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Simple Summary: Group 3 medulloblastoma (MB) is often accompanied by MYC amplification and
has a poor prognosis. FBXW7, a critical tumor suppressor in many types of cancer, regulates the
proteasome-mediated degradation of oncoproteins including MYC. However, the role of FBXW7
in the tumorigenesis of group 3 MB has not been well studied. In this study, we show that FBXW7
is downregulated in group 3 MB patient samples, and FBXW7 stabilization is crucial for inhibiting
c-MYC. We identified a FBXW7-MYC-PLK1 regulatory loop in MYC-driven MB, which provides a
mechanism of using protein kinase inhibitors for translation in the future.

Abstract: Polo-like kinase 1 (PLK1) is highly expressed in group 3 medulloblastoma (MB), and
it has been preclinically validated as a cancer therapeutic target in medulloblastoma. Here, we
demonstrate that PLK1 inhibition with PCM-075 or BI6727 significantly reduces the growth of MB
cells and causes a decrease of c-MYC mRNA and protein levels. We show that MYC activates
PLK1 transcription, while the inhibition of PLK1 suppresses MB tumor development and causes a
decrease in c-MYC protein level by suppressing FBXW7 auto poly-ubiquitination. FBXW7 physically
interacts with PLK1 and c-MYC, facilitating their protein degradation by promoting ubiquitination.
These results demonstrate a PLK1-FBXW7-MYC regulatory loop in MYC-driven medulloblastoma.
Moreover, FBXW7 is significantly downregulated in group 3 patient samples. The overexpression
of FBXW7 induced apoptosis and suppressed proliferation in vitro and in vivo, while constitutive
phosphorylation mutation attenuated its tumor suppressor function. Altogether, these findings
demonstrated that PLK1 inhibition stabilizes FBXW7 in MYC-driven MB, thus revealing an important
function of FBXW7 in suppressing medulloblastoma progression.

Keywords: FBXW7; MYC; PLK1 inhibition; medulloblastoma

1. Introduction

Brain tumors are the most common cause of oncological death in children, and medul-
loblastoma (MB) is a malignant childhood brain tumor, accounting for 20–25% of pediatric
brain tumors [1–3]. Recent genomic analyses have identified multiple sub-groups with
differing outcomes, underscoring the heterogeneity of MB [4]. By current international
consensus, there are four main sub-groups of MB: WNT, SHH, group 3, and group 4 with
multiple subtypes [5,6]. Group 3 patients, in particular, express high levels of c-MYC and
have the worst prognosis [7]. Thus, there is a critical need for more effective and targeted
therapies for group 3 MB.
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Polo-like kinases (PLKs) comprise a family of five serine/threonine protein kinases [8].
The best characterized PLK family member is PLK1, which regulates cell-cycle progression by
mediating various steps during mitosis [9]. The inhibition of PLK1 prevents cell proliferation,
self-renewal, cell-cycle progression, and induced apoptosis [10,11]. We and others have
previously identified PLK1 as a key regulator of medulloblastoma cell viability [12,13]. Despite
considerable study, it is not yet clear why the expression of PLK1 is upregulated and how a
high level of PLK1 reprograms cells to promote the cancer state in medulloblastoma.

The MYC family of transcription factors are known to impact proliferation, survival,
and metabolism in the development of cancer, including MB [14]. Though MYC inhibition
would be a powerful approach for the treatment of many types of cancers, the direct
targeting of MYC has been a challenge for decades due to its “undruggable” protein
structure [15]. Hence, alternatives to an MYC blockade have been widely explored to
achieve desirable anti-tumor effects, including MYC/MAX complex disruption, MYC
transcription, translation inhibition, and MYC destabilization [16].

FBXW7 is a critical tumor suppressor and one of the most commonly deregulated
ubiquitin–proteasome system proteins in human cancer [17–19]. It is a component of the
SCF-like ubiquitin ligase complex that targets MYC for proteasomal degradation. The
downregulation of FBXW7 leads to the synergistic accumulation of cellular and active
chromatin-bound MYC in various types of cancer [20]. FBXW7 controls the proteasome-
mediated degradation of oncoproteins such as Cyclin E, c-MYC, MCL-1, mTOR, JUN,
NOTCH-1, and AURKA [21]. However, the mechanisms by which FBXW7 modulates the
tumorigenesis of MB is not well delineated.

Here, we demonstrate that PLK1 promotes FBXW7 auto poly-ubiquitination and
proteasomal degradation, counteracting the FBXW7-mediated degradation of c-MYC in
MB cells. In turn, stabilized c-MYC directly activates PLK1 transcription, constituting a
regulatory loop. FBXW7 acts as a tumor suppressor in MYC-amplified medulloblastoma:
the overexpression of FBXW7 induces cell apoptosis, suppresses cell proliferation, and
improves the survival of orthotopic xenograft bearing mice. Together, our results reveal
a PLK1-FBXW7-MYC signaling circuit that underlies tumor pathogenesis and provide a
potential strategy for the activation of FBXW7 against c-MYC-driven MB.

2. Results
2.1. MYC Activates PLK1 Transcription in MYC-Amplified Medulloblastoma Cell Lines

We previously demonstrated that PLK1 is highly expressed in MYC-driven medulloblas-
toma and that the inhibition of PLK1 with BI2536 suppresses tumor cell growth [12]. To
evaluate the mechanisms by which PLK1 is overexpressed in MYC-driven medulloblastoma,
we first asked whether c-MYC activates PLK1 transcription in medulloblastoma. We examined
the expression of PLK1 and c-MYC in two cohorts of patient samples [5,22]. Microarray results
showed that the expression of c-MYC and PLK1 was positively correlated in medulloblastoma
(Figure 1a,b). We then depleted c-MYC with two specific shRNAs in the MB cell lines D425
and D458 (Figure 1c and Figure S1). C-MYC knock-down caused a significant reduction in
PLK1 mRNA and protein levels in both D425 or D458 cells (Figure 1d,e). These data suggested
that MYC directly induces PLK1 transcription in medulloblastoma.

To confirm that MYC activates the transcription of PLK1, we next transfected D458
cells with omoMYC, which is a dominant-negative MYC inhibitor that inhibits the tran-
scriptional activation of MYC target genes by preventing MYC heterodimerization with
MAX [23]. Doxycycline was administered to induce the expression of omoMYC. Notably,
the inhibition of the MYC protein led to marked decreases in the level of the PLK1 protein
(Figure 1f). Additionally, we identified a MYC E-box binding motif at 198 base pairs
upstream of the PLK1 transcriptional start site. Chromatin immunoprecipitation (ChIP)-
sequencing in D458 cells revealed a significant increase in MYC recruitment to the PLK1
promoter-proximal E-box motif compared with a IgG isotype control (Figure 1g). MYC
binding to the PLK1 promoter was further confirmed using public data from Encyclopedia
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of DNA Elements (ENCODE) (Figure 1g). The chromatin occupancy profiles were also
verified in a ChIP PCR assay (Figure 1h).
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Figure 1. MYC activates polo-like kinase 1 (PLK1) transcription in MYC-amplified medulloblastoma (MB)
cell lines. (a) Correlation of mRNA levels between of PLK1 and MYC in 11 group 3 medulloblastoma (MB)
patient samples from a microarray dataset of University of Colorado. (b) Correlation of mRNA levels
between PLK1 and MYC in 134 group 3 MB patient samples of the Cavalli dataset [5]. (c) The real-time
PCR analysis of c-MYC expression upon c-MYC shRNA knockdown for 72 h in the D425 and D458 cell
lines; Mean ± SD; *** p < 0.001 (one-way ANOVA). (d) Real-time PCR analysis of PLK1 expression
upon c-MYC shRNA knockdown for 72 h in the D425 and D458 cell lines; Mean ± SD; *** p < 0.001
(one-way ANOVA). (e) The immunoblot detection of c-MYC and PLK1 protein levels after 72 h of c-MYC
shRNA transfection, with β-actin as a loading control. The quantification plot can be found in Figure
S2a. (f) Induction of omoMYC in D458 cells were determined by Western blotting. Levels of PLK1 was
determined by Western blot. β-actin was used as a loading control. The quantification plot can be found in
Figure S2b. (g) E-box motif on promoter regions of PLK1 (top). IGV screenshot of representative chromatin
immunoprecipitation (ChIP)-Seq data of c-MYC on the promotion of PLK1. Data shown for the D458
cell lines from published studies (bottom). Genome-wide analyses of c-MYC occupancy demonstrated
that c-MYC binds to the promoter region of PLK1 gene. A IgG isotype control was used for the control.
K562: leukemia line; A549: lung carcinoma cell line; hESC: human embryonic stem cell lines; and MCF-7:
breast cancer cell line. (h) Binding of c-MYC to the promoter of PLK1 analyzed by ChIP PCR in D458 cells.
CDK4-peak was used for the positive control. Mean ± SD; *** p < 0.001 (one-way ANOVA). The original
blots are in Figure S3.

2.2. PLK1 Antagonizes FBXW7-Mediated Degradation of c-MYC

A PLK1/FBXW7/N-MYC pathway has been demonstrated in neuroblastoma, where
PLK1 phosphorylates FBXW7, promotes FBXW7 degradation and leads to the stabilization
of N-MYC [24]. In order to test whether a similar mechanism exists in c-MYC-driven
medulloblastoma, we examined c-MYC protein levels in MB D458 cells treated with PLK1
inhibitors PCM-075 and BI6727. PLK1 inhibitor treatment led to the loss of c-MYC protein
levels, as determined by Western blot (Figure 2a). Immunofluorescence showed FBXW7
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protein abundance was significantly increased in the PCM-075 treated D425 and D458 cell
lines (Figure 2b). Additional targets of FBXW7, including AURORA A MCL-1, and Cyclin
E, were also downregulated in response to PCM-075 in MB cells, implying FBXW7 is an
upstream regulator of c-MYC in medulloblastoma (Figure 2c). Moreover, the adminis-
tration of BI6727 or PCM-075 in D425 and D458 cells consistently increased endogenous
FBXW7 levels concomitant with the degradation of c-MYC. The degradation was rescued
by the addition of the 26S proteasome inhibitor MG132, suggesting a posttranslational
regulation of c-MYC via PLK1 (Figure 2d). The knockdown of FBXW7 in the D425 and
D458 cell lines increased c-MYC and abolished the PCM-075-induced loss of the c-MYC
protein, supporting our conclusion that FBXW7 mediates the degradation of c-MYC, while
PLK1 promotes c-MYC stabilization via the abrogation of the FBXW7 in MYC-amplified
medulloblastoma cell lines (Figure 2e,f).
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Figure 2. PLK1 antagonizes FBXW7-mediated degradation of c-MYC. (a) Western blot of c-MYC and
tubulin with various concentrations of 5–20 nM BI6727 or PCM-075 treatment in D458 cells for 48 h.
The quantification plot can be found in Figure S2c. (b) Representative immunofluorescence of FBXW7
in D425 and D458 cells treated with 10 nM PCM-075 for 48 h. Results are representative of three
independent experiments. (c) Western blot of AURORA A, MCL-1, Cyclin E1, c-MYC and β-actin.
D425 and D458 cells were treated with 10 nM PCM-075 for 48 h. The protein levels were analyzed
by immunoblot, with β-actin as a loading control. (d) PLK1 sustains MYC through FBXW7. D425
and D458 cells were treated with BI6727 (10 nM) or PCM-075 (10 nM) for 48 h. For MG132 treatment,
cells were treated with MG132 (10 mM) for 6 h before harvest. FBXW7 and c-MYC protein levels
were analyzed by immunoblot with β-actin as a loading control. (e,f) FBXW7 depletion rescued the
c-MYC loss resulting from PLK1 inhibition. D425 or D458 cells were infected with the control shRNA
or validated shRNAs targeting FBXW7 for 72 h and then treated with or without PCM-075 (10 nM)
for 48 hr. The c-MYC levels were analyzed by immunoblot, with β-actin as a loading control. The
original blots are in Figures S3 and S4. * p < 0.05, *** p < 0.001.

2.3. PLK1-MYC-FBXW7 Regulatory Loop in Medulloblastoma

We then evaluated the expression of MYC, PLK1, and FBXW7 in a panel of well-
characterized medulloblastoma cell lines (Figure 3a). Group 3 cell lines expressed lower
levels of the FBXW7 protein and higher levels of the PLK1 and MYC proteins compared
with the SHH group or normal cerebellum, further confirming the inverse relationship of
FBXW7 and MYC/PLK1 in medulloblastoma.
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Figure 3. PLK1-MYC-FBXW7 regulatory loop in medulloblastoma. (a) Western blot analysis of
FBXW7, c-MYC, and PLK1 in medulloblastoma cell lines. The protein was normalized with β-actin
on the same membrane (left). Quantification bar blot of Western blots (right). The quantification
for each protein can be found in Figure S2. (b) Endogenous interaction between c-MYC with PLK1
and FBXW7. Lysates from D458 cells were subjected to immunoprecipitation using an anti-c-MYC
antibody, and proteins that co-precipitated with c-MYC were detected by immunoblot using anti-
PLK1 or anti-FBXW7 antibodies. (c,d) FBXW7 promotes PLK1 and c-MYC ubiquitination. The HA293
cells were transfected with plasmids expressing Myc tag PLK1 or HA tag c-Myc, His-ubiquitin and
Flag tag FBXW7. Cell lysates were immunoprecipitated with specific Myc tag or HA tag antibodies,
and the ubiquitin protein levels were analyzed by immunoblot. β-actin was used as a loading control.
(e) FBXW7 poly-ubiquitination in the presence or absence of PLK1 mutants. HEK293 cells were
transfected with plasmids expressing ubiquitin, Flag tag FBXW7 and constitutively active PLK1
(PLK1-T210D) or kinase inactive mutant PLK1 (PLK1-K82R), as indicated, followed by lysis in an IP
buffer. A ubiquitin-conjugated FBXW7 protein was immunoprecipitated with a FLAG tag antibody
and subjected to an immunoblot assay with a ubiquitin antibody. β-actin was used as a loading
control. The original blots are in Figure S5.

To study the interaction of PLK1-FBXW7 and MYC-FBXW7, we performed immuno-
precipitation and electrophoresis with the c-MYC antibody in D458 cells. Western blot anal-
ysis demonstrated the endogenous interaction of MYC-FBXW7 and MYC-PLK1 (Figure 3b).
When we co-expressed flag-FBXW7 with HA-MYC or myc-tag-PLK1 in HEK293 cells, im-
munoprecipitation with an antibody myc-tag or an HA-tag antibody showed that FBXW7
promoted the ubiquitination of PLK1 and c-MYC. Together, these data indicated that
FBXW7 physically interacts with PLK1 and c-MYC, and it induces the ubiquitination and
proteasome degradation of PLK1 and c-MYC in medulloblastoma (Figure 3c,d).

FBXW7 has been found to be regulated by proteasomal degradation through self-
poly-ubiquitination [24]. Our results demonstrated that PLK1 inhibition enhanced FBXW7
stability in medulloblastoma. In order to determine whether PLK1 promotes FBXW7
degradation through phosphorylation, we transfected constitutively active PLK1 (PLK1-
T210D) and kinase inactive mutant PLK1 (PLK1-K82R) in HEK293 cells. PLK1-T210D, but
not PLK1-K82R, increased the ubiquitination level of FBXW7. Treatment with PCM-075
decreased FBXW7 poly-ubiquitination by inhibiting PLK1 activity, suggesting that PLK1
activation is required for destabilizing FBXW7 and that PLK1 inhibition stabilizes c-MYC
by regulating FBXW7 auto-ubiquitination (Figure 3e).

2.4. FBXW7 Is Descreased in Medulloblastoma

FBXW7 is responsible for degrading diverse oncoproteins and is considered a tumor
suppressor in many types of cancers. To establish the role of FBXW7 in medulloblastoma, we
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performed microarray analysis in 44 MB patient samples and six normal cerebella samples
(Figure 4a). We also examined the expression of FBXW7 in a cohort of 763 recently described
MB samples (Figure 4b). Microarray data generated from two platforms were normalized and
merged in order to generate a combined series that would facilitate the analyses. The results
showed that FBXW7 is significantly downregulated in all subgroups of MB. Kaplan–Meier
survival curves showed that high FBXW7 expression significantly correlates with a better
overall survival (Figure 4c). Moreover, all subtypes of group 3 MB samples were found to
express notably lower FBXW7 levels than normal cerebellum, including in the high c-MYC
expressed group 3 subtype (Figure 4d). We then examined group 3 pediatric patient samples
by immunohistochemistry staining (Figure 4e). FBXW7 was considerably decreased in tumor
tissues compared with the normal human cerebellum. These results suggested that FBXW7 is
an important mediator in the tumorigenesis of medulloblastoma.
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Figure 4. FBXW7 is decreased in medulloblastoma. (a) Microarray analysis showing FBXW7 expres-
sion in 44 medulloblastoma patient samples. n = 6 in normal, n = 11 in group 3, n = 18 in group
4, n = 13 in the SHH group, and n = 2 in the WNT group. Mean ± SD; ** p < 0.01; *** p < 0.001
(one-way ANOVA). (b) Microarray analysis showing FBXW7 expression in 763 medulloblastoma
patient samples of Cavalli data. n = 6 in normal, n = 134 in group 3, n = 317 in group 4, n = 211 in
the SHH group, and n = 65 in the WNT group. Mean ± SD; ** p < 0.01; *** p < 0.001 (one-way
ANOVA). (c) Kaplan–Meier plots indicating overall survival in relation to FBXW7 expression in all
MB patient populations. ** p < 0.01, Log-rank (Mantel–Cox) test. (d) Microarray analysis showing
FBXW7 expression in 134 group 3 medulloblastoma patient samples of Cavalli data. n = 61 in group
3α, n = 35 in group 3β, and n = 38 in group 3γ. Mean ± SD; ** p < 0.01; *** p < 0.001 (one-way
ANOVA). (e) IHC staining of human group 3 medulloblastoma and normal cerebella tissue using
a specific antibody for FBXW7. Scale bar: 1 mm. Images shown at 40×. Mean ± SD; two-tailed
student t test, * p < 0.05.

2.5. FBXW7 Overexpression Increases Apoptosis in Medulloblastoma Cells

Recent studies have demonstrated that kinases phosphorylate FBXW7 at Thr205
and promote its proteasomal degradation [25,26]. In order to evaluate whether Thr205
residue phosphorylation affects the function of FBXW7 in medulloblastoma, we constructed
WT-FBXW7 and phosphomimetic aspartic acid mutant (T205D) and performed a cell pro-
liferation assay in D458 cells. In comparison with the vector control, wild-type FBXW7
dramatically decreased the proliferation of MB cells. The phosphomimetic T205D mutation
decreased proliferation but to a lesser extent than the WT-FBXW7, suggesting that phos-
phorylation fosters the ubiquitination and subsequent degradation of FBXW7 (Figure 5a,b).
To determine if overexpressed FBXW7 impairs the ability of MB cells to form adhesion-
independent colonies, we performed a methylcellulose assay. WT-FBXW7 or FBXW7 with
T205 mutation-transduced D458 cells were plated in 1.3% methylcellulose, and colonies
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were counted after 14 days. WT-FBXW7 overexpressing cells showed a more than 50%
reduction in the number of colonies compared with the vector-transduced cells, whereas
T205D mutation weakened this trend (Figure 5c). As expected, the cells transduced with
WT-FBXW7 showed a notably lower MYC signal compared with the cells transduced with a
vector or the T205 mutation, supporting the notion that FBXW7 mediates MYC degradation
in MB cells (Figure 5d,e).
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Figure 5. FBXW7 overexpression increases apoptosis in medulloblastoma cells. (a) Representative
immunofluorescence images of RFP in D458 cells expressing FBXW7 (wild-type or T205D mutant) or
a pLenti-CMV-RFP-2A-Puro-Blank vector. Results are representative of five independent experiments
on an Incucyte system for live cell imaging with 2000 ng/mL of puromycin. (b) Cell growth assay
in D458 cells expressing FBXW7 (wild-type or T205D mutant) or a vector (n = 3). Mean ± SE;
*** p < 0.001 (one-way ANOVA). (c) Methylcellulose assay of D458 cells expressing FBXW7 (wild-
type or T205D mutant) or a vector. The experiment was performed in triplicate. Mean ± SD;
* p < 0.05; *** p < 0.001 (one-way ANOVA). (d) Images ordered by the top intensity of the MYC
signal acquired from Amnis FlowSight. The D458 cells expressing FBXW7 (wild-type or T205D
mutant) or a vector (n = 3) were stained with an MYC antibody and gated by an RFP-positive
signal. (e) Amnis FlowSight analysis of c-MYC expression in RFP-positive cells of the D458 cell line
expressing FBXW7 (wild-type or T205D mutant) or a vector. (f,g) Flow cytometry analysis of early
and late apoptosis in the D425 or D458 cell lines expressing FBXW7 (wild-type or T205D mutant)
or a vector. The cells were analyzed after staining with FITC-conjugated annexin V and PI by a
flow cytometer. Quantification of apoptotic cell percentage in the D425 or D458 cell lines expressing
FBXW7 (wild-type or T205D mutant) or a vector (n = 3). Mean ± SD; * p < 0.05; ** p < 0.01;
*** p < 0.001 (one-way ANOVA).

To determine whether the detected reduction in proliferation was due to a cessation of
growth or an increase in cell death, we examined annexin V positivity by flow cytometry.
D425 and D458 cells overexpressed with WT-FBXW7 showed a significant increase in
annexin V (+), and the T205D mutation also demonstrated an increase in annexin V (+) but
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to a lesser extent than WT-FBXW7, indicating that overexpressed FBXW7 improved the
sensitivity of MB cells to apoptosis (Figure 5f,g).

2.6. Activation of FBXW7 Is a Potential Therapeutic Strategy for c-MYC-Driven Medulloblastoma

To examine the effect of FBXW7 in vivo, luciferase-expressing D458 cells with FBXW7
constructs (empty vector, WT-FBXW7, or FBXW7-T205D mutation) were injected into the
cerebellum of mice, and tumor growth was monitored in vivo. Animals in the vector group
showed a rapid increase of the bioluminescence signal in week 1, the T205D mutation
group showed the bioluminescence signal after week 2, and the WT-FBXW7 group showed
the signal after week 3 (Figure 6a,b). We also assessed tumor volumes by high-resolution
T2-weighted MRI. We found that the tumor volume was larger in the vector group, while
both the mutation and WT-FBXW7 groups exhibited a slowed growth of tumors (Figure 6c).
Consistent with bioluminescence imaging and MRI results, mice bearing WT-FBXW7 and
FBXW7-T205D revealed an enhanced survival compared to mice bearing the same cells
with a vector (Figure 6d). These results demonstrated that FBXW7 is critical for blocking
tumor progression, and T205 phosphorylation promotes its degradation and abolishes
FBXW7 tumor suppressor function in medulloblastoma.
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Figure 6. Activation of FBXW7 is a potential therapeutic strategy for MYC-driven medulloblas-
toma. (a,b) Representative images of bioluminescence imaging from nude mice xenografts injected
with D458 cells expressing FBXW7 (wild-type or T205D mutant) or a vector. n = 7 for each group.
(c) Representative sagittal T2-weighted turboRARE (rapid acquisition with relaxation enhancement)
MR images on cerebellar D458 tumor lesions expressing FBXW7 (wild-type and T205D mutant) or a
vector. (d) Kaplan–Meier survival plot from intracranial orthotopic mouse model. *** p < 0.001, Log-rank
(Mantel–Cox) test. (e) Immunohistochemical staining of MB from intracranial orthotopic mouse model
for FBXW7, c-MYC, Caspase 3, and H&E. Images taken at 40×. Mean ± SD; * p < 0.05; ** p < 0.01;
*** p < 0.001 (one-way ANOVA). (f) Proposed model depicting the PLK1-MYC-FBXW7 signaling cir-
cuits. PLK1 promotes FBXW7 auto poly-ubiquitination and proteasomal degradation, counteracting the
FBXW7-mediated degradation of c-MYC. In turn, stabilized c-MYC directly activates PLK1 transcription,
constituting regulatory loops.
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Additionally, an immunohistochemical analysis displayed an overexpression of FBXW7
and depleted c-MYC expression concomitant with massive intertumoral apoptosis as quan-
tified by c-caspase-3 staining (Figure 6e). Taken together, all of these results suggest that
the overexpression of FBXW7 confers a growth disadvantage in MB cells and the activation
of FBXW7 is a potential therapeutic strategy against c-MYC-driven MB.

3. Discussion

FBXW7 is considered to be a strong tumor suppressor that governs human cell cy-
cle progression, cell growth, and tumor development by directing certain oncoproteins
to ubiquitin-mediated proteolysis. It is frequently deactivated by mutations or genetic
deletions in many types of cancer [19,27]. However, a previous study reported that FBXW7
mutations are not frequently observed in group 3 MB, implying that wild-type FBXW7 is
deregulated by a different mechanism [28]. In this study, we proved that PLK1 directly in-
teracts with FBXW7, fostering its phosphorylation and auto-polyubiquitination in MB. We
also demonstrated the tumor suppressor role of FBXW7 in group 3 MB. By overexpressing
wild-type and mutant forms of FBXW7, we observed a remarkable growth disadvantage in
MB, both in vitro and in vivo. Our study identified FBXW7 as a critical suppressor in the
tumorigenesis of medulloblastoma.

Phosphorylation residues of FBXW7, as well as the surrounding amino acids, are
highly conserved among vertebrates, indicating that the phosphorylation of these sites may
have an evolutionarily conserved role in the regulation of FBXW7 stability [19,26]. Thr205
is an important and most well-known phosphorylation site of FBXW7. The extracellular
signal-regulated kinase (ERK) can interact with and phosphorylate FBXW7 at Thr205,
leading to FBXW7 ubiquitination and proteasome-mediated degradation [25]. Pin1 also
negatively regulates FBXW7 stability through T205 [26]. In our study, both in vivo and
in vitro data showed that phosphorylation at the T205 site inhibited FBXW7 tumor suppres-
sor function in MB. Furthermore, a previous study showed that FBXW7 governs cellular
apoptosis by targeting the pro-survival Bcl-2 family member, Mcl-1, for ubiquitination
and destruction in a GSK3 phosphorylation-dependent manner [29]. Here, we revealed
that PLK1 inhibition increased FBXW7 protein abundance accompanied by a decrease of
MCL-1. We also showed FBXW7 overexpression increased apoptosis. Thus, FBXW7 may
modulate apoptosis by promoting MCL-1 degradation in medulloblastoma.

Direct pharmacological approaches to the inhibition of MYC family members has
been proven difficult. Our findings showed that targeting PLK1 signaling provokes MYC
destruction by the proteasome, inducing a robust apoptotic therapeutic response. Moreover,
FBXW7 has also been reported to ubiquitylate and degrade through the phosphorylation by
GSK3β [30], while AURORA A is targeted for ubiquitination and subsequent degradation
by FBXW7 in a process that is regulated by GSK3β [31,32]. In addition, ERK phosphorylates
and destabilizes FBXW7 in pancreatic cancer [25]. Thus, many kinases can negatively
regulate FBXW7 stability by promoting its self-ubiquitination, which indicates a potential
therapeutic strategy against MYC-driven cancer.

Due to the role of PLK1 in the cell-cycle and kinase pathway that are significant
to cancer progression, PLK1 is recognized as a ‘druggable target’ for the development
of therapeutics for the management of a variety of cancers [33–35]. There are several
clinical trials going on now [36]. Our results strongly supported the idea that PLK1 holds
promise as a therapeutic target in MB and revealed that PLK1 inhibition can reduce tumor
cell proliferation and increase apoptosis in MB. The inhibition of PLK1 with PCM-075 or
BI6727 decrease the phosphorylation of FBXW7, reducing its poly auto-ubiquitylation and
resulting in an accumulation of FBXW7. The accumulation of FBXW7 facilitates the E3
ubiquitin ligases degradation of MYC and the MCL-1 protein. Moreover, we demonstrated
that MYC also actives PLK1 transcription (Figure 6f). Collectively, these results suggest
that a FBXW7-MYC-PLK1 signaling circuit underlies the tumorigenesis of MB and validate
PLK1 inhibitors as potentially effective therapeutics for MYC-overexpressing cancers.



Cancers 2021, 13, 387 10 of 14

4. Materials and Methods
4.1. Cell Lines and Reagents

The D341, D425, and D458 cell lines were provided by Darell D. Bigner (Duke Uni-
versity Medical Center, Durham, NC, USA). The small molecule PLK1 inhibitor BI6727
was purchased from Chemitek (Indianapolis, IN, USA), and PCM-075 was provided by
Trovagene (San Diego, CA, USA). The drugs were reconstituted in dimethyl sulfoxide
(DMSO). An equivalent amount of DMSO for the highest concentration of drug was used
for each experiment as a vehicle control.

4.2. Plasmids

The FBXW7 lentiviral vector (#LV158451) and the pLenti-CMV-RFP-2A-Puro-Blank
vector (#LV591) were purchased from ABMgood (Richmond, BC, Canada). The T205D
mutation was cloned into the lentiviral vector to generate FBXW7 expression plasmids.
The HEK293T cell line was used to produce lentivirus-expressing vectors. Briefly, the trans-
fection was performed by using the Lipofectamine 3000 Transfection Reagent (Invitrogen,
Carlsbad, CA, USA). After 18 h post transfection, the media were removed and replaced
with fresh media. The lentivirus was harvested the next day and used to generate stable cell
lines (D425 and D458). The transduced cells were selected with 2000 ng/mL of puromycin
for 48 h. The same concentration of puromycin was added to the growth medium during
the whole experiment.

4.3. Quantitative Real-Time Polymerase Chain Reaction

RNA was isolated using a Qiagen RNeasy kit (Valencia, CA, USA). cDNA was syn-
thesized from 2 µg of total RNA with High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific). Real-time PCR was performed using Power SYBR-Green PCR
mastermix (Thermo Fisher Scientific). qPCR was performed on a StepOnePlus Real-Time
PCR system (Thermo Fisher Scientific). The primer sequences were as follows: CDK4-
peak, ATGGCTACCTCTCGATATGAGC and CATTGGGGACTCTCACACTCT; PLK1-
peak, GCCCGAGAAAGGGAGAAAC and ATAGCCTGGGAAACCAAACC; and PLK1,
CACCAGCACGTCGTAGGATTC and CCGTAGGTAGTATCGGGCCTC.

4.4. Microarray Preparation and Data Processing

RNA from all surgical specimens was extracted, amplified, labeled, and hybridized
to Affymetrix HG-U113 plus 2 microarray chips (Affymetrix, Santa Clara, CA, USA). The
scanned microarray data were background-corrected and normalized using the RMA
algorithm, resulting in log 2 gene expression values. For public microarray data, raw
CEL files were downloaded from the Gene Expression Omnibus under accession numbers
GSE85217 and normalized using the RMA algorithm. The gene expression array data
generated using the Affymetrix Gene 1.1 ST array (Santa Clara, CA, USA) and U133 Plus
2.0 array platforms were merged in order to generate a combined value. For each platform,
a contrast value per gene was calculated by subtracting the mean expression of that gene
across all samples hybridized on that platform from each individual, and the resulting
contrast values of the two platforms were then combined.

4.5. ChIP-Sequencing

ChIP-seq libraries were sequenced on the Illumina Novaseq 6000 platform. Bowtie2
was used to align the 150-bp paired-end sequencing reads to a reference human genome
(hg38) downloaded from the UCSC Genome Browser. Peaks were called using MACS2
(v2.1.1.20160309) with default parameters [37]. Peak locations were further annotated
according to the known genes in hg38, and 3000 bp of upstream and downstream of
transcription start sites were considered as promoter regions using the R/Bioconductor
package ChIPseeker [38].
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4.6. Western Blotting and Immunoprecipitation

Cells were lysed in a RIPA buffer (Thermo Fisher Scientific, Waltham, MA, USA)
containing an EDTA-free protease inhibitor (Roche Diagnostics, Basel, Switzerland), and
protein concentrations were determined with the BCA Protein Assay Kit (Pierce, Thermo
Fisher Scientific). Protein (30 µg in total) was separated on a 4–20% SDS-PAGE gradient
(Bio-Rad). The membrane was incubated with a primary antibody overnight at 4 ◦C.
A secondary antibody—α-mouse-HRP (#7076, cell signaling), α-rabbit-HRP (#7074, cell
signaling), or α-actin-HRP (#12262, cell signaling)—was exposed for 1 h at room temper-
ature. Blots were developed with Luminata Forte Western HRP (Millipore) and imaged
using Syngene GBox Chemi-SL1.4 gel doc. Antibodies used for Western blot analysis were
from the following sources: β-actin #8457, Aurora A #14475, Mcl-1 #94296, and Cyclin
E1 #4219 were purchased from Cell Signaling, USA, and PLK1 ab17056, c-MYC ab32072,
c-MYC ab39688, c-MYC ab185655 (phopho S58) ab185656, c-MYC (phopho S62) ab185656,
FBXW7 ab109617, and ubiquitin ab7780 were purchased from Abcam. Western blots were
quantified using ImageJ.

Immunoprecipitation assays were performed by using an anti-c-MYC antibody, a PLK1
antibody, an HA-tag antibody (Y1070, UBPBio, Aurora, CO, USA), a Myc-tag antibody (Y1090,
UBPBio), a DYKDDDDK-tag antibody (Y1101, UBPBio), and Dynabeads (Thermo Fisher,
Waltham, MA, USA). Immunoprecipitations with IgG were used as controls for specificity.

4.7. Immunofluorescence

Three thousand D425 or D548 cells grown in poly-D-lysine-coated chamber slides
were treated with an 10nM PCM-075 or DMSO for 48 h. After treatment, cells were washed
and fixed with 4% paraformaldehyde for 15 min at room temperature. Cells were then
permeabilized with 0.2% Triton X-100 in PBS for 15 min followed by incubation in 5%
milk diluted in 0.05% Triton X-100 for 30 min at room temperature on a shaker. After
blocking, cells were incubated with the primary antibodies. The FBXW7 antibody was used
at a dilution of 1:200 for 1 h at room temperature. After washing with 0.05% Triton X-100
(3 times for 5 min each), cells were incubated with an Alexa Fluor 647-conjugated secondary
antibody (1:500) for 1 h at room temperature in the dark, washed with PBS (3 times for
5 min each), and mounted using a ProLong Gold antifade reagent containing DAPI (Sigma,
St. Louis, MO, USA). Images were acquired using an inverted epifluorescence microscope
at a magnification of 20×.

4.8. Immunohistochemistry

For histology, tumors from patient samples or experimental mice were dissected and
either frozen or preserved in 10% formalin. The samples were rinsed in PBS and fixed
in 4% paraformaldehyde overnight at 4 ◦C and embedded in paraffin. Antigen retrieval
was performed by the application of a citrate buffer with a pH of 6.00 for 20 min. Slides
were then incubated with FBXW7, c-MYC, PLK1, cleaved caspase 3 antibodies, and H&E
overnight at 4 ◦C. The secondary antibody conjugated to horseradish peroxidase was
applied and detected using the Dako Envision Kit for 3,3′-diaminobenzidine. All patients
provided written informed consent for molecular studies of their tumor, and the protocol
was approved by the ethics committee of University of Colorado and Children’s Hospital
Colorado (COMIRBs #95–500).

4.9. Flow Cytometry Assay

Cells were seeded in 10 cm plates (106 cells/well) and treated with 10 nM of BI6727 or
PCM-075. Cells were harvested 48 h later and fixed with 4% formaldehyde for 15 min at
room temperature. Fixed cells were then washed and permeabilized with methanol on ice
for 10 min. The cells were stained with a c-MYC (#5605, cell signaling) antibody. The flow
cytometric analysis was performed on the Amnis FlowSight flow cytometer (Millipore,
Burlington, MA, USA).
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4.10. Cell Apoptosis Assay

Cells were transfected with a vector, T205D-FBXW7, and WT-FBXW7. Equal numbers
of cells were then stained using a Guava Nexin reagent (Millipore) to detect apoptotic cells.

4.11. Methylcellulose Assays

In a 1:1 mixture of 2.6% methylcellulose and complete growth medium, 500 cells/3 mL
were plated. Cells were allowed to grow for ten days. Colonies were stained with nitrotetra-
zolium blue chloride (Sigma) at 1.5 mg/mL in PBS for 24 hrs at 37 ◦C and then counted.

4.12. In Vivo Xenograft Experiments

D458 cells were collected and resuspended as a single cell suspension of 20,000 cells/
3 µL in serum free media. Cell injection and the following animal experiment was per-
formed as previously described [39]. Tumor bioluminescence was analyzed using the
Living Image 2.60.1 software (Caliper Life Sciences, PerkinElmer, Waltham, MA, USA).
Animal care and experimental procedures were conducted in accordance with the guide-
lines of the University of Colorado Center for Comparative Medicine and the University of
Colorado Institutional Animal Care and Use Committee (protocol number: 00052).

4.13. Magnetic Resonance Imaging

For in vivo MRI acquisitions, mice were anesthetized shortly before and during the
MR session using a 1.5% isoflurane/oxygen mixture. Anesthetized mice were placed
on a temperature-controlled mouse bed below a mouse head array coil and inserted
into a Bruker 9.4 Tesla BioSpec MR scanner (Bruker Medical, Billerica, MA, USA). First,
T2-weighted turboRARE images were acquired using the following parameters: repe-
tition time (TR) = 3268 ms; echo time (TE) = 60 ms; RARE factor = 12 and 8 averages;
FOV = 20 mm; matrix size = 350 × 350; slice thickness = 700 µm; 24 sagittal and axial slices;
and in-plane spatial resolution = 51 µm. Then, a diffusion-weighted EPI sequence with 6 b
values was used using 4 axial slices covering all tumor lesions and unaffected brain tissue.
Tumor regions were manually segmented on T2-weighted images by placing hand-drawn
regions of interest (ROI), and the volume was calculated as mm3. The apparent diffusion
coefficients (ADC; s/mm2) were calculated from diffusion-weighted imaging maps as a
criterion for tumor cellularity. All acquisitions and image analysis were performed using
the Bruker ParaVision NEO software (Bruker, Billerica, MA, USA).

4.14. Statistics

Statistical analysis was performed using the GraphPad Prism 8 software (GraphPad,
San Diego, CA, USA). One-way ANOVA tests and two-tailed Student’s t-tests were used
for comparisons between groups. A log-rank (Mantel–Cox) test was use for survival curve
comparison. p-values < 0.05 were considered to indicate significance.

5. Conclusions

Our study found FBXW7 is decreased in group 3 MB, MYC directly activates the
transcription of PLK1, and PLK1 inhibition leads to the degradation of MYC by stabi-
lizing FBXW7. These results demonstrated the FBXW7-MYC-PLK1 regulatory loop and
that FBXW7 stabilization is crucial for the suppression of tumorigenesis in MYC-driven
medulloblastoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/3/387/s1, Figure S1: Proliferation of D425 and D458 shNull or shMYC cell lines, Figure S2:
Western blot analysis and quantification, Figure S3: Full blots corresponding to Figures 1 and 2e,
Figure S4: Full blots corresponding to Figure 2, Figure S5: Full blots corresponding to Figure 3.
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