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Abstract
Photoplethysmography is nowwidely utilised by clinical devices such as pulse oximeters, andwearable
devices such as smartwatches. It holds great promise for healthmonitoring in daily life. This editorial
considers whether it would be possible and beneficial to establish best practices for photoplethysmo-
graphy signal acquisition and processing. It reports progressmade towards this, balancedwith the
challenges of workingwith a diverse range of photoplethysmography device designs and intended
applications, each of which could benefit fromdifferent approaches to signal acquisition and
processing. It concludes that there are several potential benefits to establishing best practices.
However, it is not yet clear whether it is possible to establish best practices which hold across the range
of photoplethysmography device designs and applications.

This Editorial considers whether it would be possible and beneficial to establish best practices for acquiring and
processing photoplethysmography signals.

Photoplethysmography is anoptical techniquewhichprovides non-invasivemeasurements of the arterial pulse
wave,which is related to theblood volume change in the observedmicrovascular tissue. Thephotoplethysmogram
(PPG) signal is alreadywidelyutilisedby clinical devices such as pulse oximeters (Alian andShelley), andwearable
devices such as smartwatches (Charlton andMarozas). Photoplethysmographyholds great promise for health
monitoring indaily life. Indeed, several potential applications of photoplethysmographywere presented in 2021
alone inPhysiologicalMeasurement, including: bloodpressuremonitoring (Esmaelpoor et al2021,Xing et al2021);
detectingperipheral arterial disease (Allen et al2021); sleep staging (Li et al2021); screening for sleep apnea and
cardiovascular disease (Behar et al2020,Ouyang et al2021); anddetectingdriver sleepiness (Hultman et al2021).

Despite thewidespread use of photoplethysmography, best practices have not yet been established for
acquiring and processing photoplethysmography signals. Thismay in part be due to the diversity of
photoplethysmography device designs, ranging from smartwatches to earbuds, and applications, ranging from
oxygen saturationmeasurement in clinical practice to heart ratemonitoring during exercise (Charlton et al
2022). Potentially, the best approach to signal acquisition and signal processing could differ between each device
design and application. Nonetheless, there could be benefits to establishing best practices, such as establishing
hardware configurations that consistently provide high quality signals, and establishing signal processing
algorithms that can accurately derive parameters from a variety of PPG signals. This is illustrated by thefindings
of Liu et al in their recent article inPhysiologicalMeasurement. They found that the use of different PPG signal
filtering settings can result in differentmeasurements being obtained fromPPGpulsewave analysis. Based on
this, they highlighted the potential benefits of the ‘standardisation’ of PPGfiltering (Liu et al 2021). In this case,
establishing best practices forfiltering PPG signals would have the benefit of allowing pulse wave indices to be
compared between studies and between devices. However, thismay not be straightforward as different filtering
settingsmay be required for different applications, such as heart ratemonitoring (which uses the fundamental
frequency of the PPG,≈0.5–3Hz) and blood pressure assessment (which uses higher frequency content).
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Potential areas inwhich best practices could be established include factors relating to device design
(hardware and software) andmeasurement protocols (recording setting and duration). These are summarised in
figure 1, and nowdescribed.

Several factors in the hardware design influence the PPG signal (Charlton andMarozas, Lemay et al), and are
therefore potential areas in which best practices could be established. Firstly, thewavelength of emitted light
determines the depth of light penetration, and consequently the level of the vasculature contributing to the PPG
signal (Liu et al 2019), which influences signal quality (Fallow et al 2013). Current best practice is to use longer
wavelengths (e.g. infrared) for transmission photoplethysmography as these penetrate deeper (Anderson and
Parrish 1981), and shorter wavelengths (e.g. green) for reflectance photoplethysmography as these produce
higher signal quality for heart ratemeasurement (Matsumura et al 2020). However, this practicemay need to be
revisited as the use of green light has been found to result in less accurate heart ratemonitoring in subjects with
darker skin tones (Fine et al). Secondly, in reflectance photoplethysmography the signal quality is influenced by
the geometry of the light emitter, light detector, and sensor casing. Current best practice is to design the
surrounding casing to eliminate ambient light as far as possible (Abay andKyriacou). In the future thismay be
extended to using geometries inwhich the LED surrounds the photo detector, as these have been found to give
higher signal quality (Khan et al 2019). Thirdly, the contact pressure applied by the device to the skin impacts the
shape of the PPGpulsewave (Chandrasekhar et al 2020) and consequently its second derivative (Grabovskis et al
2013). Best practice in the area of contact pressure has not yet been established: higher pressuresmay reduce
probe-tissuemovement artifact, and have been found to increase the accuracy of PPG-based heart rate
monitoring (Scardulla et al 2020). However, it is not clearwhether such pressures would be suitable for long-
termmonitoring. Ideally, the contact pressure should remain constant when analysing pulsewave shape, such as
when tracking changes nocturnal changes in blood pressure (Radha et al 2019). Fourthly, the body site chosen
for PPGmeasurement influences pulse wave shape (Hartmann et al 2019), and the utility of the acquired signal
(Charlton andMarozas). Best practice has not yet been established in this area: in clinical devices the finger is
often used (Alty et al 2007), whereas in consumer devices thewrist is often used due to user preference (Prinable
et al 2017). In summary, the challenge of establishing best practices is not trivial, as several factors can influence
the PPG signal, and it is likely that different device configurationswould be best suited to different applications.

The software used in PPGdevices influences the PPG signal and the parameters derived from it, and
therefore presents potential areas inwhich to establishing best practices. Firstly, there is a compromise between
increasing the sampling frequency to capture details of the shape of PPGpulsewaves, and reducing it to reduce
power consumption (Lee et al 2018). Best practices differ between applications, withminimumacceptable
sampling frequencies of 10, 16, and 25Hz reported for heart rate, respiratory rate, and pulse rate variability
measurements respectively (Wolling andVan Laerhoven, Charlton et al 2017, Choi and Shin 2017). Secondly,
different approaches can be used to removemotion artifact, ranging from eliminating periods ofmotion (Guo
et al 2021), to denoising the PPG (Zhang et al 2015), to cancellingmotion artifact using a reference accelerometer
or gyroscope signal (Marozas andCharlton 2021). Here, best practices also differ between applications: in
hospitalmonitoring it has been proposed that periods ofmotion should be eliminated from analyses
(Orphanidou et al 2015), whereas in exercisemonitoring the alternative approaches of denoising the PPGor
cancellingmotion artifact are used (Zhang et al 2015).Whilst itmay be challenging to develop a universal
strategy to PPG signal quality assessment, recent work has demonstrated that a single approach can performwell

Figure 1. Factors influencing photoplethysmographymeasurements, and important advances towards establishing best practices.
Source: ThisMaxHealth Band image has been obtained by the authors from theWikimediawebsite where it wasmade available by
PeterHCharlton under a CCBY 4.0 licence. It is includedwithin this article on that basis. It is attributed to PeterHCharlton.
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across different heart rhythms and different PPGdevices (Mohagheghian et al). Thirdly, the analog and digital
filtering used to pre-process signals influences both the amplitudes and timings of PPGpulsewave features
(Liang et al 2018, Liu et al 2021). For instance, an optimal low-pass filter cut-off of 6Hz has been proposed to
preserve the higher harmonic components of the PPG, andminimise variability in indices calculated from its
second derivative (Pilt et al 2013). Fourthly, the choice of signal processing algorithmused to estimate a
physiological parameter from the signal can greatly influence the accuracy and precision of the parameter
(Charlton et al 2016). Best practices for deriving pulsewave features from finger PPG signals have been proposed
(Elgendi 2014, Elgendi et al 2014). However, best practices have not yet been established for signals acquired at
thewrist, which differ from finger signals (Rajala et al 2018). Similarly, it could be beneficial to optimise neural
network architectures for PPG analyses, building on existing architectures (Li et al 2021). Furtherwork is also
required to identify the best pulsewave features for different tasks from amongst thewide range of features
proposed in the literature (Charlton et al 2018, Lin et al 2020). For instance, recent studies have investigated the
best features for blood pressure estimation (Xing et al 2021) and pulse rate variability analysis (Peralta et al 2019).
The best algorithmdesignmay also depend on a subject’s characteristics, as shownby recent proposals of
different blood pressure estimation algorithms for subjects of different ages (Xing et al 2020) and subjects of
different blood pressure categories (Khalid et al 2020). In summary, itmay be difficult to establish best practices
for the software used in PPGdevices, as the best approachmay vary according to the sensor configuration,
application, and subjects beingmonitored.

A further area inwhich best practices could be established is the protocols used to obtain PPG
measurements, where best practices could be used to obtain repeatable and reproduciblemeasurements.
Measurement protocols can be tightly controlled in clinical settings, where consideration can be given to room
temperature, subject position, and the duration of rest prior tomeasurement (Allen andHedley 2019). However,
protocols cannot be so tightly controlledwhen obtainingmeasurements from consumer devices in daily life.
Nevertheless,measurements can be obtained in a repeatablemanner during periods of rest, such as resting and
night-time resting heart rates (Mishra et al 2020, Radin et al 2020). Futureworkmay consider the required
recording durations and acceptable levels of signal quality to estimate different physiological parameters from
the PPG (Huthart et al 2020).Whilst it is possible to obtain some parameters during exercise (e.g. heart rate)
(Zhang et al 2015), itmay only be possible to obtain other parameters accurately whilst at rest (e.g. those derived
from the second derivative of the PPG, such as the aging index) (Takazawa et al 1998).

It is clear that there are several potential areas inwhich best practices could be established for the acquisition
and processing of PPG signals. However, it is not yet clear whether it would be possible and beneficial to establish
best practices. On the one hand: itmay not be possible to establish best practices as theymay vary greatly between
device designs and applications; itmay not be possible to use themwidely if they are patented; and, theymay not
be beneficial if they don’t substantially improve device performance. On the other hand, establishing best
practices could: reduce the time taken to design andmanufacture devices; ensure PPG-basedmeasurements are
as accurate and reproducible as possible; and, help advance the field as researchers and developers could build on
existing best practices whenmaking novel developments.

Several advances could aid research into determiningwhether it would be possible and beneficial to establish
best practices for PPG signal acquisition and processing. Firstly, wearable devices which provide the rawPPG
signal are invaluable for such research, as demonstrated through the use of the Empatica E4wristband inmany
research studies (McCarthy et al).Whilst several research devices can provide the raw PPG signal (Charlton et al
2022), large-scale studies could be conductedmore easily in daily life if consumer devices were similarly able to
provide raw PPG signals. Secondly, freely available datasets allow researchers to benchmark their ownPPG
signal processing algorithms against others on a common dataset. Several such datasets are available (Charlton
et al 2022), including: theWeSADand PPG-DaLiA datasets, acquired using an Empatica E4 device in healthy
subjects (Schmidt et al, Reiss et al 2019); and theVitalDB and theMIMICWaveformdatabases, acquired from
critically-ill patients (Johnson et al 2016, Lee and Jung 2018). However, there are limitations to current datasets:
they are often collected from either healthy volunteers or a particular patient population, rather than a broad
cross-section of society; they often contain PPG signals acquired by only one device, rather than signals acquired
using different hardware configurations; and they are often recorded in either laboratory or clinical settings, but
few are recorded in daily life. Thirdly, there is a need forwidely accepted validation protocols withwhich to
assess the performance of PPG-based devices. Such protocols already exist for devicesmeasuring blood pressure
and heart rate (Stergiou et al 2018,Mühlen et al 2021). However, different standardsmay be required for
different applications, such as varying the accuracy and data availability thresholds according to the intended use
case andmeasurement scenario (Consumer Technology Association 2018,Mukkamala et al 2021).

To conclude, there are several potential benefits to establishing best practices for acquiring and processing
PPG signals. However, it is not yet clear whether it is possible to establish best practices which hold across the
range of PPGdevice designs and applications. Therefore,much further work is required to investigate whether it
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would be possible and beneficial to establish best practices, and to understand how theymay differ between
device designs and intended applications.
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