control) by intraperitoneal injection. Diabetic rats

received FD (125, 250 or 500 mg/kg, orally), MET (150 mg/kg, orally) for 4 weeks, 48 h after induction of diabetes.

Fig. 4. Histopathology of the pancreas of the control group (A), diabetic group (B), group treated with Ficus deltoidei at 125 mg/kg body weight (C), group treated with

F. deltoidei at 250mg/kg body weight (D), group treated with F. deltoidei at 500mg/kg body weight (E) and the metformin-treated group (F).
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Slc2a2 expression to 92, 87, 62 and 42 % of the normal level,
respectively.
The hepatic insulin receptor (INR) mRNA level was mark-

edly increased in diabetic rats. The administration of 500 and
250 mg/kg FD normalised INR gene expression. The 125
mg/kg dose did not produce significant changes (Fig. 9(E)).

Discussion

In the present study, we sought to reveal the role of PTP1B
inhibition by FD in its antidiabetic effect at the in vivo and
in vitro levels.
First, we aimed to optimise the extraction process for FD

leaves and to apply bio-guided fractionation of the best extract
to isolate the most active constituents. FD leaves have been pre-
viously reported to contain flavonoids, particularly luteolin and
apigenin glycosides, phenolic acids such as 4-p-coumaroylquinic
acid and terpenes such as moretenol and lupeol(42–45). The 70
% ethanol extract showed the highest phenolic and triterpene
contents (Table 1) and high in vitro PTP1B-inhibitory activity
(Fig. 2). Therefore, this extract was selected to perform further
purification and isolation of its major components and to inves-
tigate its antidiabetic activity in vivo.
Seven compounds were isolated from the 70 % ethanolic

extract of FD leaves. Four of them are known compounds,

which are lupeol (F1), (24E)-stigmasta-5,8-dien-3β-ol (F2),
vitexin (apigenin-8C-β-D-glucoside) (F6) and isovitexin
(apigenin-6C-β-D-glucoside) (F7)(46–54). Two newly isolated
compounds, gallic acid (F4) and chryseriol-7O-α-rhamnoside
(F5), were obtained. To the best of our knowledge, this
study is the first to report the isolation of compounds F4
and F5 from FD. We also report here the isolation of a
novel triterpene, 3β,11β-dihydroxyolean-12-en-23-oic acid
(F3), which exerted potent PTP1B inhibition (Table 2). In
light of these findings, it is suggested that isolated fractions
from FD are further studied so that their antidiabetic activities
can be recognised.
The STZ–NA rat model of T2DM was used to investigate

the antidiabetic potential effect of 70 % ethanol FD and to
clarify its mechanism of action compared with MET. MET,
a potent anti-diabetic drug, is a biguanide that is considered
as a first-line treatment for patients with T2DM(55,56).
STZ at a low dose is able to destroy parts of insulin-

secreting β-cells rather than to cause complete damage.
Thus, STZ is sufficient to establish T2DM(57). STZ is trans-
ported into pancreatic β-cells by GLUT2 and causes DNA
damage which stimulates poly (ADP-ribose) polymerase
(PARP-1) enzyme to repair DNA which resulted in depletion
of intracellular NAD and ATP, and subsequently cell necrosis.
NA, a precursor of NAD, prevents excess STZ-induced

Fig. 5. Morphometric analysis of the pancreatic islets. (A) Lesion score, β-cell/total islet area (B), α-cell/total islet area (C) and δ-cell/total islet area (D). Values are

means, with standard deviations represented by vertical bars. * Mean value was statistically significantly different from that of the normal control group (P ≤ 0·05). †
Mean value was statistically significantly different from that of the diabetic control group (P ≤ 0·05). FD 125mg/kg, Ficus deltoidei 125 mg/kg body weight; FD 250mg/

kg, F. deltoidei 250mg/kg body weight; FD 500mg/kg, F. deltoidei 500mg/kg body weight; p.duct, pancreatic duct; MNC, mononuclear cells.
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damage of islet cells by inhibition of PARP-1 activity and
increasing intracellular NAD and thus ensuring stable
T2DM(18,58). On this basis, a combination of STZ and NA
induces light damage of pancreatic β-cells, leading to glucose
intolerance. Therefore, the STZ–NA model is suggested to
be closer to human T2DM and an advantageous model to
evaluate the antidiabetic potential of pharmacological and nat-
ural compounds(59).
In the present study, FD significantly decreased FBG and

increased plasma insulin levels in diabetic rats (Table 3).
These findings could be attributed to stimulation of basal
and insulin-mediated glucose uptake into adipocytes and
liver cells due to the insulin-mimic activity of FD(9,11,60).
Moreover, Farsi et al.(13) stated that the bioactive flavone
C-glycosides, vitexin and isovitexin contents of FD are effi-
cient antioxidants, and play a crucial role in cytoprotection
and scavenging of free radicals, thereby protecting the β-cells
from oxidative damage, and subsequently exerting antidiabetic
activity. Additionally, FD stimulates insulin secretion due to its
content of water-soluble insulin-secreting compounds and its
involvement in the K+-ATP-dependent pathway. These insu-
linotropic actions of FD differ according to the extract’s con-
tents of the antidiabetic compounds(61).

Moreover, administration of FD (125, 250 and 500 mg/kg)
to diabetic rats significantly reduced liver enzyme activities and
serum total bilirubin compared with the normal control
(Table 4). These findings are in agreement with previous
reports(60,62,63). However, FD failed to reduce the elevated
serum total protein levels which may be a result of increased
rate of amino acid conversion to glucose and a reduction of
ribosomal protein synthesis(64).
The metabolic sequelae of STZ-induced insulin insuffi-

ciency include failure of target cells to utilise glucose, increased
fatty acid flux to the liver, suppressed TAG degradation,
hypertriacylglycerolaemia and hypercholesterolaemia(65–67), In
accordance, we observed significant increases in TAG, total
cholesterol and LDL levels and decreased HDL in diabetic
rats. This altered lipid profile was corrected by both MET
and FD (125, 250 and 500 mg/kg) (Table 5).
A substantial body of literature has confirmed the implica-

tion of oxidative stress in the pathogenesis of both types of
diabetes, ranging from decreased activity of antioxidant
defence mechanisms to lipid peroxidation and,
ultimately, insulin resistance(68,69). Therefore, antidiabetic
agents with hypoglycaemic and antioxidant properties would
be useful.

Fig. 6. Immunohistochemical analysis of insulin protein expression and islet morphology in the control group (A), diabetic group (B), group treated with Ficus deltoidei
at 125 mg/kg body weight (C), group treated with F. deltoidei at 250 mg/kg body weight (D), group treated with F. deltoidei at 500mg/kg body weight (E) and the

metformin-treated group (F).
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Remarkably, the results of the diabetic group showed a
marked reduction in both the enzymic (CAT, SOD and
GPx), and non-enzymatic (GSH) antioxidants with elevation
of MDA level indicating the augmented STZ-induced oxida-
tive damage in the liver and pancreas (Tables 6 and 7).
These results are in line with Sheweita et al.(70). Different
doses of FD (125, 250 and 500 mg/kg) exerted significant
antioxidant effects on diabetic rats, as evidenced by the
increased levels of GSH and decreased levels of MDA in
the liver and pancreas. Moreover, the antioxidant enzyme
activities of hepatic CAT, SOD and GPx approached normal
levels after treatment with FD (Table 6), whereas the pancre-
atic antioxidant enzyme activities increased in a dose-
dependent manner (Table 7).
In the same context, histopathological and immunostaining

results of pancreatic tissue confirmed the STZ-induced β-cell
damage as evidenced by the disruption of islet morphology
(increase in α-cells and δ-cells) and the subsequent reduction
in insulin production and elevation of glucagon and somato-
statin production (Figs 6 and 7)(71,72). Interestingly, FD pre-
served β-cells from damage and maintained islet
morphology. These protective effects may be due to the water-

soluble insulin-secreting and α-glucosidase-inhibiting polyphe-
nols(9,73), together with other antioxidants of FD that offer
protection against the early stage of diabetes(45,74).
Insulin resistance is a hallmark of T2DM and

obesity-associated metabolic disorders(75). Insulin signal trans-
duction is mediated by a series of molecular events, including
activation of the insulin receptor through autophosphorylation
of its tyrosine residues by receptor tyrosine kinase (RTK),
recruitment of the downstream docking protein insulin recep-
tor substrate 1 (IRS-1) protein, activation of phosphatidylino-
sitol 3-kinase (PI3K) and protein kinase B (PKB; AKT), and
subsequently, translocation of GLUT4 to the cell surface, lead-
ing to glucose uptake(76,77). This process is negatively regulated
by non-receptor protein tyrosine phosphatases (PTP) that are
ubiquitously expressed in insulin-responsive tissues(78). Several
PTP have been implicated in modulating insulin signal trans-
duction(79). PTP1B is a negative regulator of insulin receptor
and IRS-1 by hydrolysing insulin-induced tyrosine phosphoryl-
ation and subsequently induces insulin resistance(80,81). Based
on accumulating evidence, PTP1B inhibition in various tissues
augments insulin-initiated signalling and holds great promise
for the treatment of T2DM(82–84).

Fig. 7. Immunohistochemical analysis of glucagon protein expression and islet morphology in the control group (A), diabetic group (B), group treated with Ficus
deltoidei at 125mg/kg body weight (C), group treated with F. deltoidei at 250mg/kg body weight (D), group treated with F. deltoidei at 500 mg/kg body weight (E)

and the metformin-treated group (F).
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Our study shed some light on the molecular mechanisms
underlying the FD potential in amelioration of insulin resist-
ance. First, treatment with 250 and 500 mg/kg FD signifi-
cantly reduced the hepatic PTP1B mRNA overexpression in
diabetic rats (Fig. 9(A)). Second, FD extracts (500 and 250
mg/kg), similar to MET, improved cellular sensitivity to insu-
lin by normalising the hepatic insulin receptor mRNA expres-
sion that showed significant increase in the untreated diabetic
rats (Fig. 9(E)). These results are consistent with previous
studies(85–87) showing that changes in insulin receptor expres-
sion at least partially contribute to the modulation of insulin
binding in the liver of rats with STZ-induced insulin defi-
ciency. This effect of STZ administration on hepatic insulin
receptor mRNA levels was reversed by MET.
The results of both the in vitro PTP1B-inhibition assay and in

vivo PTP1B mRNA expression support each other.
The Slc2a2 gene encodes a membrane-bound,

insulin-independent GLUT2, with a high glucose Michaelis
constant (Km), and it is mainly expressed in the liver.
Defects in the Slc2a2 gene potentially alter glucose homeosta-
sis(88). In the present study, hepatic SLC2a2 mRNA and its
protein GLUT2 were significantly decreased in the diabetic

group (Figs 9(D) and 3(A)), a finding that coincides with
previous studies in which STZ–NA diabetic rats exhibited a
significant decrease in Slc2a2 mRNA level(89–91).
Down-regulation of GLUT2 observed in the present study
may be attributed to the impaired insulin sensitivity and the
altered glucose metabolism due to the relative insulin defi-
ciency induced by STZ; this is in accordance with El-Abhar
& Schaalan(89), Al-Shaqha et al.(90) and Rathinam & Pari(91).
In contrast, other studies clarified that hyperglycaemia, when
associated with insulin, stimulates GLUT2(93,94).
In the present study, hepatic glucose utilisation was

improved in treated groups as evidenced by the up-regulation
of Slc2a2 mRNA (Fig. 9(D)) and GLUT2 (Fig. 3(A)) in the
liver. Consistent with the results from previous studies,
Slc2a2 expression is corrected to near normal levels in groups
treated with MET (Fig. 9(D)). Moreover, treatments with 500,
250 and 125 mg/kg FD dose-dependently increased the hep-
atic Slc2a2 expression level.
Hepatic gluconeogenesis contributes to elevations in fasting

glucose levels. Based on accumulating data, gluconeogenesis
rate is elevated in diabetic subjects, and its suppression pro-
vides an excellent mechanism for reducing blood glucose

Fig. 8. Immunohistochemical analysis of somatostatin protein expression and islet morphology in the control group (A), diabetic group (B), group treated with Ficus
deltoidei at 125 mg/kg body weight (C), group treated with F. deltoidei at 250 mg/kg body weight (D), group treated with F. deltoidei at 500 mg/kg body weight (E) and

the metformin-treated group (F).
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levels(95,96). In the present study, diabetic rats showed
up-regulation of mRNA expression of the rate-limiting gluco-
neogenic enzymes, G6Pase and PEPCK (Figs 9(B) and (C)).
These results are consistent with Farsi et al. and Xia
et al.(13,94). As selective enhancement of insulin signalling in
the liver would suppress gluconeogenesis, FD-induced
improvement in insulin signalling was expected to inhibit the
expression of gluconeogenesis-related genes. Notably, we
observed decreased expression of G6Pase and PEPCK in
the livers of both MET- and FD-treated groups, consistent
with increased insulin receptor and Slc2a2 expression (Figs 9
(B) and (C)). Thus, we postulate that the blood glucose-
lowering effect of FD is partially attributed to the suppression
of hepatic glucose output, similar to MET(14,96).

Conclusion

The present study reported two newly isolated compounds
(gallic acid and chryseriol-7O-α-rhamnoside) and a novel tri-
terpene (3β,11β-dihydroxyolean-12-en-23-oic acid) in the 70
% ethanol extract of FD with potent in vitro
PTP1B-inhibitory activities. On the other hand, the study

demonstrated for the first time that FD treatment restored
insulin signalling transduction through regulation of hepatic
PTP1B, and subsequently normalising insulin receptor
mRNA expression. Regulation of the key gluconeogenic
enzymes and Slc2a2 expression confirmed this mechanism.
These findings provide theoretical evidence for FD extract
to be potentially used in the management of insulin resistance
in T2DM and to be a promising natural source for the devel-
opment of novel antidiabetic drugs.
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