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Genome-wide discovery of long 
intergenic noncoding RNAs and 
their epigenetic signatures in the 
rat
Aimin Li   1, Zhong-Yin Zhou2, Xinhong Hei1, Newton O. Otecko2,3, Junying Zhang4, Yajun 
Liu5, Hongfang Zhou1, Zhiqiang Zhao1 & Lei Wang1

Long intergenic noncoding RNAs (lincRNAs) play a crucial role in many biological processes. The rat is 
an important model organism in biomedical research. Recent studies have detected rat lincRNA genes 
from several samples. However, identification of rat lincRNAs using large-scale RNA-seq datasets 
remains unreported. Herein, using more than 100 billion RNA-seq reads from 59 publications together 
with RefSeq and UniGene annotated RNAs, we report 39,154 lincRNA transcripts encoded by 19,162 
lincRNA genes in the rat. We reveal sequence and expression similarities in lincRNAs of rat, mouse 
and human. DNA methylation level of lincRNAs is higher than that of protein-coding genes across the 
transcription start sites (TSSs). And, three lincRNA genes overlap with differential methylation regions 
(DMRs) which associate with spontaneously hypertensive disease. In addition, there are similar binding 
trends for three transcription factors (HNF4A, CEBPA and FOXA1) between lincRNA genes and protein-
coding genes, indicating that they harbour similar transcription regulatory mechanisms. To date, this is 
the most comprehensive assessment of lincRNAs in the rat genome. We provide valuable data that will 
advance lincRNA research using rat as a model.

Long noncoding RNAs (lncRNAs) are a set of transcripts that are longer than 200 nt and do not encode proteins. 
LncRNAs accomplish a remarkable variety of biological functions such as epigenetic modification, transcriptional 
regulation and cell fate determination1–3. Recent studies associate lncRNAs with many diseases4. For example, 
Mhrt lncRNA offers protection against heart failure and hypertrophy5, while a lncRNA gene in the HOX loci, 
HOTAIR, is associated with cancer invasiveness6. Rat has extensively been utilised as a model for researching 
several devastating human diseases like Parkinson’s, Alzheimer’s, Peyronie’s, Huntington and degenerative joint 
disease7–12. Whereas 58,648 lncRNA genes have been retrieved from about 43 Tb of RNA-seq data of the human 
genome13, only a small proportion of rat lincRNA genes have been uncovered14–16. For instance, Amy Leung et 
al. annotated 466 lncRNA transcripts from two rat vascular smooth muscle cells14, Feng Wang et al. uncovered 
2,761 lncRNA transcripts corresponding to 1,620 gene loci from six rat tissues15 and Kathirvel Gopalakrishnan 
et al. identified 3,272 lncRNA transcripts from three rat strains16. While these studies report the locations of the 
lncRNAs, their gene structures are unclear. Moreover, the enormous discrepancy in the number of lncRNAs 
characterised in the genomes of human and rat reveals that numerous rat lncRNA genes remain unidentified, 
considering that rats have similar genome size as human. Fortunately, rapid development of next-generation 
sequencing technologies and bioinformatics algorithms has generated a large amount of data that supports an 
accurate discovery of lncRNA transcripts in a large-scale manner.

Investigations of the role of lincRNAs in epigenetics have revealed that epigenetic mechanisms such as 
DNA methylation and histone modification in mammalian lincRNAs have differential patterns compared to 
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protein-coding genes17. We have also previously demonstrated that methylation level of pig lincRNA genes is 
higher than that of protein-coding genes18. Overall, DNA methylation is a defining feature of mammalian cellular 
identity and is essential for diverse biological processes19,20. Therefore, profiling DNA methylation across the rat 
genome, as a biological model for biological studies, is vital for in-depth understanding of the effects of epige-
netics21. A few studies have described epigenetic patterns in specific rat protein-coding genes22,23. However, at a 
global scale, particularly in and around transcription start sites (TSSs) of lncRNA genes, these epigenetic patterns 
have scarcely been studied22,23. Transcription factors (TFs) are central to transcriptional regulation of gene expres-
sion24. Recent development of chromatin immunoprecipitation followed by sequencing (ChIP-seq) technologies 
has enhanced the capability for genome-wide identification of TF-binding sites25. Several studies have shown that 
TF-binding signals around the TSSs of genes are predictive of gene expression levels26,27. Although the expression 
and transcriptional regulation of protein-coding have been well characterised, such aspects in lncRNAs are still 
in their infancy. In rats, the TF-binding patterns of lincRNAs remain unclear.

Here, we report a large-scale identification and characterisation of rat lincRNAs. From a comprehensive data-
set of more than 100 billion rat RNA-seq reads from 64 independent studies, we identify a high-confidence set of 
39,154 lincRNA transcripts in 19,162 loci. Our analyses show that rat lincRNAs have similar sequence and expres-
sion characteristics with other mammals. In addition, there are differential DNA methylation patterns between 
lincRNA genes and protein-coding genes in the rat genome. Interestingly, both lincRNAs and protein-coding 
genes have similar TF-binding patterns around TSSs. To facilitate future research on lincRNAs, we avail an 
open-access database named RatTransc. RatTransc hosts the lincRNA genes we identified, the expression profiles 
derived from 320 samples across eleven tissues (SRP037986)28 and 18 single-cell transcriptomes (SRP041119)29, 
as well as other useful functions. The RatTransc database is available at http://www.ibiomedical.net/rattransc/. 
The rat lncRNA landscape can serve as a useful resource for medical research using the rat as a model, and pro-
vide valuable biomarkers for disease diagnosis.

Results
Identification of lincRNA genes in the rat.  We collected 64 independent RNA-seq datasets. These 
included both single- and paired-end 12 to 151 bases long reads sequenced on Illumina platforms, totalling to 
about 100 billion reads from 1,289 samples and an average of about 78 million reads per sample (Supplementary 
Table S1). For a comprehensive retrieval of lincRNA genes in the rat genome, we developed a bioinformatics 
pipeline that integrates RNA-seq datasets with predetermined annotations from Ensembl, RefSeq and UniGene 
(see Methods, Fig. 1a,b,c and d). The pipeline involves five main steps: (1) aligning to reconstructed transcripts, 
(2) filtering low-quality transcripts, (3) keeping long intergenic multi-exonic transcripts, (4) evaluating coding 

Figure 1.  Flowchart describing the identification of lincRNAs. Processing of (a) RNA-seq datasets, (b) RefSeq 
datasets, (c) UniGene datasets, and (d) merging lincRNAs derived from RNA-seq, RefSeq and UniGene.

http://www.ibiomedical.net/rattransc/
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potential of transcripts and (5) eliminating house-keeping RNAs. This approach is similar to the one we have 
applied in our previous studies on domestic animal lncRNAs30,31.

From the RNA-seq datasets, we derived 62,185 putative lincRNAs (Fig. 1a). Additionally, we identified 6,184 
and 12,387 putative lincRNAs from RefSeq and UniGene annotations, respectively (Fig. 1b and c). After merg-
ing these transcripts using Cuffmerge and ruling out house-keeping genes, we obtained an assembly of 39,154 
nonredundant lincRNA transcripts from 19,162 loci (Fig. 1d). The number is far more than Ensembl lincRNA 
annotation but has a high proportion of overlap with the Ensembl lincRNAs (Supplementary Figure S1). It also 
represents the most comprehensive lincRNA genes identification from the rat genome (Supplementary Dataset 1; 
http://www.ibiomedical.net/rattransc/).

Sequence features of lincRNA genes.  To determine the basic sequence characteristics of newly identified 
rat lincRNA genes, we compared these novel lincRNA genes with protein-coding genes annotated by Ensembl 
(Rnor_6.0.81). In general, these lincRNA transcripts are short in comparison with protein-coding transcripts 
(Fig. 2a), which is in accordance with observations in other mammals such as human, mouse and pigs13,30,32. 
The distances between lincRNA genes and their neighbouring protein-coding genes are greater than the median 
distances between pairs of neighbouring coding gene (median of 32,678 nt for mRNA-lincRNA intervals com-
pared to 13,630 nt for mRNA–mRNA intervals, Mann-Whitney, P-value < 2.2 × 10−16) (Fig. 2b). And, the dis-
tances between lincRNA genes and their protein-coding gene neighbours are larger than the intronic lengths of 
protein-coding genes (Mann-Whitney, P-value < 2.2 × 10−16). Thus, these lincRNAs are not likely to be unde-
tected exons of protein-coding genes. The novel lincRNA genes we identified are independent transcripts, not 
unannotated exons of protein-coding genes.

Expression characteristics of lincRNA genes.  Yu and colleagues have reported a rat RNA-seq tran-
scriptomic BodyMap covering 11 organs and four developmental stages (juvenile, adolescence, adult and aged) 
in both sexes of 320 Fischer rats (SRA accession number: SRP037986). However their study mainly focused on 
protein-coding genes28. Based on this transcriptomic dataset, we catalogued the expression profiles of 22,092 
protein-coding genes annotated in Ensembl as well as the 19,162 novel lincRNA genes we annotated. The expres-
sion of these lincRNAs appears to be lower than those of protein-coding genes (Fig. 2a).

To assess the lincRNA gene expression profiles of the 320 rat samples, we carried out a hierarchical clus-
ter analysis (Supplementary Figure S2). Clustering and heatmaps were generated in R Bioconductor using the 
heatmap.2 function of the gplots package (https://CRAN.R-project.org/package = gplots). According to unsu-
pervised clustering of expression profiles, this analysis shows that more than half the lincRNA genes form 
tissue-specific expression patterns. Additionally, we performed clustering analysis of expression of protein-coding 
genes (Supplementary Figure S3), showing similar results to those of other mammals previously published33. 

Figure 2.  Structure and expression features of lincRNAs. (a) Size distribution of lincRNAs and protein-
coding transcripts. In general, lincRNA transcripts are shorter than protein-coding. (b) Comparison of the 
mRNA-lincRNA intervals, mRNA-mRNA intervals, and sizes of mRNA introns. (c) LincRNAs have lower 
expression than protein-coding genes. FPKM, fragments per kilobase of exon per million fragments mapped. 
(d) Comparison of the distribution of tissue-specificity scores between lincRNAs and coding genes. Shown are 
distributions of maximal tissue-specificity scores (JS scores) calculated for each gene across the eleven tissues 
for coding genes (blue), lincRNAs (pink). More lincRNAs exhibit tissue-specific expression patterns (JS > 0.5).
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Together, these results demonstrate that lincRNA genes are expressed in a more tissue-specific manner than 
protein-coding genes.

To further characterise the tissue-specific expression of lincRNA genes, we calculated each gene’s 
tissue-specificity score based on an entropy metric which relies on Jensen-Shannon (JS) divergence34 
(Supplementary Note 1). The tissue-specificity metric (0-1) measures the similarity between a gene’s expression 
across all eleven organs and its expression in only one tissue. In an extreme case, a gene is expressed in only one 
tissue, giving a JS score of 1, which is a perfect tissue-specific expression. Analyses show that lincRNA genes tend 
to be tissue-specific (JS > 0.5) in comparison to protein-coding genes, which is in agreement with the clustering 
analysis (Fisher exact test, P-value < 2.2 × 10−16) (Fig. 2d). Specifically, 4,456 lincRNA genes exhibit tissue-specific 
expression across 11 tissues (adrenal gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and testes 
or uterus). The distributions of tissue-specific lincRNAs in the 11 tissues are markedly different (Supplementary 
Figure S4). For instance, the largest category by total number of tissue-specific lincRNAs occurs in testes, which 
represents 48.9% of all tissue-specific lincRNAs we observed. This is consistent with published results from a sur-
vey of lincRNAs, in which testes was ranked the highest among 24 human tissues34. Interestingly, 762 of the total 
number of genes have high specificity for brain and 82 for heart tissues, respectively (Supplementary Table S2). 
This highlights the suitability of the rat as an excellent model for lincRNA-based research on nervous behaviour 
and hypertension.

GO analysis of protein-coding genes neighbouring tissue-specific lincRNAs.  Previous reports 
indicate that lncRNA genes possibly interact with chromatin proteins to positively or negatively regulate the 
expression of neighbouring genes34–36. To investigate the potential biological functions of rat tissue-specific lin-
cRNA genes, we performed GO enrichment for the 4,456 lincRNA genes - which exhibit tissue-specific expres-
sion across the 11 tissues in the study of SRP037986. For each tissue, we first extracted the nearest neighbouring 
Ensembl-annotated protein-coding genes to the lincRNAs. We then used Ensembl Biomart (http://www.ensembl.
org/biomart/martview) to get human homologues of these protein-coding genes and checked the enrichment of 
their Gene Ontology (GO)37 functional terms using DAVID Bioinformatics Tool38. In the rat brain, the GO cat-
egory of neurological process exhibits significant enrichment. Additionally, protein-coding genes in close prox-
imity to lincRNA genes with brain specific expression are associated with synapse function and behaviour. These 
findings emphasise why the rat is an excellent model for neuroscience research.

Patterns of DNA methylation of rat lincRNAs.  Michelle Johnson et al. have published whole-genome 
bisulfite sequencing (BS-seq) of the Brown Norway (BN) control strain and the spontaneously hypertensive rats 
(SHR) to test for association between methylation and pathophysiological phenotypes22. Our analysis of the 
BS-Seq dataset of BN and SHR strains revealed lower methylation levels in protein-coding genes than in lincR-
NAs (Kolmogorov-Smirnov, P-value < 2.2 × 10−16) (Fig. 3a). This corresponds with the fact that expression level 
of lincRNA genes is generally lower than that of protein-coding genes.

To further analyse the methylation differences between lincRNAs and mRNAs, we investigated the methyla-
tion patterns near TSSs using the BS-seq data. Methylation is lowest around TSSs of lincRNAs and protein-coding 
genes (Fig. 3b). Previous studies on human and pigs using MeDIP-seq data have reported that methylation levels 
of lincRNAs are higher than those of protein-coding genes in the regions of TSSs17,39. They further state that 
methylation patterns of protein-coding genes present V-shaped curves, whereas lincRNAs’ exhibit growing 
tendencies around TSSs. In this study, we found that both lincRNAs and protein-coding genes display similar 
V-shaped curves around TSSs in eight rats (Fig. 3b). Methylation levels of lincRNAs are higher than those of 
protein-coding genes at TSSs regions (Fig. 3b). In TSS regions, methylation of lincRNAs show different tenden-
cies among rats, human and pigs.

To explore the reason why lincRNA and protein-coding genes have different methylation patterns, we com-
pared GC content and CpG observed/expected ratio of lincRNAs and protein-coding genes at TSSs. This analysis 
shows that lincRNA and protein-coding genes have similar tendencies of GC content at TSSs (Fig. 3c). However, 
protein-coding genes display a higher observed/expected ratio as compared with lincRNAs, corresponding to 
their methylation levels. This observation differs from what we found in pigs39, suggesting that rats and pigs have 
diverse regulatory mechanism. Overall, this finding can clarify why most lincRNAs have lower expression levels 
than protein-coding genes.

LincRNAs associated with cardiovascular disease.  To detect lincRNA genes that have biological func-
tions in cardiovascular disease, we re-analysed the BS-seq data published by Michelle Johnson et al.22 using the 
DSS package40. A total of 1,182 differentially methylated regions (DMRs) are identified, and three DMRs overlap 
with lincRNA genes (RatTranscG007202 vs. dmr1178, RatTranscG007905 vs. dmr1161, RatTranscG015025 vs. 
dmr1142) (Supplementary Table S3). The three lincRNA genes might be associated with cardiovascular disease.

Binding intensity profile of transcription factors at TSSs.  Transcription factors are central to the 
regulation of gene expression. We compared the binding intensity profiles of TFs to lincRNA and protein-coding 
TSSs using published ChIP-seq data of three tissue-specific TFs (HNF4A, CEBPA and FOXA1) from rat liver 
tissues41. Our analyses show that lincRNAs and protein-coding genes have nearly the same TF-binding profiles at 
TSSs (Fig. 4). HNF4A, CEBPA and FOXA1 all exhibit upside-down V-shaped patterns at the TSSs. These results 
indicate that lincRNAs and protein-coding genes use similar regulatory mechanism, suggesting that lincRNAs 
have essential role in development.

Discussion
The rat is an important animal model for biological studies, especially in neurobiological and cardiovascular 
disease research. LincRNA genes play important roles in many biological processes. To comprehensively identify 
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lincRNA genes, we collected 64 RNA-seq datasets, RefSeq annotations and UniGene data, from which we iden-
tified 39,154 lincRNA transcripts in 19,162 intergenic regions. Currently, this is the most comprehensive anal-
ysis of lincRNAs in the rat genome. In human, 58,648 lincRNAs have been identified from RNA-seq datasets 
retrieved from 25 studies13. The integrity of lincRNA transcripts assembled from RNA-seq data largely depends 
on the depth of sequencing and the expression levels of lincRNA transcripts in the related samples13. The depth of 
sequencing and the expression levels of lincRNA transcripts vary across the samples we used in this study. Similar 
to our previous study26,27, we employed strict criteria including the coverage of junctions and exons to filter tran-
scripts. Therefore, the lincRNA dataset identified in this research contains high-quality transcripts and presents a 
valuable resource for functional investigations utilising rat as a biological model.

The expression pattern of rat lincRAN genes shows similarity to those of other mammals. Interestingly, 
many lincRNA genes in the rat display tissue-specific expression. Particularly, testes lead in the number of 

Figure 3.  Characteristics of DNA methylation. (a) Protein-coding genes have lower methylation levels 
than lincRNAs. This figure shows the methylation levels inside protein-coding and lincRNA genes in four 
spontaneously hypertensive rats (SHR1, SHR2, SHR3 and SHR4), models of cardiovascular disease, and four 
Brown Norway (BN) control rats (BN1, BN2, BN3 and BN4). (b) DNA methylation patterns around TSSs of 
lincRNA and protein-coding genes. Both lincRNAs and protein-coding genes exhibit similar V-shaped curves 
while protein-coding genes present lower methylation around TSSs. Distributions of methylation levels were 
calculated in 100-bp bins, 5-kb upstream and downstream from the TSSs. (c) Distribution of GC content and 
CpGo/e ratio around TSSs of lincRNA and protein-coding genes. Distributions were calculated in 100-bp 
sliding windows, 5-kb upstream and downstream from the TSSs.
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tissues-specific expression of lincRNA genes, which is consistent with a previous study42, and indicates that the 
rat is an excellent model for reproduction biology and health research. Additionally, a previous study proposed 
that rat represent a model for behavioural studies43,44. In our study, many brain tissue-specific linRNAs proximal 
to the protein-coding genes associate with neurological processes. Thus, this research will enrich knowledge on 
the candidate lincRNA genes applicable for neuroscience investigations.

Previous studies indicate that lincRNA genes have different epigenetic patterns from those of protein-coding 
genes20,21. Consistent with our previous study in pigs21, we have observed higher methylation levels around 
TSS of lincRNA genes compared to protein-coding genes. Contrary to the methylation levels of pig lincRNAs 
which show growing trends in TSS regions, the methylation trends of the rat lincRNAs in TSS regions dis-
play an upside-down V-shaped trend. However, the rat lincRNAs in TSS regions have a similar trend to the 
protein-coding genes. The differential DNA methylation trends at TSSs between rats and pigs may result from 
different DNA methylation sequencing methods. BS-seq has higher resolutions than the MeDIP-seq used in the 
pig study21. Thus, the DNA methylation trends across TSS regions in rats could be more accurate than those of 
pigs. We found similar TF-binding patterns between lincRNA genes and protein-coding genes for three TFs, 
HNF4A, CEBPA and FOXA1. This is an indication of similar transcriptional regulation for lincRNA genes and 
protein-coding genes. This is also the first comparison of the TFs binding sites on a genome-wide scale between 
rat lincRNA genes and protein-coding genes.

In summary, we report the most comprehensive lincRNA genes in various tissues using hundreds of billions 
of RNA-seq reads of the rat genome. We show that rat lincRNAs have similar characteristics with other mam-
mals, and a number of lincRNA genes show preferential tissue expression. In addition, we characterised the 
epigenetic patterns between lincRNA genes and protein-coding genes, showing their differences in DNA meth-
ylation patterns and similarity in transcriptional factor binding patterns. We also report the overlapping of rat 
lincRNA genes with three DMRs linked with cardiovascular disease. This study provides important insights and 
data resources for future large-scale functional experiments using rat as an animal model.

Methods
Datasets used for identification of rat lincRNAs.  To derive a more comprehensive set of lincRNAs that 
includes previous annotations, we used Cuffmerge to integrate the RNA-seq-derived lincRNAs with the predeter-
mined set of non-coding RNAs annotated by NCBI RefSeq and UniGene.

We have collected all rat RNA-seq datasets produced by Illumina platforms. The datasets are listed in 
Supplementary Table S4 and all of them can be downloaded from NCBI SRA database (https://www.ncbi.
nlm.nih.gov/sra/). During our step-wise identification of lincRNAs, some datasets were eliminated since no 
lincRNAs could be extracted from them using our stringent criteria. Finally, 64 RNA-seq datasets containing 
100,346,795,298 reads from 1,298 samples were retained for further analysis. Details of the 64 RNA-seq datasets 
are shown in Supplementary Table S1.

The NCBI UniGene and RefSeq.45 sequences have been proven to be extremely valuable for the identification 
of lincRNAs in plants and mammals46,47. RefSeq (Release 73) curates 18,905 rat noncoding RNAs. These data 
resources can be leveraged to expand the rat lincRNA catalogue. To minimise transcriptional noise, high quality 
and non-redundant sequences (UniGene) were used in our study. We collected rat unigenes from the NCBI 
UniGene database (Rattus norvegicus: UniGene Build #195)48.

Analyses of the RNA-seq datasets.  The high volume and complexity of RNA-seq datasets call for 
efficient, robust and statistically principled tools49. TopHat and Cufflinks have together gained prominence in 
RNA-seq studies for identifying new genes, splice variants, and comparing expression of genes and transcripts 
under different conditions49. Here, we aligned all the RNA-seq reads to the Rattus norvegicus 6.0 genome using 
TopHat v2.0.849. The transcriptome of each sample was assembled from mapped reads using Cufflinks v2.0.2 with 
a reference transcriptome annotation – Ensembl Rattus norvegicus annotation 6.0.8149,50 (Fig. 1a). Cuffcompare 
v2.0.2 program in Cufflinks suite was used to map the newly assembled transcripts back to annotations of 

Figure 4.  Transcription factor binding patterns. Transcription factor binding intensities are similar between 
lincRNAs and protein-coding genes around the TSSs. The x-axis represents the relative distance to the TSS, and 
the y-axis represents the mean binding intensities of TFs (HNF4A, CEBPA and FOXA1).
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Rattus norvegicus 6.0.81. Intergenic transcripts, annotated with class code ‘u’ by Cuffcompare, were merged 
using Cuffmerge for each study. Read coverage is related to the quality of assembled transcripts46,51. To obtain 
high-confidence transcripts, we used two criteria to filter the RNA-seq-derived transcripts: RNA-seq read cover-
age on exons must be at least 80% for each transcript, and there must be at least three RNA-seq reads mapping to 
the predicted splice structure30.

Analyses of the RefSeq and UniGene datasets.  For the RefSeq and UniGene data, each sequence was 
first mapped to the Rattus norvegicus 6.0 genome using BLAT (the BLAST-like alignment tool) (v35)52. BLAT 
is more accurate and about 500 times quicker than other commonly used mRNA/DNA alignment tools, mak-
ing it suitable for large-scale genomic projects. Low-quality contigs were then removed using the pslCDnaFilter 
program (http://hgdownload.cse.ucsc.edu/admin/exe/) with the parameters: ‘-minId = 0.95, -minCover = 0.25, 
-globalNearBest = 0.0025, -minQSize = 20, -minNonRepSize = 16, -ignoreNs-bestOverlap’. Contigs that equally 
mapped to multiple locations of the genomes were removed from further analyses (Fig. 1b and c).

Construction of final lincRNA catalogue.  To derive a unique comprehensive set of lincRNAs, we used 
the Cuffmerge v2.0.2 utility within the Cufflinks package to integrate the RNA-seq, RefSeq and UniGene derived 
putative lincRNAs (Fig. 1d).

To rule out house-keeping RNAs (including tRNAs, snRNAs and snoRNAs), putative lincRNAs were aligned 
to house-keeping RNA databases using BLASTN with the parameters: ‘-evalue 1e-10 -perc_identity 80’53. The 
house-keeping lncRNA databases include the tRNA database downloaded from the Genomic tRNA Database 
(http://gtrnadb.ucsc.edu/)54; the tRNA, snRNA and snoRNA database from the Ensembl Database50; and the snR-
NAs and snoRNAs collected from NONCODE v3.055. LincRNA candidates that have significant (P-value < 1.0−10) 
alignment with house-keeping RNAs were not included in further analyses.

We also used the following criteria to identify lincRNAs: (1) The retained transcripts have at least two exons, in 
other words, they are multiple-exonic transcripts, (2) the lengths of transcripts are more than 200 nucleotides, (3) 
the transcripts which are located at least 500 bp away from neighbouring protein-coding or house-keeping genes 
are classified as intergenic transcripts, (4) the coding potential of intergenic transcripts was assessed using the 
Coding Potential Calculator (CPC)56, and only those transcripts with a CPC score of less than −1 were defined 
as noncoding genes.

Expression profile of lincRNA genes.  Reads from the study with the SRA accession num-
ber of SRP03798628 were mapped to the rat genome (Rnor 6.0) by TopHat v2.0.8 using the parameter ‘–
no-novel-juncs’. Mapped reads were used to quantify the expression of the protein-coding and lincRNA genes 
using two independent software packages. SummarizeOverlaps v1.10.0 was used to calculate counts of mapped 
reads for each gene with the default mode of ‘Union’57. Cufflinks v2.0.2 was employed to obtain FPKM expres-
sion values with the parameter ‘-G’. Read mapping and expression quantification were run independently for 
each sample. We ran these three programs on the gene models of our GTF annotation and did not attempt to 
identify new transcripts in this step. The lincRNA gene expression measures are available at our RatTransc 
database.

Analyses of DNA methylation patterns of rat lincRNAs.  A BS-seq dataset, which included four 
Norway rat samples (BN) and four spontaneously hypertensive rats (SHR), was downloaded from the NCBI GEO 
database (accession number is ERP002215)22. Raw sequencing reads were filtered using Trimmomatic v0.33 with 
default parameters and then aligned to the Rattus norvegicus 6.0 genome sequences using Bismark v0.14.3 with 
the parameter ‘–X 1000’58. Bismark is a robust tool that conducts both read mapping and methylation calling 
in BS-seq data in a quick flexible step58. Therefore we extracted the methylation level of each cytosine from the 
aligned reads using the Bismark methylation extractor under standard parameters. The methylation level (%) for 
any given genomic interval refers to the ratio of the number of BS-Seq ‘methylated’ bases aligned to any genomic 
cytosine in that interval to the number of methylated or unmethylated bases aligned to the same.

To compare the methylation level of lincRNA genes to that of protein-coding genes in each sample, we first 
counted the number of methylated and unmethylated bases in each gene. We then used the equation 
M m m u( )= + , where m is the number of methylated bases and u unmethylated, to calculate methylation level 
of each gene. M is zero if m = 0.

To explore the methylation patterns around TSSs, we took the regions of 5 kb downstream to 5 kb upstream 
of TSSs into account. Each 10 kb region was divided into 100 bins with equal lengths. For each bin, we used the 
following equation to calculate methylation levels.

= + = ... = ... .M m m u t n i( ), 1, , , 1, , 100 (1)ti ti ti ti

where n is the number of lincRNA or protein-coding transcripts, Mti is the methylation level of the i-th bin of the 
transcript t, mti is the number of methylated bases in the i-th bin of the transcript t, and uti is the unmethylated. 
The average methylation level of each bin among lincRNA or protein-coding transcripts is defined as:

∑= = ... .
=

V M n i, 1, , 100
(2)

i
t

n

ti
1

Identification of DMRs from whole genome BS-seq reads.  We identified differentially methylated 
regions (DMRs) across the entire genome between BN and SHR rats. Specifically, we first transformed the format 
of output of the Bismark methylation extractor and fed them into the Bioconductor package DSS (Dispersion 

http://hgdownload.cse.ucsc.edu/admin/exe/
http://gtrnadb.ucsc.edu/
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Shrinkage for Sequencing data)40,59. We then performed statistical test for differential methylation loci (DML) 
without smoothing by calling DMLtest function in the Bsseq bioconductor package. Finally, with the test results, 
we called DMRs using the callDMR function with the parameter ‘p = 0.01’.

Analyses of binding sites of transcription factors.  In order to analyse the binding profile of the three 
TFs to lincRNA and protein-coding TSSs, we extracted binding signals at each nucleotide position 5 kb up and 
downstream of TSSs and compared the signal tendencies among them. In particular, the ChIP-seq dataset was 
obtained from NCBI SRA database (accession number: ERP002078)41. Raw sequencing reads were mapped 
against the Rattus norvegicus 6.0 genome assembly using bowtie260 with default parameters. The binding signals 
of each nucleotide position were extracted from aligned reads using SAMtools depth (https://github.com/sam-
tools/samtools) under standard parameters.

We then considered the regions 5 kb up and downstream of TSSs. Each region was segmented into 100 
sub-regions with the size of 100 bp. For each sub-region, we used the following equation to calculate binding 
intensity:

∑= = ... = ...
=

I C t n i100, 1, , , 1, , 100
(3)

ti
p

tip
1

100

Where n is the number of lincRNA or protein-coding transcripts, Iti is the average binding intensity of the i-th 
sub-region of the transcript t, and Ctip is the binding signals of the p-th nucleotide position in the i-th sub-region 
of the transcript t. The average binding intensity of each sub-region among lincRNA or protein-coding transcripts 
is defined as:

B I n i, 1, , 100
(4)

i
t

n

ti
1

∑= = ... .
=

Data availability.  The datasets generated during the current study are available in the RatTransc repository, 
http://www.ibiomedical.net/rattransc/.
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