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Abstract: In this article, a system that takes a 3D model of a sculpture as starting point to compose
music is presented. We raised the hypothesis that cross-domain mapping can be an approach to
model inspiration. The semantic meaning of the sculpture is not used directly but rather a more
abstract approach was used. A Genetic Algorithm was used to obtain results with more musical
interest. The results were promising: the majority of the participants gave a classification of 4 out of 5
to the preferred interpretations of the compositions and related them to the respective sculpture. This
is a step toward a possible model for inspiration.
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1. Introduction and Motivation

Whenever we, humans, attempts to create something new, regardless of the field, we
search for inspiration either from inside or from the world around us. Trash and Elliot
consider two processes [1]: being inspired by and being inspired to. While being inspired by
can be seen as the stimulus, being inspired to involves motivation. These two components
are related with two important objects or ideas involved in the act of inspiration: the trigger,
the stimulus object, associated with the “inspired by” process; and the target, the object to
which the resulting motivation is targeted, associated with the “inspired to” process [1].

Existing ideas or objects inspire new ones in all sort of areas, from engineering, where
solutions to new problems may be influenced by existing solutions to similar problems,
to product design, where inspiration may come from shapes in nature [2], and art, where
existing artworks can inspire one to create original art pieces [3]. Even though, in the above
cases, inspiration comes from the same domain as the initial problem, it can also come from
different domains. In the latter case, the challenge is usually more difficult because there is
no direct connection.

Modeling inspiration computationally is far from being a reality. However, some
systems address cross-domain inspiration as the mapping between two artifacts from
different domains [4,5]. While Horn et al. mapped between two visual domains, images
into 3D-printable ceramic vases [4], Teixeira and Pinto mapped images into sounds [5]
involving two different domains. The basis for this mapping uses as a starting point an
attempt to find and model the essence of an already existing artifact, and one of the main
challenges of the approach is how to relate two different domains.

This article describes our effort in creating a system that composes music inspired
by sculptures. We decided to draw inspiration from existing human-made artworks to
maintain the human hand in the equation. The features used to characterize both domains
and their respective mapping between the sculpture and music domains were guided by the
aesthetics of the authors. Other features and possible mappings could have been explored.
Although the approach described here is only one of an infinite number of possibilities,
based on our evaluation results, it was successful. Three goals have driven our research:
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• Build a system that acts both creatively and generates a product that is considered
creative.

• The music pieces composed by the system are inspired by the sculpture; therefore, in
a certain way, the music is associated with the sculpture.

• Build a system that composes music deemed aesthetically pleasing.

In the next section, related work is described. Then, our approach to sculpture inspired
musical composition is explained, starting by describing the representation, shape, and
the texture features that were considered. The mapping and composer approach to music
composition that was implemented is also described. Section Case Studies describes how
our listeners perceived the composed music. Then, a discussion on our results and future
directions concludes the paper.

2. Related Work

Our work focuses on two main areas: the generation of musical compositions and
the act of inspiration. Regarding the generation of musical compositions, there is relevant
work both in the algorithmic composition and in the computational creativity fields. As to
inspiration, this is still an under-explored topic [4].

2.1. Generation of Musical Compositions

Algorithmic composition can be described as “the process of using some formal process
to make music with minimal human intervention” [6]. The simplest form of algorithmic
composition lies in randomness. Many different examples can be inserted here, such as
the technique attributed to composer Wolfgang Amadeus Mozart, called Musikalisches
Würfelspiel (“musical dice game”) [6], which consists of using a dice to combine already
existing musical fragments.

There are some examples where the music is not made entirely by chance, but still,
there is some randomness associated with it. One good example, is John Cage’s composition
named Reunion [6]. It consists in playing chess in a photo-receptor equipped chessboard,
and for a certain move, a sound would be triggered, thus creating a different piece for each
performance.

There are also some examples of more complex rule-based algorithmic composition,
such as the Twelve-tone technique [7], invented by the Austrian composer Arnold Schoen-
berg. This technique ensures the use of all twelve notes of the chromatic scale, and that all
of them are equal. As such, each note can only be repeated once all the others have already
been played. The composition process begins with the creation of a tone row, consisting in
an ordered row of all twelve notes. The entire piece will then consist in the repetition of
this row, as many times as desired. To make the music more interesting, several transfor-
mations can then be applied to this row in the following repetitions. Many composers used
pre-composed series, thus, creating music based on the rules of the twelve-tone technique.

In the computational realm, some systems combine randomness with rules. The first
computer-generated composition [8] was made by Lejaren Hiller and Leonard Isaacson
at the end of the 1950s using Illiac (Illinois Automatic Computer). The algorithm starts
generating random integers that represent musical elements, such as pitch, dynamics, and
duration. After this, the obtained values are validated according to rules where the values
that fail are re-generated. This paradigm of generator/modifier/selector used in this project
was imperative and was even later used in systems, such as Musicomp [9].

In the field of computational creativity, several artificial intelligence methods have
been used to address this goal, from Mathematical Models to Learning Algorithms [10].
The two methods that are more relevant to our work are knowledge-based systems and
evolutionary methods.

An example of using a knowledge-based system was developed in the 1980’s by
composer David Cope, that later named it EMI (Experiments in Music Intelligence) [11].
The system aimed at creating new pieces of music based on a specific style or author.
Cope’s approach considers that a musical phrase can be analyzed as a natural language
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phrase, i.e., musical functions can be matched to parts of the speech. distributed by the
remaining non-zero probabilities. One issue with this approach is that, Based on this idea,
new examples of music could easily be composed. As such, the system analyzes a group
of musical pieces and attributes identifiers to notes. With this, a signature dictionary is
created where these signatures are what characterizes a composer or style, making it unique.
Afterwards a lexicon is built considering the previous steps. Music is then created using a
musical augmented transitional network (ATN).

Concerning evolutionary methods, GenJam [12] is a system that generates jazz solos
given a certain chord progression. The system proposed by Biles solves the jazz solo
search problem using a genetic algorithm. Variations [13] is a system that applies a genetic
algorithm to the composition process with as few restrictions as possible. To do so, the
author attempted to describe, with as few rules as possible, the composition process and
convert it into a computer program.

It is relevant to note that, although the complex rule-based approach found on EMI was
very successful in creating pieces in a specific style [11], systems that use genetic algorithms
are the ones most associated with novelty. In the latter, the level of constraints imposed by
these rules will change the final result drastically. In the system Variations [13], the author
uses as few rules as possible, leading to the composition of a not-so-well-defined piece
of music with very few structural elements. On the other hand, considering GenJam [12],
Biles imposes many rules and constraints, leading to more structured results, as intended,
but lacking in novelty.

2.2. Inspirational Systems

Although inspiration is a complex topic, there are some examples of research on
inspirational systems in the field of computational creativity. Horn et al. [4] proposed a
cross-domain inspiration framework with the system Visual Information Vases (VIV). In
this system, the authors consider cross-domain inspiration to be a cross-domain analogy
mapping. Using this model for inspiration, the system produces 3D printable vases inspired
by 2D images provided by the user. The image is processed, and using the obtained color
palette from dominant and salient colors, the mapping to 3D printable vases is made
considering four aesthetic measures: activity, warmth, weight, and hardness. VIV then uses
a genetic algorithm to produce a vase with an aesthetic profile close to the one from the
image’s color palette.

Teixeira and Pinto used a similar cross-domain inspiration framework in their system
Cross-Domain Analogy: From Image to Music [5]. This system generates a piece of music
inspired by a given image. By considering a similar inspiration model as the one previously
described, this system processes the image, and from the extracted features attempts to
map the emotional mood present in the image to the musical artifact. Two artifacts are
produced from the mapping, one with very few rules and one with more constraints. The
authors then use a Genetic Algorithm to evolve these two artifacts, thus, obtaining a balance
between them. The algorithm does not impose more rules but favors the most musically
pleasing artifacts as guided by the fitness function.

3. Sculpture Inspired Musical Composition

In our system, a model for inspiration similar to the inspirational systems previously
described is used. Regarding musical composition, a balance is intended between ran-
domness and rules regarding the mapping from sculpture features to musical elements. A
genetic algorithm was also used with this in mind. A diagram of our system’s architecture
can be seen in Figure 1. Below, each module of our system is explained.
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Figure 1. System architecture.

3.1. Sculpture Module

When first looking at a sculpture, several characteristics come to our attention. These
can be divided into two groups: shape features, regarding the shape of the sculpture,
and texture features, regarding the color or texture of the sculpture. We decided not to
address the semantic meaning of sculptures because this would be a complex task both
computationally and in terms of interpretation, since each individual may have a different
perception of a sculpture. Thus, a more general approach that does not address semantics
was chosen, leading to a more abstract interpretation.

3.1.1. Representation

There are many possibilities to obtain a computational representation of a sculpture,
such as retrieving it from images; however, the one followed by us was using 3D objects
since all the information regarding shape and texture can be more easily obtained.

There are several different possible representations of the 3D objects. Polygonal
Meshes [14] were used, since this is a simple representation, yet it has all the needed
information. In this representation, the object is represented by its boundary surface,
composed of several planar shapes, which are defined by a series of vertices connected
by edges. In our work, the most commonly used shape was used, the triangle (triangular
meshes).

Despite being 3D objects, when it comes to the texture, it refers to a 2D surface. A
simple analogy is a gift wrap. The gift itself is a 3D object, but the wrapping alone is a 2D
surface. To do the mapping of the texture in the 3D object to 2D, a mapping is used, that
takes the coordinates of a 3D object, (x,y,z), and converts them to 2D coordinates, (U,V). A
visual example of the representation can be seen in Figure 2.

Figure 2. Example 3D mesh with texture.

3.1.2. Shape Features

Considering shape features, three main features were extracted: curvature, angles,
and segments. There are many possibilities to quantify the curvature of a given surface.
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From all the available options, the mean curvature [15] was chosen, where each vertex of
the mesh has its mean curvature value.

Regarding the angles, these are measured using the normal vector of the faces. To
obtain each vertex’s angle, the angles between all its faces are measured, and only the
maximum is considered. One important aspect to note is that, since the angle is obtained
from the normal vector, if the faces form a plane surface, the angle is 0◦, while two
overlapping faces have an angle of 180◦. Using the angles, another measure was obtained,
which was named zero angle predominance. This measure verifies if the vertices with 0◦

angles in an object are inserted in a plane surface, or if they occur separately. If they are
inserted in a plane surface, then our focus goes towards what arises from it, or to the limits
of that surface. To obtain this measure, first, the number of vertices that have an angle
of 0◦is obtained. Then, from those, it is verified how many also have at least half of their
neighbors with an angle of 0◦. The zero angle predominance is the ratio of the second to
the first.

Finally, the segmentation is performed using the spectral clustering algorithm [16].
This algorithm fits our purpose since its roots are on graph theory, and a mesh can be
seen as a graph. It receives the adjacency matrix of the object’s vertices and the number of
clusters, returning a label for each vertex. Using this, the mesh was divided into segments.
A fixed number of eight clusters was used; however, this number could be changed from
sculpture to sculpture if desired. An example of the three shape features can be seen in
Figure 3.

Segments

Angles

Curvature

Zero Angle Predominance

Histogram of Angles

Curvature Autocorrelation

Figure 3. Example of extracted shape features.

3.1.3. Texture Features

Since the texture is a 2D image, the feature-extraction process is performed using the
same feature extraction algorithms as in a 2D image. Considering color representation, the
ones more relevant to us are RGB and HSV. On the one hand, in RGB, any color is described
as a combination of values of the three main additive colors: Red, Green, and Blue.

On the other hand, HSV refers to a combination of Hue, Saturation, and Value. Hue
refers to the color itself, saturation to the intensity (purity) of a particular hue, and value to
the lightness or darkness of that color. Both models were used for different purposes.

There are several different color features. The two main categories histogram-based
methods and color statistics [17]. Color histogram-based methods mainly represent the
distribution of colors in an image. Although there are several ways to do this, the most
common and useful way is the histogram of the distribution over the color model (3D in
the case of RGB and HSV) or each channel of the color model. Color Statistics are statistical
measures, such as the value, standard deviation, median, and percentiles, among others.
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Aside from these two categories, several features can be obtained by processing the image.
From those, the two extracted and used in our work are:

• Most Common Colors—To obtain these colors, a simple counting approach was used.
First, nine equally spaced values were defined for each channel of the RGB model
(thus, a total of 729 distinct colors). Having the image’s pixels represented in the same
model, for each pixel, the closest value for each channel is chosen, and that color’s
count is increased.

• Perceived Brightness—This can be seen as a conversion from the original colors to
a greyscale based on the brightness of each color. In our work, a formula where
different brightness weights are attributed to each of the RGB channels was used [18]:
PB =

√
0.299 ∗ R2 + 0.587 ∗ G2 + 0.114 ∗ B2

3.2. Mapping and Composer Module

Since our aim is to compose music inspired by sculpture, an analogy from one do-
main to the other was made. However, since music is such a vast field, it becomes quite
impossible not to restrict. As such, we decided to focus our approach on modal music since,
with modal harmony, one can more easily pass on a specific sensation, associated with the
respective mode. In addition to this, only the most common time signature in Western
music, 4

4, was used.
The first step towards creating the analogy was to map the sculpture’s features into

musical elements and concepts. As a starting point, it was not our aim to take an overly
precise approach, for example, where each point would be converted into a note. We
intended to obtain the musical elements through the analysis of the sculpture’s features
in a more general manner, by considering either the sculpture or each of the sculpture’s
segments as a whole. With this in mind, we start with a high-level association between the
two groups of a sculpture’s features, shape and texture, and the considered elements of a
musical piece: melody, harmony, and rhythm.

If a melody is listened to without any harmony (chords), one may perceive a particular
sensation or emotion. Once it is listened to with harmony, this sensation or emotion
may vary drastically from the initial one. Moving to the sculpture domain, considering a
sculpture’s shape, mainly sensations associated with its characteristics are obtained, such
as smoothness or roughness. However, once added the texture/color, once again, a much
better-defined sensation, or even emotion, is obtained. One can say that the same way
texture/color gives context to the shape, harmony gives context to the melody. As such,
our approach’s foundations lie in the association of the sculpture’s shape with melody, and
the texture/color with harmony. This is not strict, and some associations were made from
texture to melody. There is still one part of the music piece left to map: the rhythm.

As already stated, the rhythm is associated with the time signature and the tempo.
Concerning the time signature, as already stated, only the most common time signature in
western music, 4

4, was used. Although initially both shape and texture were considered for
the tempo, only the texture was used. This decision was made when confronted with the
final results, which shall be later explained.

Regarding the composition, motifs were used. A motif can be described as a short
musical idea that often occurs in a piece of music. It does not need to be always equal, and
may be subject to changes while maintaining its general idea, thus, providing the music
piece a sense of unity. As explained before, a sculpture can be segmented. As such, we
decided to compose each motif using features obtained from each segment. To obtain the
size of the motif, each segment’s size in relation to the whole sculpture was used.

3.2.1. Motif Composition—Melody

Starting with the melody, this element consists of a linear sequence of notes, while
each note consists of pitch and duration. Accordingly, we sought to associate these two
characteristics with shape characteristics.
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The pitch of the notes was obtained using the sculpture’s lines or curves. If the lines of
the sculpture are smooth, the pitches of the melody should transmit the same sensation, as
well as the contrary. To obtain the line’s description, the angles were used. Using the angles
histogram, the musical interval for the next note concerning the current note was related
to each bin of the histogram. The interval between pitches is measured by tones, where
the smallest interval in usually found in western music is the semitone. In Table 1, the
common names given to intervals can be found. These are given according to the number
of semitones that separate two pitches.

Table 1. Common interval names and abbreviations.

Number of Semitones Common Interval Name Abbreviation

0 Perfect Unison P1

1 Minor Second m2

2 Major Second M2

3 Minor Third m3

4 Major Third M3

5 Perfect Fourth P4

6

Augmented Fourth A4

Tritone TT

Diminished Fifth d5

7 Perfect Fifth P5

8 Minor Sixth m6

9 Major Sixth M6

10 Minor Seventh m7

11 Major Seventh M7

12 Perfect Octave P8

Since, in one octave, there are twelve possible intervals, the histogram was calculated
using twelve bins. With the histogram, a probability distribution to obtain a musical interval
was created, thus, having the probability for the next note’s interval concerning the current
note. The mapping made from angles to musical intervals can be seen in Table 2.

Table 2. Mapping from angles to musical intervals.

Angles
(Degrees) 0◦–15◦ 15◦–30◦ 30◦–45◦ 45◦–60◦ 60◦–75◦ 75◦–90◦ 90◦–105◦ 105◦–120◦ 120◦–135◦ 135◦–150◦ 150◦–165◦ 165◦–180◦

Interval M2 M3 m3 P1 M6 m6 P5 P4 m7 m2 M7 TT

At this point, the Zero Angle Predominance feature was used. As explained before,
this feature identifies if a sculpture’s angles of 0◦ are an important element, or if they
correspond to a plane. If they correspond to a plane, the protrusions or objects that arise
from that plane or the angle between this and another plane should matter the most. As
such, in this case, the probability for the interval associated with the angles near 0◦ should
be reduced in favor of the others. To do so, we set the maximum cut for the probability of
the interval associated with the 0◦ at 80%. Then, from the zero angle predominance ratio,
we obtained how much the cut is by mapping the ratio (from 0 to 1) to the cut for probability
(from 0% to 80%). What has been cut is then equally distributed by the remaining bins that
do not have a probability of zero.



Entropy 2022, 24, 468 8 of 23

One issue with this approach is that, if one particular bin does not contain any oc-
currences, that interval will never be used. We acknowledged that an interval of angles
could not only be mapped to the respective musical interval but also the neighbors’ musical
intervals considering the order of Table 2. With this in mind, after obtaining the musical
interval, a normal distribution is also applied, to give the neighboring musical intervals a
chance to be chosen.

The standard normal distribution was used (µ = 0 and σ = 1). Using a value obtained
from the normal distribution, there are three possible cases: if the value is between −1 and
1 (probability of 68.3%), the original musical interval is chosen; If the value is below −1
(probability of 15.85%), the left neighbor musical interval is chosen, unless the original
value is the first position, in this case, the original musical interval is chosen; If the value is
above 1 (probability of 15.85%), the right neighbor musical interval is chosen, unless the
original value is the last position, in this case, the original musical interval is chosen.

The only aspect left to decide is the direction of the interval, which is the only musical
element in the melody mapped from the texture. Here, we decided to use of the perceived
brightness. Colors with a higher perceived brightness value are related to upward intervals,
and colors with lower values with downward intervals. From the histogram of perceived
brightness values, the value that occurred more often was considered. This ranges from 0
to 1 and sets the probability of the interval direction being upward between 20% and 80%.

The duration of a note is the time the note lasts. This will significantly influence the
way a music piece is perceived. This is represented as a fraction of what is called a whole
note. For our purposes, not all possible durations were used. The mentioned representation
and the considered durations can be seen in Figure 4.

Figure 4. Representation of note durations.

If a sculpture with an irregular surface curvature value is considered, one can easily
associate it with a dense music piece, where the notes keep changing in a small fragment
of time. The opposite can also be related. As such, our aim was to relate the variation of
the sculpture’s curvature value with the note’s duration. To obtain the curvature value
variation, autocorrelation was used. The curvature value of each point was gathered,
grouped by neighbors, and the autocorrelation was calculated in these groups. The mean
of all results was used, and this value was mapped with what would become the most
probable rhythmic value. The mapping can be seen in Table 3.

Table 3. Mean autocorrelation and most probable rhythmic value mapping.

Mean Autocorrelation 0–0.05 0.05–0.1 0.1–0.4 0.4–0.7 0.7–1

Most Probable
Rhythmic Value

Our goal was to avoid having only one type of rhythmic value. Our goal was to
find a general way to relate the mean autocorrelation with the rhythmic value without
making a direct relation. To achieve this, the Standard Normal Distribution was used once
again. Using this tool, the most probable rhythmic value can be set while maintaining the
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possibility of using other rhythmic values. For each note, a rhythmic value is chosen based
on the most probable one and a value obtained using the normal distribution (Table 4).

Table 4. Obtaining each rhythmic value using a normal distribution.

Most Probable
Rhythmic Value

Value Obtained Using
Normal Distribution (x) Probability Rhythmic Value

Chosen

−1 < x < 1 68.3%

−2 < x < −1 or 1 < x < 2 27.1%

x < −2 or x > 2 4.6%

−1 < x < 1 68.3%

x < −1 15.85%

x > 1 15.85%

−1 < x < 1 68.3%

x < −1 15.85%

x > 1 15.85%

−1 < x < 1 68.3%

x < −1 15.85%

x > 1 15.85%

−1 < x < 1 68.3%

−2 < x < −1 or 1 < x < 2 27.1%

x < −2 or x > 2 4.6%

3.2.2. Motif Composition—Harmony

Having the various motifs that will form the melody, let us move on to harmony. We
decided to relate the harmony with the sculpture’s texture/color. As such, each motif
should be harmonized according to the respective segment’s color. For each segment, the
most common colors were obtained, as explained before. Having the HSV color model
in mind, for the same Hue and the highest Saturation (100%), the Value channel will give
us how dark or how pure that Hue is, ranging from black (Value close to 0%) to the pure
Hue (Value close to 100%). Similarly, the musical modes can also be ordered from darker
(Locrian) to brighter (Lydian) [19]. In Table 5, a summary of the modes of the major scale is
shown, with the degrees of the major scale, the respective mode, intervals, and chord.

Table 5. Summary of the major scale modes (characteristics notes in bold).

Degree of
Major Scale Mode Intervals Chord

(Tetrad)

I Ionian P1 M2 M3 P4 P5 M6 M7 I∆

II Dorian P1 M2 m3 P4 P5 M6 m7 IIm7

III Phrygian P1 m2 m3 P4 P5 m6 m7 IIIm7

IV Lydian P1 M2 M3 A4 P5 M6 M7 IV∆

V Mixolydian P1 M2 M3 P4 P5 M6 m7 V7

VI Aeolian P1 M2 m3 P4 P5 m6 m7 VIm7

VII Locrian P1 m2 m3 P4 d5 m6 m7 VIIm7[5
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Having the most common colors, the Value channel from the HSV color model was
related to musical modes. A color with a lower value in the Value channel would be
associated with a darker mode, while one with a higher value with a brighter mode.
However, not all Hues should be matched with all modes, since, for the same Value, some
colors are perceived as darker than others.

Three groups of Hues were formed, as seen in Figure 5:

• Group 1 (Hue from 40 to 190), which includes colors, such as Yellow, Green, and Light
Blue, where the modes can range from Lydian to Dorian;

• Group 2 (Hue from 0 to 40 and from 290 to 360), which includes colors, such as Red,
Pink, and Magenta, where the modes can range from Ionian to Aeolian;

• Group 3 (Hue from 190 to 190), which includes colors, such as Purple, and Blue, where
the modes can range from Mixolydian to Phrygian.

Figure 5. Hue value based groups.

In addition to these three groups, two special cases are not accounted for by the
Hue values:

• If the color is black, or very close to black (Value channel below 20%), the mode is set
to Locrian (the darkest).

• If the color is white, or very close to white (Saturation channel below 10%), the mode
is set to Lydian (the brightest).

Even if the Saturation is near 0%. if the Value channel is close to 0%, the color will
be close to black. As such, the first verification to be made is if the color is close to black
(Value < 20%). The range of modes per color group association and the special cases can
be seen in Figure 6.

Figure 6. Range of modes per color group and special cases.

The relationship of the Hue-based groups with the modes according to the Value
channel can be seen in Figure 7, where, for each group, an example of a Hue is shown.

Having associated musical modes with colors, the chords still needed to be defined.
These were obtained by finding the closest tone of each motif and then obtaining the mode’s
chord in that tonality, as seen in Table 5. One aspect that was left to decide was the number
of chords per motif.

First, we decided that there should be, at most, one chord per bar, since there should
be enough time for the mode to be well perceived. Moreover, we decided to use at most two
chords per motif for the same reason. As such, for each segment, the two most common
colors are extracted, from there the two respective modes, and finally, the two chords.
Considering that the first half of a motif is stronger than the second half, the chord obtained
from the most common color is placed first in the motif and the one from the second most
common chord second. The number of bars for the first chord is obtained by dividing the
motif’s number of bars by two and rounding up, while the remaining bars are left for the



Entropy 2022, 24, 468 11 of 23

second chord. Having a set of different motifs and their respective harmony, their order
and the tempo stills needed to be defined.

Figure 7. Relation of Hue-based groups with modes according to the Value channel.

3.3. Order Motifs and Tempo

To join the motifs in a logical order, the probability distribution of intervals from the
histogram of angles was obtained, although this time from the whole sculpture. From there,
we verified which of all possible permutations of the motifs’ order best corresponds to the
probability distribution of the intervals—this is the chosen order.

The only musical element left to map is the tempo. At first, our aim was to map this
element both from the shape and the texture of the sculpture. It made sense to us that it
should be related to the variation of both shape and texture. However, while experimenting,
we realized that mixing both types of features was not the best choice, since the result had
the possibility of not being associated with the sculpture. For example, let us consider a
sculpture with a very smooth shape that does not vary much, while in terms of texture,
there is much variation. Our first approach would lead us to a medium tempo since it
would be a mix of not much variation from the shape and much variation from the texture.
As such, since the shape’s variation had already been used for the rhythmic value of notes,
the texture’s variation was used for the tempo, obtaining much better results. To find
the variation of the texture, first, the most common colors of the whole sculpture were
extracted. Then, for each segment, we verified how many of the most common colors of
that segment matched the ones from the whole sculpture. In the end, a ratio of the colors
that matched the total colors verified was obtained, that ranges from 0 to 1. The higher the
ratio, the lower the tempo should be, and vice versa. For our purposes, we considered a
tempo range of 80 to 160 BPM. As such, having the ratio (r), the tempo is calculated using
tempo = 80 + 80 ∗ (1− r).

Having the melody and harmony from the ordered motifs, and respective tempo, the
first version of the music piece was obtained, which was designated as the raw composition.
The second version was obtained by correcting notes in the motifs that did not belong to the
respective scale, changing them to the closest note found on the scale. This way, a version
that respects each motif’s scale was obtained, designated as the “tonified” composition. We
also decided to use a Genetic Algorithm, since it provides a way to search for better results
while retaining some randomness that may lead to exciting results.
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3.4. Genetic Algorithm

A Genetic Algorithm is a search algorithm inspired by the process of natural evolution
first introduced by Holland et al. [20]. This type of algorithm has proven to be very effective
in dealing with large search spaces. To perform the search, nature-inspired mechanisms
are used.

In a genetic algorithm, there is a population that consists of a set of what are called
individuals. Each individual is a candidate solution and has a set of genetic information,
called genes. These individuals are evolved in order to find the best possible solution. The
number of individuals in the population is one of the features of this algorithm. Different
representations can be used for individuals, depending on the use of the algorithm.

The first step in a genetic algorithm is to set the initial population, which may be
randomly created or not. In order to evaluate each candidate’s solution, there is a fitness
function that rates each individual. The evolutionary phase of the algorithm consists of a
specific number of iterations, where in each iteration, a new set of individuals is generated.
Thus, for each iteration, a new generation arises.

Each new generation is created using the previously mentioned nature-inspired mecha-
nisms, called genetic operators. There are three main genetic operators: selection, crossover,
and mutation. In addition to these three operators, there is another commonly used mecha-
nism, named elitism. Furthermore, the probability associated with each genetic operator
is independent of the other operators. As such, a particular genetic operator may or may
not be applied regardless of the others. Each new generation is created according to the
following steps:

1. Elitism—Select a part of the individuals according to their fitness to be directly passed
to the new generation.

2. Selection—Individuals are selected to breed the new generation. The selection occurs
in pairs, where each pair of individuals produce new individuals for the new gener-
ation. The probability of each individual to be chosen is based on the individual’s
fitness. The higher the fitness, the higher the probability of being chosen. As such,
one individual may be selected several times or none at all.

3. Crossover—Having a pair of selected individuals, there is a certain probability of
suffering crossover. The crossover mechanism is much like natural reproduction,
where genetic information (genes) from both parents (individuals) is combined to
generate new ones.

4. Mutation—Afterwards, the individuals obtained have a probability of being mutated.
This involves altering the individual’s genes. This genetic operator can either be
applied to each gene separately or to all genes.

A visual summary of the genetic algorithm can be seen in Figure 8. The termination
may vary from application to application. There are several possibilities, such as a specific
criterion being achieved or a fixed number of generations reached.

In our case, each individual (candidate solution) was defined as a music piece. As
already stated, a music piece is considered to be the gathering of several motifs (melody
and harmony), their ordering, and tempo. Therefore, since each individual is a music piece,
its genes are motifs. A property in each individual is the ordering of the motifs (genes).

Regarding the first step of the algorithm, the Initializaion, we decided to have a
population of 100 individuals. The number of motifs generated per segment was the chosen
number of individuals. Each individual was created by randomly choosing a motif from
each segment. The initial order of the motifs was also randomly chosen.

To obtain each individual’s Fitness, a function composed of several different criteria
were used:

• Order Fitness—The order of the motifs is evaluated according to how well it matches
the probability distribution of intervals obtained from the histogram of angles from
the whole sculpture. This measure ranges from 10 (perfect fit) to −10 (no fit).
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• Mode Definition Fitness—For each motif, we evaluate how well the motif describes
the respective mode. Each note has a weight according to its beat and its duration.
Only the beat with the highest value is considered if the note is longer than one beat.
If it is in the first beat, the weight is 4 ∗ duration, the third 3 ∗ duration, the second
2 ∗ duration, and the fourth 1 ∗ duration. The value for this measure is then calculated
according to the type of note regarding the mode. Two concepts are used: if the note
is characteristic of the mode and if the note is consonant. The characteristic intervals
of a mode can be seen in Table 5. A note is considered consonant if the chord already
includes that note or if the note does not create the interval m2 with any note from
the chord. With this in mind, this fitness measure is then calculated as described in
Table 6.

• Range Fitness—The range of the note pitches is also taken into account. The pitch
should not be placed too low or too high. As such, a range was defined, where notes
with a pitch outside of the range are disfavored. Here, the duration of the note and its
placement regarding the bar are also taken into account. An acceptable range between
55 and 90 in MIDI was defined, and pitches that are not in the acceptable range are
penalized −4 .

Figure 8. Genetic algorithm summary.

With this fitness function, we evaluated how well the order represents the sculpture,
how appropriate each motif is since the motif should represent the mode well enough, and
if the notes’ pitch is in an acceptable range.

Table 6. Mode definition fitness measure for different types of notes.

weight
<= 1

weight
> 1

Note
in

Mode

Characteristic
Consonant 2*weight

Dissonant 2*weight −weight

Not
Characteristic

Consonant weight

Dissonant weight −weight

Note not in Mode weight −weight

This is the stage where the genetic operators are used. Regarding Elitism, in each
generation, 10% of the individuals with the highest fitness are directly passed on to the
new generation. This guarantees some level of quality. After this, in the Selection stage,
the individuals are selected as previously explained. Having a pair of selected individuals,
there is an 80% probability of suffering Crossover. Two types of crossover were defined,
both equally probable:

• Motif crossover—In this case, half of each individual’s motifs are randomly selected
and crossed over. Since each motif came from a certain segment of the sculpture, the
crossover occurs between motifs from the same segment. This approach was chosen to
maintain a representative motif for each segment. An example of this type of crossover
can be seen in Figure 9a. In this example, motifs 2 and 4 are randomly chosen to be
crossed over.

• Note crossover—In this case, the note’s pitches are swapped. Having two motifs that
came from the same segment (one of each individual), first, we calculate which one
has more notes. Then, considering the difference in the number of notes between
motifs, a crossover starting point is randomly chosen in the motif with more notes.
This is the point from which the swap is made. There has to be sufficient space after
the point for the smaller motifs’ pitches. The pitches from the smaller motif are traded
with the pitches of the larger motif starting from the starting point. An example of
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this type of crossover can be seen in Figure 9b. Here, the motif with fewer notes is
the one from individual 1, with six notes. Thus, the starting point in the motif with
more notes (from individual 2) has to leave at least five more notes afterward. Since
the longer motif has 12 notes, the starting point has to be randomly chosen between 1
(where the notes to be crossed over would be from 1 to 6) and 7 (where the notes to be
crossed over would be from 7 to 12). In this example, the starting point is note 6. Thus,
the notes crossed over in the longer motif are notes 6 to 11.

In the next stage, the individuals obtained have a probability of suffering Mutation.
This involves altering the individual’s genes. Four types of mutation were used each with
an independent probability:

• Order mutation—In this case, with a 10% probability for the individual, the order of
the individual’s motifs is randomly altered.

• “Tonify” mutation—In this case, with 10% probability for each motif, notes that do
not belong to the motif’s scale are corrected to the closest note found on the scale.

• Inversion mutation—With 5% probability for each motif, the inversion variation is
applied, where the motif is mirrored, i.e., all the intervals are maintained, but their
direction is the opposite, usually considering the first note as the reference.

• Retrograde mutation—With a 5% probability for each motif, the retrograde varia-
tion is applied, where the motif is reversed, i.e., the first note becomes the last and
vice versa.

Considering the “tonify” mutation, one question may arise: why not merely limit the
range of notes to the ones on each scale? This limitation would increase the fitness since,
as explained before, notes that belong to the scale/mode are favored. However, much
music that is generally considered good contains off-scale notes as long as they are placed
correctly on the piece, and their duration is adequate. This case is taken into account when
calculating the fitness value of the individual, where it is less penalized.

To terminate the algorithm, we decided to have a fixed number of generations. Regard-
ing the final music piece, instead of obtaining the fittest individual in the final generation,
our interest moved towards an approach that considers the evolutionary process as art-
work [21].

In order to use this concept in our work, the fittest individual in each fixed number
of generations were obtained. This number is defined according to the total number of
generations. From our experiments, we decided to find the fittest individual in every third
of the total number of generations. In the end, the individuals are joined and form the
final music piece. This way, the music piece has a much better-defined structure, since
motifs may be repeated from one individual to the other, although they may have suffered
alterations from crossover or mutation. It is also interesting to consider that, when listening
to the music, it becomes fitter as it goes by. We decided to terminate the algorithm once it
reached 300 generations and join the fittest individual from every 100 generations.
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(a) Motif crossover.

(b) Note crossover.
Figure 9. Crossover examples.

3.5. Implementation

This project was implemented using Python [22] as the programming language, more
specifically Python 3.6.8. Although the Python standard library is very extensive, other
libraries were also used, since our work involves some specific domains.

First, the 3D Object domain mainly consists of meshes and texture. There are several
different types of file formats, such as Stereolithography File (.stl), Wavefront 3D Object
File (.obj), or Polygon Model File (.ply). We decided to focus our attention on Wavefront
3D Object files (.obj). If needed, the conversion from other formats to this one could be
easily made. Regarding meshes, the library PyMesh [23] was used. This library is very
useful since it provides an easy way to load a mesh, and to obtain some of its features.
Unfortunately, it does not consider the mesh’s texture. As such, to have access to the texture,
a file parser provided by PyGame [24] was used. The texture comes in an image file. As
such, the Opencv-python [25] package was used to process it.

Considering the musical domain, MIDI (Musical Instrument Digital Interface) repre-
sentation was used to represent the notes. To obtain the final music piece (in a lead sheet),
first, the package MIDIUtil [26] was used to export the notes in MIDI format, then the
software MuseScore [27] was used to obtain the final object, a lead sheet.

Considering all the processes between the sculpture and the music, some other pack-
ages were used for specific purposes. For handling arrays and some other functions, such
as working with probabilities, package Numpy [28] was used, since this is a generally used
package for scientific computing, with extensive documentation. For clustering, the package
Scikit-learn [29] was used considering its capabilities regarding machine learning. Finally,
for all the plotting purposes (from 2D histograms to more complex three-dimensional
plotting of the sculptures), the package Matplotlib [30] was used.

4. Case Studies

Six 3D models of sculptures were used as our dataset. These were processed, and the
final results were evaluated. The purpose of these cases is to give a clearer insight into our
system’s behavior and verify if it accomplishes our objectives.

4.1. Dataset

The dataset used as input for our system has two sources: existing 3D models and 3D
objects that were the result of capturing and processing existing sculptures by the author.
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These sculptures were selected due to their variety in shape and texture and, therefore,
help us to better evaluate our system’s capability of generalization. There were limitations
regarding both the availability of 3D models online and the sculptures to be scanned. The
end result were three distinct sculptures by the same author and three other sculptures
with different authors and periods.

For existing 3D models, many models can be found online in several locations. We
used the platform Sketchfab [31], from which two models were retrieved (Figure 10).

(a) (b)
Figure 10. Two models used from Sketchfab [31]. (a) Sun God (https://skfb.ly/6JTCB (accessed on
2 December 2021)); (b) Tir (Shooting Altar) (https://skfb.ly/6IFJC (accessed on 2 December 2021)).

For the acquired models, the authors used the device Lenovo Phab 2 Pro for the acquisi-
tion. The result of this capture is a point cloud. As such, some processing was needed to
convert it into a polygonal mesh. For this purpose, the open-source software Meshlab [32]
was used. Four sculptures were captured and processed. Thus, four 3D objects were used
from this second source. The final result of the process (and the input for our system) for
the four sculptures can be seen in Figure 11. One important remark is that 3D Objects found
in Figures 11a,c,d were processed using the Poisson Surface reconstruction approach. The
one found on Figure 11b was processed using the Ball Pivoting reconstruction approach.

(a) (b) (c) (d)

Figure 11. 3d Objects resulting from the capture and processing of sculptures. (a) Galo de Barce-
los (Owned by the author. Available at https://skfb.ly/6Nzzv (accessed on 2 December 2021));
(b) Unkown Sculpture (Location: Museu Nacional de Arte Contemporânea do Chiado, Lisboa. Avail-
able at https://skfb.ly/6NzAH (accessed on 2 December 2021)); (c) Sr. Estúpido by Robert Panda
(Location: Telheiras, Lisboa. Available at https://skfb.ly/6NzzE (accessed on 2 December 2021));
(d) Les Baigneuses by Niki de Saint Phalle (Location: Centro Cultural de Belém, Lisboa. Available at
https://skfb.ly/6NzAz (accessed on 2 December 2021)).

All the 3D models of the sculptures and respective interpretations of the composed
music are available at http://web.tecnico.ulisboa.pt/ist181444/ (accessed on 2 Decem-
ber 2021).

4.2. Evaluation

To evaluate our system, our objectives were considered. With these in mind, the
evaluation aimed at verifying if the music pieces composed are associated with the sculpture
and if the music is considered aesthetically pleasing. Although one of our goals was to
make a system that acts creatively and generates creative products, this aspect was not
evaluated directly. Instead, we considered that the evaluation of the other two goals would
lead to this goal’s evaluation. It is relevant to stress that only the Genetic Composition was
evaluated. We decided to use online surveys to perform the evaluation.

https://skfb.ly/6JTCB
https://skfb.ly/6IFJC
https://skfb.ly/6Nzzv
https://skfb.ly/6NzAH
https://skfb.ly/6NzzE
https://skfb.ly/6NzAz
http://web.tecnico.ulisboa.pt/ist181444/
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The final output of our system is a lead sheet for each sculpture. However, to be
able to evaluate the final compositions, an audio file needed to be generated. Due to time
constraints, it was not possible to record the composed pieces with musicians. Instead, for
each music piece, three interpretations were created using virtual instruments.

The first interpretation can be considered as closer to Jazz. The instruments used
were a piano and a double-bass. A drum set was not used in this interpretation since the
virtual sound of a drum set in Jazz style does not sound realistic. The second interpretation
can be seen as closer to the Rock Genre. In this case, a piano, electric bass, and drum
set were used. The third interpretation is difficult to define stylistically. This is a more
electronic interpretation, yet it may also be seen in the Space Rock genre. For this one,
two Synthesizers, one electric guitar, one electric bass, and a drum set were used. All
interpretations were created considering the common rhythmic patterns of the style for the
accompaniment and the drum rhythms.

As already stated, the final compositions were evaluated using online surveys. Two
surveys were made, each with three compositions, and, for each composition, the three
interpretations. The survey starts off by asking for the age group (<18; 18–29; 30–45; 46–60;
>60) and musical knowledge (None, Basic, Intermediate, and Advanced). Regarding the
musical knowledge, each degree had either a small description or some examples for more
coherent answers:

• “None—only listener”.
• “Basic—Example: novice in an instrument, starting to take music lessons, played

instrument when younger”.
• “Intermediate—Example: Currently taking classes, attending a music course, has

some knowledge on ear training”.
• “Advanced—Example: Have a music degree, professional musician with music theory

background”.

Afterwards, for each musical composition, an excerpt from each interpretation was
shown and ranked by the participant. Considering each participant’s rank, each listened to
the full preferred version. The following questions were then made:

• “Do you consider this to be music?” Yes or No.
• “How would you rate this music?” 1 (Terrible music)—5 (Really good music).
• “How would you describe this music? (You may choose several options)” Happy;

Exciting; Smooth; Mellow; Sad; Rough; Bitter; Harsh; Aggressive; Boring; and Other.

With the first two questions, we aimed at evaluating the music itself and, with the
third, to obtain a more subjective opinion on the music.

The survey then moved to the part related to the sculpture. First, the 3D model of
the sculpture was shown without making any reference to it being the inspiration for the
musical composition. Then, we asked the question (with the following possible answers):
“How would you describe this sculpture? (You may choose several options)” Happy;
Exciting; Smooth; Mellow; Sad; Rough; Bitter; Harsh; Aggressive; Boring; and Other.

This question has the same possible answers as the one regarding the music’s descrip-
tion. With this question, it was our intention to make the audience carefully look at the
sculpture and obtain a general description of the sculpture.

Finally, the relation between music and sculpture was evaluated. Here, the participant
was shown how he/she previously described the music and informed that the music was
composed having the previous sculpture as inspiration. Then, we asked: “Do you think
they are related?” 1 (Not at all)—5 (Totally). The final questions for each composition is to
ask the music’s rating and if the audience thinks the music is related to the sculpture (same
as before) for the least preferred interpretation. With these two, we aimed at evaluating the
importance of the interpretation and establishing a floor for the results.

The division of musical compositions/sculpture per survey was intentional. For each,
one sculpture obtained online and two captured and processed by us were chosen. As such,
the division is the following (sculptures in the presented order):
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• Survey 1—Tir (Shooting Altar) (Figure 10b), Les Baigneuses (Figure 11d), and Unkown
Sculpture (Figure 11b).

• Survey 2—Sr. Estúpido (Figure 11c), Galo de Barcelos (Figure 11a), and Sun God
(Figure 10a).

For Survey 1, answers were collected from a total of 62 participants, and for Survey 2,
for a total of 36 participants. Below, the most relevant data obtained are analyzed.

4.3. Results and Discussion

Starting with the age groups, the two largest groups for both surveys were 18–29 and
46–60. The obtained answers can be seen in Figure 12. About the musical knowledge,
the results were the expected, where there are fewer for deeper Musical Knowledge. The
obtained answers can be seen in Figure 13.

(a) Survey 1 (b) Survey 2
Figure 12. What is your age group?

(a) Survey 1 (b) Survey 2

Figure 13. How would you describe your musical knowledge?

Using the relevant information about the participants, regarding the ranking of inter-
pretation/version, the statistics relative to the answers are presented in Table 7. Since each
participant ranked the three versions, the mode is the most relevant measure, i.e., the value
most often chosen. From this, we concluded that the most preferred version was the first
(closer to Jazz). However, considering the mean and standard deviation measures, it is
possible to state that the difference among interpretations is not much.

Considering the first question regarding the preferred interpretation (Do you consider
this to be music?), the statistics based on the results can be seen in Table 8. Regarding the
results, for all compositions, more than 90% of the participants considered the preferred
interpretation to be music.
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Table 7. Which version do you prefer?—Statistics.

Question Measure
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

Which version
do you prefer?

Music
1

Mean
Median
Mode

Std. Dev.

2
2
3

0.9

1.7
1.5
1

0.8

1.5
1
1

0.7

1.9
2
1

0.9

1.6
1
1

0.8

1.8
2
1

0.8

Music
2

Mean
Median
Mode

Std. Dev.

1.7
1.5
1

0.8

2
2
2

0.8

2
2
2

0.7

1.9
2
1

0.8

2.1
2

2;3
0.8

1.8
2
1

0.8

Music
3

Mean
Median
Mode

Std. Dev.

2.3
2

2;3
0.7

2.2
2
3

0.8

2.5
3
3

0.7

2.2
2
2

0.7

2.3
2
3

0.8

2.4
3
3

0.7

Table 8. Do you consider this to be music?—Percentage.

Question Answer
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

Do you consider
this to be music?

Yes 95.16% 96.77% 90.32% 100% 100% 100%

No 4.84% 3.23% 9.68% 0% 0% 0%

Furthermore, regarding the responses on the preferred music’s rating, the statistics
obtained from the results can be found in Table 9.

Table 9. How would you rate this music? (Preferred)—Statistics.

Question Measure
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

How would
you rate

this music?

Mean
Median
Mode

Std. Dev.

3.4
3.5
4

0.8

3.6
4
4

0.9

3.1
3
4

1.2

3.8
4
4

0.6

3.8
4
4

0.7

3.9
4
4

0.7

For all the musical compositions, on a scale of 1 (lowest) to 5 (highest), the mode was 4,
i.e., the rating most often encountered was 4. From the median, we concluded that, for five
of the six compositions, at least 50% of the participants ranked 4 or higher. The statistics for
the same question, but regarding the least preferred version, can be seen in Table 10. The
results were lower, as expected. The median, instead of 4, was 3, meaning that more than
50% of the participants still rated the least preferred interpretation as 3 or higher. The mode
was one step below the preferred version. The data for the rating of the least preferred
version regarding the sculpture Galo de Barcelos was not collected due to an error in the
process of survey making.
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Table 10. How would you rate this music? (Least Preferred)—Statistics.

Question Measure
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

How would
you rate

this music?

Mean
Median
Mode

Std. Dev.

2.7
3
3
1

2.7
3
3

0.9

2.5
3
3

1.1

3.1
3
3

0.8

-

2.9
3
3

1.1

Considering the sculpture–music association, the participants were asked to select
descriptors among a given set that better describe the preferred interpretation and the
sculpture (in separate). The descriptors used were: Happy, Exciting, Smooth, Mellow,
Sad; Rough, Bitter, Harsh, Aggressive, Boring, and Other. To evaluate the association, we
verified whether the descriptors assigned to the sculpture corresponded with those of the
music. The histogram of the descriptors was made, and for each sculpture–music pair, the
Bhattacharyya Coefficient [33] was calculated (Table 11) as a measure of their similarity.

Table 11. Bhattacharyya coefficient for the music/sculpture descriptions.

Sculpture Tir (Shooting
Altar)

Unknown
Sculpture Sungod Les

Baigneuses
Galo de
Barcelos Sr. Estúpido

Bhattacharyya
Coefficient 0.4981 0.8963 0.8539 0.8848 0.9426 0.8491

The statistics for the responses regarding the rating of the sculpture–music relationship
can be seen in Table 12 for the preferred version and in Table 13 for the least preferred one.

Table 12. Do you think the are related? (Preferred)—Statistics.

Question Measure
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

Do you think
they are related?

Mean
Median
Mode

Std. Dev.

2
2
1

1.2

3.4
4
4

0.9

2.9
3
3

1.1

3.5
5
5

1.3

3.2
3
3

1.2

3.4
3.5

4 ; 5
1.3

Table 13. Do you think this version is related to the sculpture? (Least Preferred)—Statistics.

Question Measure
Tir

(Shooting
Altar)

Les
Baigneuses Unkown Sr.

Estúpido
Galo de
Barcelos

Sun
God

Do you think
this version
is related to

the sculpture?

Mean
Median
Mode

Std. Dev.

2
2
1
1

2.8
3
4

1.3

3.5
2
1

1.3

3.1
3

2;3
1.3

3
3
3

1.2

3
3
4

1.2

Two special cases were found concerning the results: one case in which the results were
very low and one in which the opinions regarding the descriptions were very widespread.

The first is the Tir (Shooting Altar) sculpture (Figure 10b), where its semantics leads
to a drastically different perspective from the one obtained through our approach. In
this case, the description given by the participants for the sculpture was distant from the
composition, as evidenced by the Bhattacharyya Coefficient in Table 11. The composition
was not considered related to the sculpture, can be confirmed by the statistics in Table 12,
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where the mode measure for the relation rating was 1 and the median 2. The results were
similar for the least preferred version (Table 13).

Looking closer at the sculpture (Figure 10b), one can see that it is quite complex. It
is a white altar, an object from the religious world with strange figures and objects in it,
with bright red in some parts that, in this case, can be related to blood. For our system,
these colors (white and bright red) were related to brighter modes, which do not translate
the semantics of this sculpture. As already stated, it was not our intention to retrieve the
sculptures semantics, as such, these results were understandable.

The second is the Unknown Sculpture (Figure 11b), where there was much variation on
how humans perceived the sculpture. Considering that the participants were describing
artwork, it is reasonable to have disagreement in some cases. This case happened to be one
where each of the participant’s perspective varied greatly. The Bhattacharyya Coefficient
is high because both the music and sculpture descriptions were ambiguous without any
characteristic descriptor.

From the statistics of the results for the preferred version, seen in Table 12, the previous
hypothesis can be confirmed. The mean was 2.9, the second lowest, while the mode and
median were 3. Regarding the least preferred version, the mode was 1 and the median 2.
Curiously, the mean value was higher than the preferred one. These results, once again,
prove that there was not much agreement regarding this sculpture, since the results for the
relation rating were widely dispersed.

For the typical case, which was found in the remaining four of the six music/sculpture
pairs, most people related the music to the sculpture. Regarding the description, there
was a clear connection between the sculpture and the music as seen by the Bhattacharyya
Coefficient in Table 11. For the sculpture Sr. Estúpido, the median for the relation rating for
the preferred interpretation was 5, while for Les Baigneuses and Sungod 4 and for Galo de
Barcelos was 3. For the least preferred, the median for the rating was 3 for the four cases.

5. Conclusions and Future Work

We presented a system that aims at composing music inspired by 3D models of
sculptures. To build this, an existing model for inspiration [5] was used, involving different
human senses, and applied to a pair of domains that, to the best of our knowledge, have
never been explored before. One of the unique aspects of our system is the chosen mapping
between the two different domains, which is the base for the applied inspirational model.

Only the Genetic Composition was considered for evaluation. This evaluation was
based on answers from online surveys, which focused on assessing two of our goals: the
quality of the musical composition and the sculpture–music association. The musical
compositions were well rated, thus, providing evidence of their quality. Regarding the
sculpture–music association, despite two exceptional cases, the results provide evidence of
this association.

We stress that this paper describes one possible approach led by the aesthetics of the
authors among an infinite number of other possible approaches. One alternative approach
would be to relate the two different domains using an isomorphic mapping between two
different mathematical lattices [34]. Regarding possibilities closer to our work, some were
tested during the process; however, these are a small fraction compared to what could
be explored.

Our work was also limited regarding the musical concepts and elements used; there-
fore, other approaches could be explored. For example, in the music realm, a more general
approach could be implemented, considering not only modal harmony but also tonal or
atonal. As for the association, other possibilities could be tested. Although the shape–
harmony and texture–melody associations were used in our work, other possibilities could
be explored and even available for a user to choose.

Other approaches to the genetic algorithm could also be investigated. One possibility
would be to give more freedom to the algorithm by not limiting the crossover between
motifs generated from the same segment of the sculpture. This could be compensated by
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using a fitness measure that would favor individuals where all the segments are represented.
Another aspect that could be worked on is evaluation since only one of the three output
compositions was evaluated. These three versions could be assessed to verify, for example,
which one is preferred and which one is considered to be more related to the sculpture.
In addition to this, having human interpretations of the compositions could significantly
improve the evaluation. The quality of music played by real musicians is different from
interpretations generated using a computer.
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