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Abstract

Although TNFa is a strong inducer of apoptosis, its cytotoxicity in most normal cells in vitro requires blockade of NFkB
signaling or inhibition of de novo protein synthesis, typically by the addition of cycloheximide. However, several members of
CCN (CYR61/CTGF/NOV) family of extracellular matrix proteins enable TNFa-dependent apoptosis in vitro without inhibiting
NFkB or de novo protein synthesis, and CCN1 (CYR61) is essential for optimal TNFa cytotoxicity in vivo. Previous studies
showed that CCN1 unmasks the cytotoxicity of TNFa by binding integrins avb5, a6b1, and the cell surface heparan sulfate
proteoglycan syndecan 4 to induce the accumulation of a high level of reactive oxygen species (ROS), leading to a biphasic
activation of JNK necessary for apoptosis. Here we show for the first time that CCN1 interacts with the low density
lipoprotein receptor-related protein 1 (LRP1) in a protein complex, and that binding to LRP1 is critical for CCN1-induced ROS
generation and apoptotic synergism with TNFa. We also found that neutral sphingomyelinase 1 (nSMase1), which
contributes to CCN1-induced ROS generation, is required for CCN1/TNFa-induced apoptosis. Furthermore, CCN1 promotes
the activation of p53 and p38 MAPK, which mediate enhanced cytochrome c release to amplify the cytotoxicity of TNFa. By
contrast, LRP1, nSMase1, p53, and p38 MAPK are not required when TNFa-dependent apoptosis is facilitated by the
presence of cycloheximide, indicating that they function in the CCN1 signaling pathway that converges with TNFa-induced
signaling events. Since CCN1/CYR61 is a physiological regulator of TNFa cytotoxicity at least in some contexts, these
findings may reveal important mediators of TNFa-induced apoptosis in vivo and identify potential therapeutic targets for
thwarting TNFa-dependent tissue damage.

Citation: Juric V, Chen C-C, Lau LF (2012) TNFa-Induced Apoptosis Enabled by CCN1/CYR61: Pathways of Reactive Oxygen Species Generation and Cytochrome c
Release. PLoS ONE 7(2): e31303. doi:10.1371/journal.pone.0031303

Editor: Arun Rishi, Wayne State University, United States of America

Received November 11, 2011; Accepted January 6, 2012; Published February 17, 2012

Copyright: � 2012 Juric et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants GM78492 and HL81390 from the National Institutes of Health (http://www.nih.gov/) to LFL. The funder had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lflau@uic.edu

¤ Current address: The G.W. Hooper Research Foundation, University of California San Francisco, San Francisco, California, United States of America

Introduction

Apoptosis is an important cellular process in embryonic

development, immune system function, tissue homeostasis, and

tumor suppression. Among the many physiological factors that can

trigger apoptosis is tumor necrosis factor a (TNFa), which plays an

important role in regulating the immune response [1]. TNFa-

induced apoptosis has been implicated in a variety of pathologies

linked to chronic inflammation and auto-immune diseases, most

demonstrably in liver diseases including alcoholic and inflamma-

tory hepatitis [2,3], ischemia/reperfusion liver injury [4], and

fulminant hepatic disease [5].

TNFa-induced apoptosis is mediated through its cell surface

receptor TNFR1 and involves the assembly of two signaling

complexes that sequentially activate NFkB and caspases [6].

Binding of TNFa to TNFR1 triggers receptor trimerization and

the recruitment of TRADD, RIP1 and TRAF2. This receptor-

associated complex promotes the activation of NFkB, a transcrip-

tion factor that induces expression of many pro-inflammatory,

pro-mitogenic, and anti-apoptotic genes [7]. Following TNFR1

endocytosis, TRADD, RIP1 and TRAF2 become modified and

dissociate from the receptor in the cytosol, whereupon they bind to

FADD to recruit and activate caspases-8/10, leading to apoptosis

[6]. However, apoptosis is continuously inhibited by many anti-

apoptotic factors whose expression is induced by NFkB. Among

these are c-FLIP, which binds FADD and inhibit caspases 8/10

activation [8]; MAPK phosphatases, which can dephosphorylate

and inactivate JNK [9]; anti-oxidant proteins such as Mn++-SOD

and ferritin heavy chain, which inhibit the accumulation of ROS

[10]; as well as caspase inhibitors (XIAP, c-IAP1, cIAP2, survivin)

and anti-apoptotic members of the Bcl family (Bcl-XL, Nr13, and

A1/Bfl1) [7,11]. Therefore, manifestation of TNFa-induced

apoptosis in normal cells in vitro often requires blockade of NFkB

signaling or inhibition of de novo protein synthesis, typically by the

addition of inhibitors of transcription (e.g., actinomycin D) or

protein synthesis such as cycloheximide (CHX) [1].

The ability of TNFa to induce apoptosis in vivo may depend on

regulation by other factors in the tissue microenvironment, and is

therefore context-dependent. Recent studies have shown that

CCN1, CCN2, and CCN3, members of the CCN (CYR61/

CTGF/NOV) family [12] of extracellular matrix (ECM) proteins,

can enable TNFa to induce apoptosis without inhibiting NFkB

signaling or de novo protein synthesis [13], suggesting that the ECM

can profoundly influence the biological response to TNFa.
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Moreover, knockin mice that express an apoptosis-defective

CCN1 mutant are substantially resistant to TNFa-mediated

apoptosis in vivo, indicating that CCN1 is a physiologic regulator

of TNFa cytotoxicity [14]. These findings suggest that CCN1/

TNFa-induced apoptosis, which may occur through signaling

pathways distinct from one facilitated by the presence of

cycloheximide, may more accurately reflect physiological apoptot-

ic processes in certain biological contexts.

A member of the CCN family of matricellular proteins [12,15],

CCN1 (CYR61) regulates diverse cellular responses including cell

adhesion, migration, proliferation, differentiation, and survival

[16]. Previous studies showed that CCN1 enables TNFa-induced

apoptosis by binding integrins avb5, a6b1, and the cell surface

heparan sulfate proteoglycan (HSPG) syndecan 4 to trigger the

production of reactive oxygen species (ROS) through 5-lipoxy-

genase and mitochondria, leading to the biphasic activation of

JNK critical for apoptosis [14]. Here we have uncovered several

additional essential players in CCN1/TNFa-induced apoptosis.

First, we show for the first time that CCN1 interacts with the low

density lipoprotein receptor-related protein 1 (LRP1) in a protein

complex. This interaction with LRP1 contributes to CCN1-

induced ROS accumulation and CCN1/TNFa-induced apopto-

sis, suggesting that LRP1 is a coreceptor for CCN1 critical for

mediating these processes. Second, we show that neutral

sphingomyelinase 1 (nSMase1), previously shown to participate

in the generation of CCN1-induced ROS [17], also contributes to

TNFa cytotoxicity. Third, we found that p53 and p38 MAPK are

required for facilitating cytochrome c release critical for apoptosis.

By contrast, LRP1, nSMase1, p53, and p38 are not required for

TNFa-induced apoptosis facilitated by CHX. These findings

provide new insights into the signaling pathway for CCN1/TNFa-

mediated apoptosis, which operates in vivo, and underscore

potential targets for intervention in combating TNFa-dependent

tissue damage in certain inflammatory diseases.

Results and Discussion

LRP1 is a CCN1 coreceptor required for CCN1-induced
ROS production and CCN1/TNFa-induced apoptosis

Low density lipoprotein receptor-related protein 1 (LRP1) is a

cell surface endocytic receptor of the low density lipoprotein

receptor family [18]. It consists of an extracellular 515 kDa

subunit that binds more than 30 diverse ligands and a

transmembrane 85 kDa subunit that interacts with several adaptor

proteins to mediate endocytosis and signaling. LRP1 is associated

with and serves as a coreceptor for many growth factor receptors

and integrins, facilitating receptor endocytosis and signaling.

LRP1 binds CCN2 [19], a CCN family member homologous to

CCN1, and is required for CCN2-mediated cell adhesion and

CCN2/TGF-b-induced myofibroblast differentiation [20,21].

However, its interaction with CCN1 has not been assessed

heretofore. In primary human skin fibroblasts (HSFs), we detected

the 515 kDa subunit of LRP1 in the protein complex immuno-

precipitated with anti-CCN1 antibodies (Fig. 1A, lane 3), but not

with isotype control IgG (Fig. 1A, lane7). To establish the

interaction between LRP1 and CCN1 further, we tested the effects

of recombinant receptor-associated protein (RAP), a chaperone of

LRP1 commonly used to inhibit LRP1 ligand binding in vitro

[22,23]. Pre-incubation of cells with 1 mM RAP abolished co-

immunoprecipitation of LRP1 with CCN1 (Fig. 1A, lane 4). These

results indicate that CCN1 physically interacts with LRP1 in a

protein complex.

Since LRP1 functions as a coreceptor with integrins for CCN2

[20,24,25], we tested the possibility that it may also serve as a

coreceptor for CCN1 to mediate apoptosis with TNFa using three

approaches. First, we used siRNA to silence LRP1 expression in

human skin fibroblasts (HSFs), as shown by immunoblot analysis

(Fig. 1B). Strikingly, LRP1 silencing reduced CCN1/TNFa-

induced apoptosis by ,70% compared to control siRNA

(Fig. 1B). In contrast, LRP1 siRNA caused an increase, albeit

not statistically significant, in TNFa-induced apoptosis facilitated

by CHX (Fig. 1B). Second, pre-incubation of HSFs with

recombinant RAP inhibited the apoptotic response to CCN1/

TNFa by ,60%, but did not affect cell sensitivity to CHX/TNFa
(Fig. 1C). Third, pre-treatment of HSFs with the monoclonal

antibody against the LRP1 ectodomain (clone 8G1), but not with

control antibody, abrogated CCN1/TNFa apoptosis without

affecting CHX/TNFa-induced cell death (Fig. 1D). These results

show that LRP1 function is critical for CCN1/TNFa-, but not for

CHX/TNFa-induced cytotoxicity.

We have previously shown that CCN1 binding to integrins avb5

and a6b1, as well as the HSPG syndecan-4, are required for the

generation of a high level of ROS [14]. Inhibition of CCN1-

induced ROS by scavengers, or blockade of ROS-generating

pathways, annihilated apoptotic synergism between CCN1 and

TNFa [14]. Our finding that LRP1 is required for CCN1/TNFa-

induced apoptosis prompted us to test whether it plays a role in

CCN1-induced ROS production. LRP1 siRNA had no effect on

basal ROS level of cells, but reduced CCN1-stimulated ROS

levels for ,50%, as shown by DCF fluorescence (Fig. 2),

suggesting that LRP1 is important for optimal ROS production

upon CCN1 stimulation and this may explain its role in CCN1/

TNFa-induced apoptosis. The partial inhibition of ROS by LRP1

siRNA suggests that CCN1 binding to integrins avb5 and a6b1,

and syndecan-4 may account for the remaining CCN1-induced

ROS generation.

Taken together, these results indicate that LRP1 serves as a

CCN1 coreceptor and contributes to mediating CCN1-induced

ROS accumulation, which is critical for apoptotic synergism with

TNFa. Since LRP1 can promote endocytosis of many receptor-

ligand complexes [26], it is possible that LRP1 is complexed with,

and promotes endocytosis of, integrins avb5 and/or a6b1-HSPG

upon their interaction with CCN1. Since LRP1 is not required for

CHX/TNFa-induced apoptosis (Fig. 1B–D), it appears that LRP1

is not implicated in the internalization of the TNFa receptor 1

(TNFR1), even though TNFR1 internalization is important for

TNFa cytotoxicity [27]. The requirement of multiple CCN1

receptors for CCN1/TNFa-induced apoptosis, including LRP1,

integrins, and syndecan 4, may contribute to the specificity of the

target cells, which must express the correct combination of

receptors for responsiveness. Interestingly, a combination of

CCN1 mutants that are unable to bind either avb5 or a6b1-

HSPG, each defective for apoptosis with TNFa, can fully

reconstitute wild type activity [14]. These results indicate that

CCN1 can bind the integrins separately and signaling through

these receptors converges within the cell to initiate the biological

response.

ROS-dependent p38 MAPK activation is required for
CCN1/TNFa-induced apoptosis

Elevated ROS levels elicit multiple cellular responses, including

the activation of stress response kinases such as p38 MAPK and

JNK. This activation is achieved via two mechanisms: 1, ROS can

activate ASK1, a redox-sensitive kinase upstream of p38 and JNK

[28], and 2, ROS can inactivate MAPK phosphatases by oxidizing

the cysteine residues at their active sites, thus preventing the

dephosphorylation and inactivation of MAPKs [29]. We showed

that CCN1-induced ROS enables a prolonged activation of JNK
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Figure 2. LRP1 mediates CCN1-induced ROS production. A. HSFs transfected with 80 nM non-targeting control siRNA or siRNA against LRP1,
were used 72 hrs post-transfection for measurement of CCN1-induced ROS by fluorescence microscopy. Cells were loaded with 10 mM CM-H2DCF-DA
and treated with (2 mg/ml) CCN1 for 15 mins. After nuclear counterstaining with Hoechst 33342 dye, multiple areas of the wells were photographed
(left panel) and green fluorescence (DCF) was quantified as described in materials and methods (right panel: *p,0.05, n = 3).
doi:10.1371/journal.pone.0031303.g002

Figure 1. LRP1 is essential for CCN1/TNFa-, but not CHX/TNFa-induced apoptosis. A. Detection of LRP1 protein levels in 15 mg of whole cell
protein lysates (lanes 1, 2, 5, and 6), representing 3% of lysate used for immunoprecipitation with 7 mg/ml rabbit polyclonal anti-CCN1 antibody (lanes
3 and 4) or control IgG (lanes 7 and 8). Where indicated, 1 mM recombinant RAP was added to the medium and incubated with cells for 30 min before
cell lysis. Whole cell protein lysates and immune complexes were resolved on 7.5% SDS-PAGE, immunoblotted, and 515 kDa subunit of LRP1 was
detected with monoclonal anti-LRP1. B. HSFs were transfected with 80 nM non-targeting (ctrl) or LRP1 siRNA, and cell death was induced after 72 hrs
by treatment of cells with CCN1 (2 mg/ml) and TNFa (10 ng/ml) for 5 hrs (left panel; *p,0.01; n = 3), or with CHX (1 mg/ml) and TNFa for 16 hrs (right
panel; p = 0.13; NS-not significant, n = 3). Silencing of LRP1 was validated by immunoblot detection of the 515 kDa LRP1 subunit in control or LRP1
siRNA-treated HSFs. ERK1/2 detection serves as a loading control. C. Apoptosis in serum-starved HSFs was induced as described, in the presence or in
the absence of 1 mM recombinant RAP (left panel: *p,0.01; n = 3; right panel: NS-not significant, n = 3). D. HSFs were pre-incubated with 50 mg/ml of
isotype control IgG or function-blocking monoclonal antibody against LRP1, 8G1 clone (left panel: *p,0.01; n = 3; right panel: NS-not significant,
n = 3).
doi:10.1371/journal.pone.0031303.g001
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by TNFa, and that this is critical for CCN1/TNF apoptosis. Here,

we tested if CCN1 promotes activation of p38 MAPK in a fashion

similar to JNK. We found that TNFa alone, but not CCN1,

stimulated the activation of both p38 MAPK and JNK by

phosphorylation within 15–30 min., whereas stimulation of cells

with both TNFa and CCN1 induced a second phase of p38

MAPK and JNK activation .4 hrs after stimulation (Fig. 3A).

The second phase activation of p38 MAPK is inhibited by either

NAC or BHA, two different ROS scavengers, but the early phase

activation was unaffected (Fig. 3B), showing that this process is

ROS-dependent. Considering that ROS regulates activity of many

of the redox-sensitive kinases and phosphatases [30], it is unlikely

Figure 3. ROS-dependent activation of p38 MAPK is required for CCN1/TNFa-, but not CHX/TNFa-induced apoptosis. A. Immunoblot
analysis of p38 MAPK (left panel) and JNK activation (right panel) at various times after treatment of cells with CCN1 and/or TNFa. Whole cell lysates
were electrophoresed and probed with antibodies against phospho-p38 MAPK (Thr-180/Tyr-182), phospho-JNK1/2 (Thr183/Tyr185), p38 MAPK, and
JNK. B, Cells were incubated for 30 mins with 10 mM NAC or 5 mM BHA prior to treatment with CCN1 (C) and/or TNFa (T), or BSA (B). Cell lysates
collected at early phase (15 mins) or late phase (4 hrs) after CCN1 and/or TNFa treatment were analyzed for phospho-p38 MAPK (Thr-180/Tyr-182)
and p38 MAPK levels by immunoblot. Numbers under the immunoblots are relative signal intensities as determined by densitometry. C. HSFs were
serum-starved overnight and treated with 0.1% DMSO (ctrl) or 20 mM SB202190 for 30 mins, or were subjected to siRNA-mediated silencing of p38a
expression. Apoptosis was then induced by treatment of cells with CCN1 (2 mg/ml) and/or TNFa (10 ng/ml) for 5 hrs. Where indicated, SB202190 was
added 3 hrs after treatment with CCN1 and TNFa. *p,0.05; n = 3. D, Cells were treated with p38 MAPK inhibitor or siRNA as in C, and apoptosis was
induced with CHX (1 mg/ml) and/or TNFa for 16 hrs (left panel: NS-not significant, n = 3). Silencing of p38a expression was confirmed by immunoblot
using antibody against p38 MAPK; b-actin served as control (right panel). E, Cells were treated with CCN1 and/or TNFa for 5 hrs, and cytochrome c
and b-actin in cytosolic extracts were detected by immunoblotting. SB202190 (20 mM) or 0.1% DMSO (ctrl) were incubated with cells 30 min prior to
treatments. Numbers under the immunoblots are relative cytochrome c signal intensities as determined by densitometry.
doi:10.1371/journal.pone.0031303.g003
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that ROS inhibits p38 MAPK specifically. Indeed, our results

demonstrate that ROS inhibitors block not only the second phase

of activation of p38 MAPK (Fig. 3B), but also of JNK [14]. The

role of p38 MAPK in TNFa-induced apoptosis has been

controversial and appears to be cell type- and context-dependent

[31,32]. To test whether p38 MAPK is required when TNFa-

induced apoptosis is enabled by CCN1 or CHX, we used either

the chemical inhibitor SB202190 to block its activity or siRNA to

silence the expression of p38a, the most abundant p38 MAPK

isoform in these cells. Either treatment effectively blocked

apoptosis induced by CCN1 and TNFa (Fig. 3C,D right panel),

but not CHX and TNFa (Fig. 3D). To evaluate the functional

significance of the second phase activation of p38 MAPK in

apoptosis, we added the inhibitor SB202190 3 hours after

CCN1/TNFa treatment, when the early phase activation has

already subsided but the late phase activation has not yet begun

(Fig. 3C). This treatment completely blocked apoptosis, indicating

that the late phase activation of p38 MAPK is essential for

CCN1/TNFa-induced apoptosis. Likewise, the late phase

activation of JNK is also required for CCN1/TNFa-induced cell

death [14].

p38 MAPK can enhance cytochrome c release by promoting

mitochondrial translocation of the pro-apoptotic protein Bax from

the cytosol, or by phosphorylating Bcl2 to decrease its anti-

apoptotic activity [33]. Consistently, we detected a significantly

higher level of cytochrome c release from the mitochondria in cells

co-treated with CCN1 and TNFa, and the effect is diminished in

the presence of the p38 MAPK inhibitor SB202190 (Fig. 3E). In

contrast to the context-dependent role of p38 MAPK, JNK

activation appears necessary for TNFa-induced apoptosis gener-

ally [29]. Pretreatment of HSFs with the JNK inhibitor SP600125

blocked TNFa-induced apoptosis facilitated by either CCN1 or

CHX (Fig. S1).

p53 mediates CCN1/TNFa-induced apoptosis through
late phase activation of JNK and p38 MAPK

p53 is a tumor suppressor that functions to promote cell cycle

arrest, apoptosis, or senescence in response to various cellular

stresses such as DNA damage, hypoxia, or oxidative stress [34].

CCN1 interaction with fibroblasts through integrins and HSPGs

leads to a robust and sustained accumulation of ROS, which

triggers a DNA damage response that includes the activation of

ATM, Chk1, Chk2, and p53 [35]. The activation of p53

downstream of CCN1 prompted us to examine whether p53 is

involved in CCN1/TNFa-induced apoptosis. Treatment of cells

with the p53 inhibitor cyclic pifithrin-a(PFTa) or siRNA-mediated

silencing of p53 completely blocked CCN1/TNFa-induced

apoptosis (Fig. 4A), but CHX/TNFa-induced apoptosis was

unaffected by p53 silencing (Fig. 4B). Moreover, p53 knockdown

blocked cytochrome c release in response to CCN1/TNFa
treatment (Fig. 4C). Thus, p53 is critical for mediating TNFa
cytotoxicity facilitated by CCN1 but not by CHX, and acts

upstream of the mitochondria in this process.

Next, we monitored the phosphorylation of JNK and p38

MAPK after stimulation by TNFa and CCN1 as a function of p53

expression. Silencing of p53 by siRNA had no effect on the early

phase (30 min.) of TNFa-induced JNK and p38 (Fig. 5A), but

inhibited the late phase activation (5 hrs) of JNK and p38 by

CCN1/TNFa (Fig. 5B), although the low level of p38 activity

induced by TNFa alone in the late phase persisted. Similar results

were obtained with p53 inhibition by PFT-a (Fig. 5C). These

observations indicate that p53 mediates CCN1/TNFa-induced

apoptosis at least in part through the activation of JNK and p38

MAPK. Although the late phase phosphorylation of JNK and p38

MAPK is ROS-dependent, p53 is not required for CCN1 to

induce ROS accumulation, as chemical inhibition or siRNA

silencing of p53 did not diminish CCN1-induced ROS (Fig. S2).

These results show that p53 can regulate the activation of p38

MAPK and JNK through an as yet undefined, ROS-independent

mechanism.

In vivo studies have found that TNFa-induced apoptosis may be

p53-dependent [36] or independent [37], possibly as a function of

the cellular and tissue context. CCN1/TNFa-induced apoptosis

can occur without de novo protein synthesis [14], and therefore the

role of p53 does not depend upon its transcriptional induction of

pro-apoptotic genes such as PUMA, Noxa, Bax, AIP-1, Apaf-1

and PERP. In addition to regulating p38 MAPK and JNK

activation (Fig. 5), p53 can promote apoptosis by direct physical

interaction with BH3-only proteins such as Bax/Bak, or with Bcl

family members to displace BH3-only proteins, thus leading to Bax

Figure 4. p53 mediates CCN1/TNFa-, but not CHX/TNFa-
induced apoptosis. A. HSFs were treated with 0.1% DMSO (ctrl) or
100 mM cyclic PFT-a for 30 min, or were subjected to siRNA-mediated
silencing of p53 (confirmed by immunoblot using anti-p53 and b-actin
as a loading control; right panel). Cells were then stimulated to undergo
apoptosis by treatment with CCN1 (2 mg/ml) and/or TNFa (10 ng/ml)
for 5 hrs (*p,0.05, n = 3). B. Effect of p53 silencing on apoptosis
induced by CHX (1 mg/ml) and/or TNFa for 16 hrs was quantified (NS-
not significant, n = 3). C. Immunoblot detection of cytochrome c in
cytosolic extracts of cells treated for 4 hrs with CCN1 (C) and/or TNFa
(T), or BSA (B), with and without silencing of p53. Numbers under the
immunoblots are relative cytochrome c signal intensities as determined
by densitometry.
doi:10.1371/journal.pone.0031303.g004
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activation and cytochrome c release [38,39]. CCN1 alone can

induce this mechanism of apoptosis in cells that are deficient in

p21 and are thus more susceptible to apoptosis [40].

nSMase is required for CCN1/TNFa-, but not CHX/TNFa-
induced apoptosis

CCN1 synergizes with TNFa to trigger apoptosis in part by

inducing ROS generation through 5-lipoxygenase and the

mitochondria [14]. Subsequent studies showed that CCN1 also

induces ROS accumulation through nSMase1 [41]. Indeed,

blockade of nSMase activity with the chemical inhibitor

GW4869 abrogated CCN1-induced ROS accumulation, indicat-

ing that nSMase plays a critical role in this process (Fig. S3). This

requirement of nSMase1 for CCN1-induced ROS prompted us to

test whether nSMase1 is involved in TNFa-induced apoptosis.

Treatment of cells with GW4869 or silencing of nSMase1

expression by siRNA inhibited CCN1/TNFa-induced apoptosis

(Fig. 6A), but did not affect CHX/TNFa-induced apoptosis

(Fig. 6B). Silencing of nSMase1 greatly diminished phosphoryla-

tion of JNK and p38 MAPK, and inhibition of nSMase with

GW4869 efficiently blocked cytochrome c release (Fig. 6C,D).

These results indicate that CCN1-induced nSMase1 activity is

critical for ROS generation, and contributes to the activation of

JNK and p38 MAPK necessary for CCN1/TNFa-induced

apoptosis. Inasmuch as nSMase1 knockout mice show no obvious

phenotype under normal growth conditions [42], it would be of

interest to challenge these mice with inflammatory conditions that

invoke TNFa-induced apoptosis, and assess whether their

responses are impaired.

TNFa dysregulation is critically involved in pathogenesis of a

broad range of chronic and acute inflammatory diseases, and

inhibition of TNFa activity has proven an effective therapeutic

approach for the treatment of rheumatoid arthritis, psoriasis, and

inflammatory bowel disease [43]. Much work has been done to

elucidate the molecular mechanism of TNFa-induced apoptosis,

although many of these studies were performed either in certain

cancer cells carrying mutations that render them responsive to

TNFa-induced apoptosis, or in normal cells with the presence of

sensitizing agents such as CHX [8,44]. Like TNFa, CCN1 is

highly expressed in response to infections and tissue injury,

suggesting that CCN1 can interact with TNFa in many

pathological contexts [16]. Indeed, CCN1 is required for TNFa-

induced apoptosis in concanavalin A-induced hepatitis and in the

skin after direct injection of TNFa, showing CCN1 is a

physiological regulator of TNFa-induced apoptosis [14,45]. Thus,

understanding the CCN1/TNFa apoptotic pathway is likely to

provide new insight into how TNFa may trigger apoptosis and

tissue damage in certain inflammatory diseases.

Upon binding of TNFa to TNFR1, the receptor trimerizes and

recruits TRADD, RIP1 and TRAF2 to form a receptor-associated

protein complex, which eventually dissociates from the receptor

and moves to the cytosol, whereupon it binds to FADD and

recruits and activates caspases-8/10, leading to apoptosis [6].

However, TNFa is also a potent activator of NFkB, which inhibits

TNFa-induced apoptosis by inducing the synthesis of several anti-

apoptotic proteins, including caspase inhibitors, anti-oxidant

proteins, MAPK phosphatases, and anti-apoptotic members of

the Bcl family [8,9,10,7,11]. Without affecting NFkB-activation or

blocking protein synthesis, CCN1 induces a high level of ROS

through nSMase1 [17], 5-LOX, and mitochondria to override the

antioxidant effect of NFkB [14], thereby allowing the accumulated

ROS to inhibit the NFkB-induced MAPK phosphatases [29] and

reactivate JNK and p38 MAPK[14] (Fig. 3A,B). Sustained JNK

activation leads to the degradation of c-FLIP [8], whereas re-

activated p38 MAPK promotes cytochrome c release (Fig. 3E).

As members of the CCN family are emerging as potential

therapeutic targets in diseases associated with chronic inflamma-

tion [12], a detailed understanding of how CCNs synergize with

Figure 5. p53 is required for biphasic activation of JNK and p38
MAPK induced by CCN1 and TNFa. A, HSFs were transfected with
p53 siRNA or control siRNA (50 nM), and treated with BSA (B), CCN1 (C),
TNFa (T), or both (CT) for 30 min. Phosphorylation of JNK (Thr183/
Tyr185) and p38 MAPK (Thr-180/Tyr-182), and expression of p53 were
analyzed by immunoblotting. B, cells were transfected as in A and
phosphorylation of JNK and p38 MAPK was analyzed after 5 hrs of
CCN1/TNFa treatment. C, serum-deprived HSFs were incubated with
100 mM PFT-a for 30 mins and analyzed after 5 hrs of treatment with
proteins as described above.
doi:10.1371/journal.pone.0031303.g005
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inflammatory cytokines to induce apoptosis is of critical importance.

Here we have identified four previously unknown essential

participants in the CCN1/TNFa apoptosis pathway: LRP1,

nSMase1, p53 and p38 MAPK (Fig. 7). None of them is necessary

when TNFa cytotoxicity is facilitated by CHX, suggesting that their

functions may counteract the activity of NFkB-induced anti-

apoptotic proteins. These findings indicate that TNFa-induced

apoptosis under physiological conditions may proceed in a manner

distinct from its occurrence in the presence of CHX. Given the

importance of CCN1 in TNFa-induced apoptosis in hepatitis [13],

assessing whether these participants in the CCN1/TNFa apoptosis

pathway play significant roles in TNFa-induced tissue injuries in

inflammatory diseases may help to identify potential targets for

therapeutic intervention [12]. Even though anti-TNFa therapy is

successful in treating several inflammatory diseases, it is often

accompanied by increased bacterial and viral infections [46,47],

and increased risk for the development of lymphomas [48]. Thus,

development of novel therapeutics may be useful in overcoming the

limitations of anti-TNFa therapy. Targeting of LRP1 or nSMase1,

individually or in combination, may selectively block TNFa-mediated

apoptosis while preserving other protective functions of this cytokine.

Inasmuch as p53 and p38 MAPK play important roles in tumor

suppression [49,50], their inactivation may be an inappropriate

therapeutic strategy in some contexts. Therefore, LRP1 and

nSMase1 signaling pathways may be promising therapeutic targets

in treating conditions related to excessive TNFa-induced apoptosis.

Materials and Methods

Cell culture
Data presented in this study were obtained using 1064Sk human

skin fibroblasts (HSFs) derived from skin biopsies of a healthy

newborn (American Type Culture Collection CRL-2076). We also

tested three other primary neonatal fibroblast isolates (BJ, 1077 Sk,

HFF-1) for apoptotic synergy between CCN1 and TNFa, and found

that they all responded similarly. Fibroblasts were maintained in the

Iscove’s modified Dulbecco’s medium (IMDM; Invitrogen) with

10% fetal bovine serum (FBS, Hyclone) at 37uC and 5% CO2, and

used before reaching 25 population doublings. Before experiments,

cells were serum-deprived by overnight incubation in IMDM

containing 0.1% bovine serum albumin (BSA).

Antibodies and reagents
Human recombinant TNFa was from Axxora. Antibodies for

phospho-p38 MAPK (Thr-180/Tyr-182), c-Jun N-terminal pro-

tein kinase 1/2 (JNK1/2), and ERK1/2 were from Cell Signaling

Technology, for phospho-JNK1/2 (Thr183/Tyr185) from Assay

Designs, for p38 MAPK and p53 (DO-1) from Santa Cruz

Biotechnology, for cytochrome c from Clontech, and antibody

against 515 kDa subunit of LRP1 (8G1) was from Fitzgerald

Industries. Anti-b-actin antibody (AC-15), CHX, NAC, BHA, and

neutral sphingomyelinase inhibitor GW4869 were from Sigma.

Inhibitors of p38 MAPK (SB202190), JNK (SP600125), and p53

Figure 6. nSMase mediates CCN1/TNFa-, but not CHX/TNFa-induced apoptosis. A, HSFs were either treated with 0.1% DMSO (ctrl) or 20 mM
GW4869 for 30 mins, or subjected to siRNA-mediated silencing of nSMase1 (SMPD2). Cells were then tested for apoptosis in response to CCN1 (2 mg/
ml) and/or TNFa (10 ng/ml). (*p,0.05; n = 3). On the right is RT-PCR analysis of SMPD2 and GAPDH expression in cells transfected with control or
SMPD2 siRNA. B. Apoptotic response of cells to CHX (1 mg/ml) and/or TNFa was assessed after the inhibition of nSMase with GW4869, or upon siRNA-
mediated silencing of nSMase1 (NS-not significant, n = 3). C, HSFs were transfected with control siRNA or siRNA against nSMase 1, and stimulated for
5 hrs with BSA (B), CCN1 (C), TNFa (T), or both (CT). Phosphorylation of JNK (Thr183/Tyr185) and p38 MAPK (Thr-180/Tyr-182) was analyzed by
immunoblotting. Numbers under the immunoblots are relative signal intensities as determined by densitometry. D, HSFs were incubated with
GW4869 (20 mM) where indicated, and treated with CCN1 and/or TNFa for 5 hrs. Cytosolic extracts were electrophoresed and cytochrome c was
detected by immunoblotting. Numbers under the immunoblots are relative cytochrome c signal intensities as determined by densitometry.
doi:10.1371/journal.pone.0031303.g006
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(cyclic pifithrin-a and pifithrin-m) were from Calbiochem. ROS

detection dyes 5-(and 6-) chloromethyl-29,79-dichlorodihydrofluor-

escein diacetate (CM-H2DCF-DA) and dihydrocalcein acetoxy-

methylester (DHC-AM) were from Invitrogen.

Coimmunoprecipitation of LRP1 and CCN1
HSFs were rinsed twice with ice-cold PBS and lysed in

immunoprecipitation (IP) buffer (20 mM Tris-HCl, pH 7.5,

150 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 1% Triton X-100,

and EDTA-free protease inhibitor cocktail). After 5 min of

incubation at 37uC, cell lysates were passed through a 22-gauge

needle 10 times and cleared by centrifugation at 14,0006g at 4uC
for 20 min. Protein concentration in supernatants was adjusted to

1 mg/ml and 0.5 ml of the lysate was combined with 3.5 mg of

CCN1 antibody or control purified normal rabbit IgG. After

overnight incubation at 4uC, lysate-antibody mixture was

combined with 50 ml of 25% slurry Protein A/G PLUS-Agarose

(Santa Cruz Biotechnology) and incubated for another 4 hrs at

4uC. The beads were then washed once with IP buffer and twice

with 0.1% Triton X-100-containing IP buffer. Bead pellets were

combined with 40 ml of 2X non-reducing sodium dodecyl sulfate

(SDS) buffer and boiled for 5 min. After centrifugation, the

supernatants were separated by 7.5% SDS-PAGE and LRP1

expression was analyzed by Western blotting.

Expression and purification of recombinant CCN1 and
RAP

Human recombinant CCN1 protein was produced in insect

cells using a baculovirus expression system [51] GST-RAP fusion

protein was expressed in BL21 E.coli transformed with pGEX-2T-

RAP/TEV (kindly provided by Dr. Klavs Dolmer, University of

Illinois at Chicago). RAP was purified as described before [52].

First, GST-RAP was affinity-purified using glutathione sepharose

4B (GE Healthcare). GST-RAP was then digested by overnight

incubation with TEV protease (Promega) and the GST tag was

removed on GSH-Sepharose. Purity of the recombinant proteins

was verified by Commassie staining after SDS-PAGE.

Apoptosis assays
HSFs were incubated in serum-free medium overnight then

treated with recombinant proteins and/or inhibitors to induce

apoptosis. Cells were fixed with 10% formalin and stained with

DAPI (49,6-diamidino-2-phenylindole, 1 mg/ml). Apoptotic cells

were counted under a fluorescent microscope in 10 randomly

Figure 7. TNFa-induced apoptotic signaling. TNFa acts via its death domain containing receptor TNFR1 to activate caspase 8/10 and promote
apoptosis signaling. However, TNFa also activates NFkB to induce expression of a variety of anti-apoptotic genes, resulting in blockade of TNFa-
induced apoptosis. The extracellular matrix protein CCN1 unleashes TNFa apoptosis signaling without inhibiting NFkB. Instead, CCN1 acts via
integrins avb5 and a6b1, syndecan-4, and LRP1 to induce a high level of ROS in cells, overriding the anti-oxidant effects of NFkB. CCN1-induced ROS,
generated via mitochondria, 5-LOX, and nSMase-dependent mechanism, causes a prolonged activation of stress-activated kinases p38 MAPK and
JNK. This hyperactivation of kinases depends on p53, which is activated downstream of ROS. JNK enables caspase activation by TNFa by inducing the
degradation of caspase inhibitor cFLIP via ubiquitin ligase Itch. In contrast, CCN1-mediated activation p38 MAPK promotes cytochrome c release to
facilitate TNFa-mediated apoptosis at the level of mitochondria. In contrast to CCN1, CHX triggers TNFa-mediated apoptosis by blocking de novo
protein synthesis, including the synthesis of NFkB targets, such as anti-oxidant proteins and protein kinase phosphatases. This results in accumulation
of ROS, activation of JNK, and apoptosis, without the requirement of p38 MAPK or p53.
doi:10.1371/journal.pone.0031303.g007
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chosen high power fields (,300 cells/sample were counted). Data

are presented as mean % apoptosis 6 standard deviation (SD)

from triplicate samples. All apoptosis assays were done at least

three times with similar results.

Immunobloting
Cell lysates were made in RIPA buffer (50 mM Tris-HCl

pH 8.0, 150 mM NaCl, 1% (w/v) NP-40, 0.5% sodium

deoxycholate, and 0.1% SDS) and were diluted in Laemmli

buffer prior to SDS-PAGE. LRP1 was detected under non-

reducing conditions, after combining cell lysates with 2X non-

reducing SDS buffer (125 mM Tris-HCl pH 6.8, 2.5% SDS, 25%

glycerol and 2 mg/ml N-ethylmaleimide). Immunoblotting and

protein detection were done using standard methods. X-ray

images were scanned and relative band intensity was measured

using ImageJ 1.36b software (NIH).

Cytochrome c release from mitochondria
Cytosolic extracts free of mitochondria were prepared as

described [53]. Briefly, cells were harvested by trypsinization

and lysed for 10 min at 25uC in 0.5 ml of mannitol/sucrose buffer

(20 mM HEPES-KOH, (pH 7.5), 210 mM sucrose, 70 mM

mannitol, 1.5 mM MgCl2, 10 mM KCl2, EDTA-free protease

inhibitor cocktail (Roche), and 20 mg digitonin/million cells). After

centrifugation at 14,0006g, supernatants representing cytosolic

fractions, containing 50 mg of protein, were analyzed for the

presence of cytochrome c and b-actin by immunoblot.

ROS measurements
Reactive oxygen species in live cells were detected by fluorescence

microscopy (Leica, DM IRB), using cell-permeable indicator dyes 5-

(and 6-) chloromethyl-29,79-dichlorodihydrofluorescein diacetate

(CM-H2DCF-DA) [54] or DHC-AM [55]. The reduced and

acetylated indicator dyes are non-fluorescent, but removal of the

acetate groups by cellular esterases and oxidation by peroxides,

convert them into green-fluorescent products reflecting the amount

of ROS. Cells were loaded with 10 mM ROS indicator dye and

treated with CCN1 for 10 mins. After counterstaining with Hoechst

33342, five random high-power fields of each sample were

photographed using QImaging Retiga 2000R camera. Green

fluorescence intensities were measured with ImageJ 1.36b software

(NIH) and expressed as fluorescence intensity per cell. For

measurement of ROS by flow cytometry (supplementary data),

serum-deprived cells were labeled with CM-H2DCF-DA (5 mM) for

15 mins at 37uC in the dark, and stimulated for 10 mins with

recombinant CCN1. After rinsing and detachment with trypsin/

EDTA, cells were suspended in 5% FBS-containing PBS at the

concentration of 26105 cells/ml. Fluorescence of 105 cells was

immediately analyzed by flow cytometry (Cell Lab Quanta SC

MPL; Beckman Coulter). Data were expressed as geometric mean

fluorescence 6 SD from triplicate samples.

siRNA
Cells were transfected with siRNAs using Lipofectamine 2000

reagent (Invitrogen) according to manufacturer’s protocol, and

assayed for apoptosis or ROS 72 hrs after transfection. Control

non-targeting siRNA and siGENOME SMARTpool siRNA

against nSMase1 (50 nM) were from Dharmacon. siRNAs against

LRP1 (sense: GCAGUUUGCCUGCAGAGAU-dTdT) [56],

p38a (sense: CCUACAGAGAACUGCGGUU-dTdT) [57], and

p53 (sense: GACUCCAGUGGUAAUCUAC-dTdT) [58] were

from Ambion. The silencing was validated using RT-PCR in case

of nSMase1 siRNA treatment, or by immunoblot in case of LRP1,

p38, and p53 siRNAs.

Semiquantitative RT-PCR
Total cellular RNA was extracted and cDNA synthesized using

standard methods. PCR primers specific for nSMase1 (forward,

59-CAACAAGTGTAACGACGATGCC-39; reverse, 59-CGAT-

TCTTTGGTCCTGAGGTGT-39) and GAPDH (forward, 59-A-

TCGTGGAAGGACTCATGACCACA-39; reverse, 59-CCTGC-

TTCACCACCTTCTTGATGT-39) were used.

Statistical analysis
Data are reported as the mean 6 SD, and analyzed using

Student’s t-test. p values#0.05 were considered significant.

Supporting Information

Figure S1 JNK is required for TNFa cytotoxicity in-
duced both by CCN1 and CHX. A, serum-deprived HSFs

were treated with 0.1% DMSO (ctrl) or 15 mM SP600125 for

30 mins prior to apoptosis induction with CCN1 (2 mg/ml) and/or

TNFa (10 ng/ml) for 5 hrs, and apoptosis was assayed. B, cells

were prepared as in A but apoptosis was induced with CHX (1 mg/

ml) and or TNFa (10 ng/ml) for 16 hrs; *p,0.05; n = 3.

(TIF)

Figure S2 p53 is not required for CCN1-induced ROS
accumulation. A, HSFs were incubated with 0.1% DMSO (ctrl)

or 10 mM PFTm for 30 mins before loading with 5 mM CM-

DCFDA. Cells were then treated either with BSA or CCN1 (2 mg/

ml) and harvested after 10 mins for measurement of ROS by flow

cytometry. B, HSFs were transfected with p53 siRNA, or control

siRNA, and ROS was detected as above. Results are expressed as

geometric mean fluorescence 6 SD. *p,0.01; n = 3.

(TIF)

Figure S3 nSMase1 is required for CCN1-induced ROS
accumulation. Serum-deprived HSFs were loaded with 10 mM

DHC-AM and treated with CCN1 for 15 mins. After nuclear

counterstaining with DAPI, cells were photographed (left). Green

fluorescence (DHC-AM) was quantified (right panel) to reflect ROS

levels.

(TIF)
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