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Abstract

Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as
deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light.
The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian
clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased
by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and
of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-
regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in
the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor
controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic
component of light adaptation.
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Introduction

Photoreceptor cells and retinal neurons tune their properties

according to the ambient illumination and the circadian rhythm

[1,2]. Indeed, several mechanisms are affected by the circadian

clock and the intensity of the ambient light, such as the rate of disk

shedding [3], the expression level of genes such as c-fos, c-jun, jun B,

transducin and rhodopsin [4,5] and several other biochemical and

physiological properties [6]. All these mechanisms allow retinal

neurons to optimally adapt to the circadian clock and to prolonged

changes of ambient light, not associated to those naturally

occurring during the circadian clock.

Photoreceptors and retinal neurons are able to operate over a

wide range of light intensities, approximately 10 log units, because

of light adaptation. In photoreceptors, light adaptation has been

extensively studied and several mechanisms contribute to it:

changes of intracellular calcium concentration [6–11]; the light-

driven redistribution of transducin and arrestin between the outer

and the inner segment [12–15] leading to a reduction in

photoreceptor sensitivity and thus to light adaptation. Recently, it

has been shown that changes in gene expression in photoreceptors

could also contribute to light adaptation: a consistent up-regulation

of almost two-fold of arrestin (Sag) [16], guanylyl cyclase activating

protein 1A (Guca1a also known as Gcap1) [17,18] and guanylyl

cyclase activating protein 1B (Guca1b also known as Gcap2) [17,18]

has been observed in isolated rods and intact retinas [19].

In the present manuscript, we analyze changes in gene

expression occurring during the circadian rhythm and when the

ambient light in the circadian rhythm is modified. A microarray

analysis identified the gene coding for the DIO2 enzyme as the

gene with the largest changes of expression levels. This observation

prompted us to investigate whether the observed DNA microarray

results could be confirmed with real time PCR and if the

corresponding protein levels are also modified after light exposure.

Several reports have described a major role of the thyroid

hormone cascade during retinal development [20–23] and

recently also in adulthood [24]. The active form of the thyroid

hormone, triiodothyronine – usually referred to as T3 – binds the

thyroid hormone receptor and activates it. The level of T3 is

increased by deiodination of thyroxine (T4) catalyzed by type 2

deiodinase (DIO2) and is decreased by a further deiodination of

T3 catalyzed by type 3 deiodinase (DIO3) [25–28]. T3 mediates

the activation of nuclear thyroid hormone receptors, TRa and

TRb, ligand-inducible transcription factors regulating a variety of

target genes [29]. Given the protective action of the thyroid

hormone cascade on the survival and maturation of cone

photoreceptors [30], we asked whether activation of the thyroid

hormone cascade could be a component of light adaptation.

Results

We measured changes in gene expression in retinas acutely

isolated from adult (3 months old) freely moving rats exposed to

controlled ambient steady lights. To determine the amount of light

impinging on the retina, we performed a similar analysis also in

cultivated intact retinas [31] – where the flux of photons was

precisely measured – but these retinas exhibited a progressive loss

of integrity over 24 hours. Therefore, we decided to use freely

moving rats to establish the effect of the circadian clock and

prolonged light exposures on gene expression levels in the retina.
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Microarray analysis of changes in gene expression
We performed an initial screening using the DNA microarray

technique. We extracted the mRNA from retinas of rats kept

overnight in darkness until 7 am (as control) 0 ZT and

subsequently retinas of animals that were exposed either for

3 hours (3 ZT) or 6 hours (6 ZT) to a 1000 lux light. From the

31099 probes present in the microarray, we extracted those whose

expression level increased by more than 60% in all three replicas

(Fig. 1). Up-regulated genes after 3 (3 ZT) and 6 hours (6 ZT) of

light exposure were 29 and 50 respectively. Dio2 was the

maximally up-regulated gene after 3 and 6 hours of light and its

up-regulation was consistently observed in all replicas. Since DIO2

regulates the availability of the active thyroid hormone, as a

consequence, DIO2 regulates the timing of cellular responses to

thyroid hormones [32].

Three transcription factors were up-regulated both after 3 and

6 hours of light: Stat3 (signal transducer activator of transcription

3), Ep300 (E1A binding protein p300) and Pax4 (paired box gene 4)

involved in retinal transcription [33–35]. Stat3 and Ep300 are

involved in the thyroid hormone cascade as downstream

transcription factors [36].

We performed a gene ontology analysis of up-regulated genes

(http://bioinfo.vanderbilt.edu/webgestalt/). Among up-regulated

genes we found 11 genes involved in visual functions and eye

development: Psen1 (presenilin 1), Crygb (crystallin, gamma B),

Crygc (crystallin, gamma C), Crygd (crystallin, gamma D), Grk1 (G

protein-coupled receptor kinase 1), Rpgrip1 (retinitis pigmentosa

GTPase regulator interacting protein 1), Myo5a (myosin Va), Stat3

(signal transducer and activator of transcription 3), Pax4 (paired

box 4). These genes could be involved in the protection of the

retina during exposure to bright lights.

There were 18 up-regulated genes involved in cell-to-cell

communication, synaptic function and transmission of nerve

impulse. Among them we found Gabrr1 (gamma-aminobutyric acid

(GABA) receptor, rho 1) and Cacnb2 (calcium channel, voltage-

dependent, beta 2 subunit). Gabbr1 codes for the GABA receptor

subunit rho1, one of the subunits particular of GABAC receptors

highly expressed in the retina [37–39]. Cacnb2 corresponds to the

beta subunit of a voltage gated calcium channel known to modulate

the b-wave of the ERG response in dark [40]

Up-regulated genes involved in general cell functions and

metabolism were Atp1a1 (ATPase, Na+/K+ transporting, alpha 1

polypeptide), Scarb1 (scavenger receptor class B, member 1), Crh

(corticotropin releasing hormone) and Dio2 (deiodinase, iodothyr-

onine, type II).

Down-regulated genes were those that had a decreased

expression level larger than 0.7 and were 23 and 22 after 3 and

6 hours of light exposure for all three replicas (Fig. 1C and 1D),

respectively. The only gene down-regulated at both times was

Adra1b (adrenergic receptor, alpha 1b), coding for the alpha 1b

adrenergic receptor involved in the control of cyclic AMP (cAMP)

when epinephrine is present [41]. cAMP regulates proteins involved

in cone photoresponses via G protein-coupled receptor kinases [42].

Therefore, Adra1b could have an important role in light adaptation.

Light and circadian regulation of genes Dio2 and Dio3
The gene which was consistently and prominently up-regulated

after 3 and 6 hours of light was Dio2. As a consequence, we

Figure 1. Genes that showed an up- or down-regulation. Genes up-regulated of at least 1.6 fold at (A) 3 hours and (B) 6 hours of light
exposure. The genes that showed an up-regulation in the three replicas are listed and the only gene that appears in both lists is Dio2. Genes that
showed a down-regulation less than 0.7 at (C) 3 hours and (D) 6 hours of exposure to light. The only gene that showed a down-regulation at both
timings was Adra1b. Each circle represents one replica. The numbers in each set represent genes that are identified, predicted genes or transcribed
locus. In the list, only the identified ones are mentioned.
doi:10.1371/journal.pone.0026334.g001
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decided to confirm changes in the expression of genes involved in

the production or reduction of thyroid hormone Dio2 and Dio3

with real-time PCR in retinas extracted from freely moving rats

kept in different ambient lights.

Rats were kept in darkness from 7 pm to 7 am and in

ambient light conditions equivalent to 600 Lux from 7 am to

7 pm. This setting is here referred to as the circadian rhythm

(indicated by striped dots in Fig. 2). In some experiments, rats

were kept in complete darkness for an entire day (indicated by

dark dots in Fig. 2) and their retinas were extracted at specific

times. In other experiments, rats were exposed to a more intense

ambient light equivalent to 1000 Lux from 7 am to 7 pm (or the

specified time indicated by white dots in Fig. 2). Changes in

gene expression at each time were obtained by pooling at least

6 rat retinas. The reference level of gene expression was taken

as that measured at 7 am, i.e. at ZT 0 (Zeitgeber Time). In rats

kept in darkness after 7 am and therefore not exposed to the

usual diurnal light, the expression level of Dio2 increased by

about 2 times at ZT 3, ZT 4, ZT 6, ZT 8 and ZT 12. The

expression level of Dio2 in rats exposed to the usual light or to an

intense light, from ZT 0 increased with time of light exposure,

reaching levels 4–8 times larger than in control conditions

(Fig. 2A). We could not detect any significant difference when

rats were kept in cages illuminated with the usual ambient

light or a more intense light. During the usual night darkness,

the level of Dio2 returned progressively to the original level

(Fig. 2A).

An opposite pattern was observed for the expression level

of Dio3: in rats exposed to the usual diurnal light or more

intense light, the expression level of Dio3 decreased by about

two times (Fig. 2B). The level of Dio3 did not change

significantly in rats continuously kept in darkness (Fig. 2B)

suggesting that the observed decrease of expression is primarily

caused by the light and not by the intrinsic circadian rhythm.

The relative abundance of Dio2/Dio3 was estimated by using

the DCt method, normalizing with respect to the housekeeping

reference genes. As shown in table S1, the expression ratio

between Dio2 and Dio3 increases up to 10-fold at 8 ZT, during

normal day light illumination and decreased in the dark during

the night.

Protein changes during the circadian regulation
In order to verify whether up-regulation of Dio2 and down-

regulation of Dio3 genes resulted in an increased (or decreased)

level of related protein, the expression levels of associated proteins

were determined by Western blot (Fig. 3) from retinas of freely

moving adult rats kept in darkness and of rats exposed to a steady

bright light equivalent to 1000 lux for 3 hours. Immunoblot

revealed bands for both proteins at 30 kDa. Although the DIO2

antibody was not highly specific and recognized several non-

specific bands (Figure 3A), a clear protein band of molecular

weight of 30 kDa corresponding to DIO2 was present in samples

obtained from rats exposed to light and absent in samples from

rats kept in darkness. The antibody for DIO3 was more specific

and only the band corresponding to the molecular weight of DIO3

was observed. Western blot analysis using densitometric measure-

ments normalized to b-actin showed that the concentration of

DIO2 increased by 131% and of DIO3 protein decreased by 30%

(Fig. 3). Therefore, observed changes in gene expression were

associated to concomitant changes of protein synthesis.

Retinal localization of the protein deiodinase 2
In order to determine the location where the increase of DIO2

occurred in the retina, we used immunofluorescence imaging with a

confocal microscope. In darkness (Fig. 4A), staining for DIO2 (in

green) was observed at the level of inner (IS) and outer segments

(OS) of photoreceptors, in the inner nuclear layer (INL) and in the

ganglion cells (GC). In light adapted conditions (3 hours of

continuous light), staining for DIO2 was diffused over the whole

retina and in particular in photoreceptor inner segments, the outer

nuclear and plexiform layer (ONL, OPL) and in the INL. The

increased staining for DIO2 was seen around the nuclei, in

agreement with the known localization of DIO2 in the endoplasmic

reticulum (ER) [28]. DIO2 is expected to increase the level of T3 in

the cytosol with ready access to the nucleus due to the physical

proximity of the nuclear compartment to the ER [28]. Confocal

images taken at a higher magnification (Fig. 4B) show that in the

inner plexiform layer, DIO2 (in green) is localized in close proximity

to the nuclei (in blue), in agreement with the notion that DIO2 is an

ER resident protein generating T3 in the cytosol [28].

Figure 2. Expression of Dio2 and Dio3 using real time PCR. (A) Expression of Dio2 showing an up-regulation due to the time of the day
(compared to Dark) and as response to light (Circadian Rhythm and Intense Light). (B) Expression of Dio3 showing a down regulation mainly due to
light. Data are reported as mean 6 S.E.M (N = 6).
doi:10.1371/journal.pone.0026334.g002
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Light regulation of target genes of the thyroid hormone
cascade

The up-regulation of Dio2 caused by light exposure is expected

to increase the concentration of the active thyroid hormone T3

and if the thyroid hormone cascade plays a role in light

adaptation, target genes known to be controlled by T3 should

also be controlled by light. In human WERI-Rb1 cell line, T3

regulates two genes involved in phototransduction, i.e. Sag and

Gcap1[43] coding for proteins involved in light adaptation. The

maximum change in expression of Dio2 happens between 0ZT and

12 ZT (Fig.2), therefore, we verified by real time PCR the effect of

light exposure on these genes using samples obtained at 0 ZT after

being kept overnight in the dark and 12 ZT after 12 hours of light

exposure. As shown in Fig.5, Sag and Gcap1 were clearly up-

regulated at 12 ZT as expected.

Several investigations report that T3 regulates also genes coding

for the medium and long wavelength cone opsins (OPN1LW/

OPN1MW) in human WERI-Rb1 cell lines [43]. Glaschke et al.

found that in adult rodent retinas, T3 controls the expression of

medium and short wavelength cone opsin (Opn1mw and Opn1sw)

[44]. On the other hand, the activation of the thyroid hormone

receptor b2 (TRb2) down-regulates the expression of Opn1sw and

Opn1mw [45–47]. In this work, we observe a similar down-

regulation in intact rats caused by light and in fact at 12 ZT under

light exposure, the expression level of Opn1sw and of Opn1mw was

respectively about 30% and 40% lower than at 0 ZT in the dark

(Fig.5).

Thyroid hormone receptors, TRa and TRb, regulate target

gene expression by binding to the T3 response element (TRE)

composed of repeated DNA sequences with different configura-

tions. The consensus sequence recognized by nuclear receptors

often contains a hexamer AGGTCA known as ‘‘the half site’’. TR

forms heterodimers with members of the retinoid X receptor

(RXR) family to mediate T3 action [36]. TR/RXR activates

through the DR4 element (two half sites in the same orientation

spaced by four base pairs), that is AGGTCANNNNAGGTCA. To

find additional target genes of the hormone cascade, we scanned

their promoter sequences (downloaded from http://www.my-

bioinfo.info/) to locate the existence of a DR4 element. We found

that Atp1b2 (ATPase, Na+/K+ transporting, beta 2) contains this

exact sequence and Ep300 (E1a binding protein), Ccng1 (cyclin g1)

and Cpt1a (carnitine palmitoyltransferase 1a, liver) contained a

sequence that had the two half sites but spaced by 5, 6, 6 base

pairs, respectively. TR binding and weak transactivation to

sequences with 5 and 6 base pairs between the two half sites has

been reported [27]. Cpt1a is known to be regulated by T3 [48],

and regulates some cyclins [49]. We were unable to verify the

expression of Atp1b2 and Ep300, but the two genes Ccng1 and

Cpt1a, were up-regulated also by light, as shown in Fig.5. Ccng1

could have a protective role and in cellular survival as reported for

other cyclins [50,51], and Cpt1a play a role in retina metabolism

[52].

These results support the notion that light could activate the

thyroid hormone cascade, regulating therefore the expression level

of its target genes, such as the cone opsins, Sag and Gcap1. These

biochemical pathways could be novel components of light

adaptation.

Discussion

Our results demonstrate that the circadian clock and the

ambient light influence the expression level of Dio2 and Dio3 genes

and of their corresponding proteins in the adult retina. The

genomic analysis of changes in gene expression with DNA-

microarrays in the adult retina shows that Dio2 is the most up-

regulated gene by diurnal light (Fig. 1). These results suggest a role

of the thyroid hormone cascade during light adaptation in the

adult retina, not previously considered.

The thyroid hormone cascade
The thyroid gland secretes the poorly active compound

thyroxine (T4). The relative concentrations of T4 and T3 and

their availability to the nuclear thyroid hormone receptor (TR) are

controlled by the local conversion of T4 to T3 catalyzed by the

enzyme DIO2, while the enzyme DIO3 inactivates T3 [26,53]. T3

mediates the activation of nuclear thyroid hormone receptors,

TRa and TRb, ligand-inducible transcription factors regulating a

variety of target genes [29]. Therefore, the transcriptional

activation of Dio2 is expected to activate the thyroid hormone

cascade and thus, to modulate the associated target genes.

In the pituitary gland, Dio2 and Dio3 exhibit a regulation of gene

expression similar to the one described here in the retina. Several

genes present in the retina and in the pineal gland show a phase

shift with respect to each other [54], similar to what observed for

Dio2 and Dio3. Dio2 has a role in photoperiodic modulation in

seasonal reproduction in the mediobasal hypothalamus [55,56].

The thyroid hormone cascade acts in the regulation of

neurodevelopment, possibly by activation and repression of

Figure 3. Western blot corresponding to DIO2 and DIO3
showing an agreement with real time PCR results. (A)
Representative immunoblot corresponding to DIO2 and DIO3. Although
DIO2 shows non-specific bands, a protein band of estimated molecular
weight is clearly present in rats exposed to light and absent in dark.
MW: Molecular Weight. *:band corresponding to DIO2. (B) Histograms
of densitometric measurements of the western blots (N = 3) All band
intensities of each protein were compared separately with that of b-
actin. The specificity of both antibodies can be observed.
doi:10.1371/journal.pone.0026334.g003

Retinal Light Adaptation and the Thyroid Hormone
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complex gene networks [57] and DIO2 plays a crucial role during

retinal development [20–23]. The thyroid hormone stimulates the

up-regulation of red-green, violet opsins and rhodopsin and

calbindin in photoreceptors in development [58]. Photoreceptors

mature expressing photopigments when the thyroid hormone

increases in embryonic development [59]. DIO3 acts as a limiting

factor to the hormonal exposure of cones to levels that safeguard

cone survival and patterning of opsins required for cone function

[30].

TR regulates target gene expression by binding to the T3

response element (TRE) composed of repeated DNA sequences

with different configurations. The consensus sequence recognized

by nuclear receptors often contains a hexamer AGGTCA known

as ‘‘the half site’’. TR forms heterodimers with members of the

retinoid X receptor (RXR) family to mediate T3 action [36]. TR/

RXR activates through the DR4 element (two half sites in the

same orientation spaced by four base pairs), that is AGGT-

CANNNNAGGTCA. To verify whether up-regulated genes

(Fig. 1A–B) could be directly regulated by TR, we scanned their

promoter sequences (downloaded from http://www.mybioinfo.

info/) to locate the existence of a DR4 element. We found that

Atp1b2 (ATPase, Na+/K+ transporting, beta 2) contains this exact

sequence and Ep300 (E1a binding protein), Ccng1 (cyclin g1) and

Cpt1a (carnitine palmitoyltransferase 1a, liver) contained a

sequence that had the two half sites but spaced by 5, 6, 6 base

pairs, respectively. TR binding and weak transactivation to

sequences with 5 and 6 base pairs between the two half sites has

been reported [27]. It has been implied that Ep300 has a role in

TR function [60]. The fact that this gene, out of the four we

mentioned, has a role in TR function strongly supports the idea

that the other three genes depend on the activity of the thyroid

hormone cascade and that could also be involved in light

adaptation.

Knock-out mice of Dio2 and Dio3 and Graves’ disease
Dio22/2 knock-out mice had significant deficits in thermoreg-

ulation and thermogenesis [53,61–63], in skeleton, brain and in

auditory functions [64–66]. These mice had an almost normal

level of T3 and their general health appeared to be good [67].

Figure 4. Immunofluorescence of adult rat retina in dark and light conditions (3 hours of steady illumination). (A) In blue for the nuclei
(DAPI) and in green for DIO2. (OS photoreceptor outer segment; IS inner segment; ONL outer nuclear layer; OPL outer plexiform layer; INL inner
nuclear layer; IPL inner plexiform layer; GC ganglion cells). Scale bar = 10mm. (B) Inner nuclear layer nucleus in blue, do not colocalize with DIO2 in
green, in the right side the y–z plane, and in the lower left the x–z plane. Scale bar = 5 mm.
doi:10.1371/journal.pone.0026334.g004

Figure 5. Expression of Opn1mw, Opn1sw, Sag, Gcap1, Ccng1,
Cpt1a. Dark columns show the data of rats kept in dark overnight until
7 am (0 ZT). White columns show data after 12 hours of ambient light
(12 ZT). Data reported as mean 6 S.E.M (N = 3).
doi:10.1371/journal.pone.0026334.g005
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Dio12/2 and Dio22/2 knock-out mice had significant deficits in

the Morris water maze test indicating dysfunctions not only in

learning and memory development but also, possibly, in visual

capability [67]. In Dio32/2 knock-out mice, almost 80% of cones

are lost through neonatal cell death and the amplitude of both the

a- and b-wave of the electroretinogram is significantly reduced

[30]. These results suggest that the thyroid hormone cascade

contributes to the regulation of retinal functions. However, the

almost normal level of T3 in these mice suggests the existence of

compensatory mechanisms, likely to mask the exact role of Dio2

and Dio3 in retinal visual functions.

In humans, the majority of patients with dysthyroid eye disease

(Graves’ disease), an autoimmune disease where the thyroid is

overactive, producing an excessive amount of thyroid hormones

have developed color vision defects [68], in agreement with a

possible influence of the thyroid hormone cascade on color vision.

Comparison with previous investigations
Liu et al [43] analyzed changes in gene expression, in human

retinoblastoma cell line (WERI-Rb1) induced by a high level of

T3. WERI cells are an early stage cone lineage cell line [69] and

these cells express L- and M- opsin in a mutually exclusive pattern,

similar to the human retina [70], therefore, this investigation

provides a good model of the role of the thyroid hormone cascade

in the retina. Changes in gene expression in WERI cells exposed to

a high level of T3 were analyzed with DNA microarray and real

time PCR, providing a screen of genes modulated by T3. The

genes most up-regulated were OPN1LW and OPN1MW, i.e. the

long (L) and medium (M) cone opsin genes and were identified as

transcriptional targets of the thyroid hormone cascade. Also ARR3

(arrestin 3, retinal), GCAP1, PDE6H (phosphodiesterase 6H) and

PDE6C (phosphodiesterase 6C) were found to be similar

transcriptional targets. Arrestin, guanylyl cyclase, and phosphodi-

esterase are proteins involved in the regulation of the cyclic GMP

signal transduction pathways in cones and rods [71] and it is

remarkable that they are all transcriptional targets of the thyroid

hormone cascade. Also Crx, the cone-rod homeobox [43] was

found to be another transcriptional target of T3 and OPN1LW,

Opn1mw, Arr3 and Gcap1 have been identified to be regulated by

Crx [34,43,72,73]. Recently, Glaschke et al. have shown that

thyroid hormone controls cone opsin expression and that Dio2 and

Dio3 have a similar behavior in wild-type mice treated with MMI/

perchlorate, treatment causing mice to become hypothyroidic

[24]. In agreement with this observation, genes coding for the cone

opsins Opn1mw and Opn1sw are down-regulated after 12 hours of

light exposure (Fig. 5).

In a previous investigation [19], we have shown that exposure to

bright light caused an up-regulation of three genes involved in

phototransduction in retinal rods. Indeed, during light adaptation,

we have observed an up-regulation of almost two-fold of Sag, Gcap1

and Gcap2 [19]. As shown in Fig. 4A, we observed an increase of

the protein DIO2, usually associated to an elevation of T3, in

photoreceptor inner segments. These observations suggest the

possibility that the thyroid hormone cascade could be involved in

the changes of Sag, Gcap1 and Gcap2 expression observed in retinal

rods during prolonged light exposures as shown in Fig. 5 after

12 hours of light exposure.

Possible role of the thyroid hormone cascade during
light adaptation

The present and previous investigations [19,43] indicate a

possible role of the thyroid hormone cascade during light

adaptation in the retina. As shown in Fig. 4, prolonged light

exposures increase the level of DIO2 throughout the retina and in

the soma of retinal photoreceptors. An increased level of DIO2 is

expected to enhance the local concentration of T3 activating the

thyroid hormone cascade modulating its target genes such as

OPN1LW, Opn1mw, Opn1sw, Arr3 and Gcap1 [61] controlling light

adaptation in photoreceptors. Among genes up-regulated by light

(Fig. 1), there is Pax4, a homeobox gene, usually involved in

developmental events and in adult tissues undergoing frequent

renewal [74]. Pax4 has been found to be expressed in the adult

retina and with a highly marked diurnal rhythm during daytime

[35] and could be involved in maintaining cell functions during

prolonged light exposure. Pax4 is governed by a set of transcription

factors, including members of the orthodenticle family of

homeobox genes, such as Otx2 and Crx [75–77]. Crx is regulated

by T3 and therefore disk and opsin renewal [78] could be

controlled by the thyroid hormone cascade through activation of

Pax4 and Crx. Moreover, Ccng1 and Cpt1a could be playing a role

in protection and metabolism in the retina and be controlled by

light through the activation of the thyroid hormone cascade

[49,51,52].

Materials and Methods

Ethics Statement
Experiments were supervised and authorized by the SISSA

Ethics Committee (Prot.n. 2190 II/7). All rat experiments were

carried out according to the Italian and European guidelines for

animal care (d.l.116/92; 86/609/C.E.).

Harvesting rat retinas and culture rat retinas
Dark-adapted Long Evans male adult rats were sacrificed under

an infrared light source. The harvested retinas were expelled into

500 ml of TRI Reagent T9424 (Sigma Aldrich) on ice and stored

at 280uC. Culture retinas were prepared as described on the

protocol used by Reidel et al [31].

Immunohistochemistry
Immunolabeling was performed by standard protocols for tissue

fixation and processing, using as primary antibody anti-Dio2 sc-

98716 (Santa Cruz Biotechnology, Inc) and DAPI (Boehringer

Mannheim GmbH, Germany) for nuclear staining.

Western blotting
Retinas, dissected from light or dark-exposed mice, were

homogenized in Lysis buffer (50 mM Tris pH 7.5; 150 mM

NaCl; 1% Triton X2100; 10 mM MgCl2) in ice. The total

amount of protein was determined by using BCA protein assay kit

(Pierce Biotechnology). The homogenate was diluted in a sample

buffer (20mg), run on SDS-PAGE and western blotted using the

following antibodies: anti-Dio2 sc-98716 (Santa Cruz Biotechnol-

ogy, Inc), anti-Dio3 ab82041 (Abcam, Cambridge, UK). b-Actin

HRP- conjugated A3854 (Sigma-Aldrich) was used as housekeep-

ing control. Signals were detected analyzing the optical density of

the spots.

Microarray hybridization
Total RNA was purified using the RNeasy mini kit (Qiagen).

The RNA quality was checked using a bioanalyzer (Agilent 2100;

Agilent Technologies), and the RNA quantity was measured with

ND-1000 Nanodrop spectrophotometer. 10 mg of RNA sample

was used for microarray analysis on Affymetrix RAT230_2

GeneChip containing 31099 probes, corresponding to 14181

probes with a gene symbol (Affymetrix). Low level analysis was

performed using an Robust Multi-array Average (RMA) algorithm

(Irizarry et al., 2003) directly on the scanned images. All data is
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MIAME compliant and that the raw data has been deposited in a

MIAME compliant database (E.g. ArrayExpress, GEO), as

detailed on the MGED Society website http://www.mged.org/

Workgroups/MIAME/miame.html.

Analysis of microarray data
Data were organized in matrices ‘‘m6n’’ (m, number of genes;

n, number of replicas). Five samples were considered: a control at

7 am in dark (Cij; i = 1,...,n; j = 1,...,m), a sample always kept in

dark till 10 am (3Dij), a sample with 3 hours of continuous light

also at 10 am (3Lij), and two similar samples at 1 pm (6Dij, 6Lij).

Data were analyzed by considering log2 changes in gene

expression in each replica against the control condition C, that

is, log2(3Dij/Cij), log2(3Lij/Cij) and log2(6Dij/Cij), log2(6Lij/

Cij). Up-regulated genes for each replica were obtained by

selecting all genes showing an up-regulation higher than 60%.

Down-regulated genes were obtained considering genes with a

decrease of expression larger than 0.7. Intersection between the

three replicas was performed and presented in Fig.1. Thus, from

the microarray data we obtained an ‘‘m6n’’ ratio-matrix for each

condition. Considering the three replicas as independent variables,

this matrix was treated as a multivariate variable in three

dimensions. We derived the empirical cumulative distribution

function with upper and lower bounds of the multivariate variable,

using the Kaplan–Meier estimator (Kaplan and Meier, 1958) so to

assign a P-value to all the genes and select the most significant

ones.

Real-time PCR on retinas
Long Evans rats were bred and maintained under a 12 hour

light/dark cycle (7 AM:7 PM). For changes of lighting environ-

ment, two groups of overnight dark-adapted animals were

maintained in either a darkened or a lighted cage. A 60 W bulb

was used as an adjustable light source. For each time point at least

six animals were sacrificed by CO2 inhalation, the eyes enucleated,

the lenses removed and the retinas collected in TRI Reagent

(Sigma Aldrich). Total RNA from retinas was extracted according

to the manufacturer’s instructions (Sigma Aldrich). After resuspen-

sion in DEPC-treated H2O, RNA was further purified using an

RNeasy column (Qiagen) and quantified using an ND-1000

Nanodrop spectrophotometer (Nanodrop Technologies). Total

RNA (500 ng) was treated with DNAse I (Invitrogen) to remove

any genomic DNA contamination and converted to cDNA using

Superscript II reverse transcriptase (Invitrogen). Twenty microliter

PCR reaction mixtures contained cDNA, SYBR green master mix

(BioRad), H2O, and custom primers designed for each gene of

interest. The PCR reactions were performed in an iQ5

thermocycler (BioRad). Each reaction was performed at least in

duplicate, and threshold cycles (Ct) were calculated using the

second derivative of the reaction. The Ct of each gene was

normalized against that of the control reference transcript Gapdh.

The variation of Gapdh in Ct between samples obtained from rats

exposed to darkness and to light showed no significant difference.

For the experiments shown in Fig. 5 two housekeeping genes were

used Gapdh and Hprt. Normalization was performed using the

geometrical mean as described by Vandesompele et al [79]. Both

of them showed no difference in Ct. Fold changes were

determined using the comparative Ct method (22DDCt method),

using the average of dark control set to one [80–82]. RNA controls

were performed to ensure that amplification of products did not

come from genomic DNA contamination.

Primers used for Real-Time PCR
Primers shown in Table 1 were used for Real-Time-PCR.

Supporting Information

Table S1 Relative abundance of Dio2 and Dio3. From the

data presented in Figure 2, using the DCt method and as reference

the housekeeping genes, the relative abundance of Dio2/Dio3

were calculated. The time points represent the values of circadian

rhythm, that is, at 0, 12, 16 and 20 ZT in dark condition and 4,

and 8 ZT under normal ambient illumination.
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37. Feigenspan A, Wässle H, Bormann J (1993) Pharmacology of GABA receptor

Cl- channels in rat retinal bipolar cells. Nature 361: 159–162. doi:10.1038/
361159a0.

38. Qian H, Dowling JE (1993) Novel GABA responses from rod-driven retinal

horizontal cells. Nature 361: 162–164. doi:10.1038/361162a0.

39. Yang X-L (2004) Characterization of receptors for glutamate and GABA in
retinal neurons. Prog. Neurobiol 73: 127–150. doi:10.1016/j.pneurobio.

2004.04.002.

40. Ball SL, Powers PA, Shin H-S, Morgans CW, Peachey NS, et al. (2002) Role of
the beta(2) subunit of voltage-dependent calcium channels in the retinal outer

plexiform layer. Invest. Ophthalmol. Vis. Sci 43: 1595–1603.

41. Lolley RN, Craft CM, Lee RH (1992) Photoreceptors of the retina and
pinealocytes of the pineal gland share common components of signal

transduction. Neurochem. Res 17: 81–89.

42. Osawa S, Jo R, Weiss ER (2008) Phosphorylation of GRK7 by PKA in cone

photoreceptor cells is regulated by light. J. Neurochem 107: 1314–1324.
doi:10.1111/j.1471-4159.2008.05691.x.

43. Liu Y, Fu L, Chen D-G, Deeb SS (2007) Identification of novel retinal target

genes of thyroid hormone in the human WERI cells by expression microarray
analysis. Vision Res 47: 2314–2326. doi:10.1016/j.visres.2007.04.023.

44. Glaschke A, Weiland J, Del Turco D, Steiner M, Peichl L, et al. (2011) Thyroid

hormone controls cone opsin expression in the retina of adult rodents. J.
Neurosci 31: 4844–4851. doi:10.1523/JNEUROSCI.6181-10.2011.

45. Scheetz TE, Kim K-YA, Swiderski RE, Philp AR, Braun TA, et al. (2006)

Regulation of gene expression in the mammalian eye and its relevance to eye
disease. Proceedings of the National Academy of Sciences 103: 14429 -14434:

doi:10.1073/pnas.0602562103.

46. Roberts MR, Hendrickson A, McGuire CR, Reh TA (2005) Retinoid X
receptor (gamma) is necessary to establish the S-opsin gradient in cone

photoreceptors of the developing mouse retina. Invest. Ophthalmol. Vis. Sci 46:

2897–2904. doi:10.1167/iovs.05-0093.

47. Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C, et al. (2001) A thyroid hormone
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