G3.:

Genes | Genomes | Genetics

Evaluation of STAR and Kallisto on Single Cell
RNA-Seq Data Alignment

Yuheng Du,* Qianhui Huang,* Cedric Arisdakessian,” and Lana X. Garmire**’

*Department of Biostatistics, School of Public Health, iDe|oartment of Computational Medicine and Bioinformatics
University of Michigan, Ann Arbor, MI, 48105, and TUniversity of Hawaii at Manoa, Department of Information and
Computer Science, Honolulu, HI, 96816

ORCID ID: 0000-0001-5255-0942 (C.A.)

ABSTRACT Alignment of scRNA-Seq data are the first and one of the most critical steps of the scRNA-Seq
analysis workflow, and thus the choice of proper aligners is of paramount importance. Recently, STAR an
alignment method and Kallisto a pseudoalignment method have both gained a vast amount of popularity in
the single cell sequencing field. However, an unbiased third-party comparison of these two methods in
scRNA-Seq is lacking. Here we conduct a systematic comparison of them on a variety of Drop-seq, Fluidigm
and 10x genomics data, from the aspects of gene abundance, alignment accuracy, as well as computational
speed and memory use. We observe that STAR globally produces more genes and higher gene-expression
values, compared to Kallisto, as well as Bowtie2, another popular alignment method for bulk RNA-Seq. STAR
also yields higher correlations of the Gini index for the genes with RNA-FISH validation results. Using 10x
genomics PBMC 3K scRNA-Seq and mouse cortex single nuclei RNA-Seq data, STAR shows similar or
better cell-type annotation results, by detecting a larger subset of known gene markers. However, the
gain of accuracy and gene abundance of STAR alignment comes with the price of significantly slower
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computation time (4 folds) and more memory (7.7 folds), compared to Kallisto.

accuracy

Single cell technologies allow researchers to uncover biological
findings based on individual cell level. The generation of a count
matrix is indispensable in order to perform downstream analyses,
such as clusterin, cell type annotation (Huang et al. 2019 preprint),
differential expression analysis, and pseudotime analysis on single
cell RNA-seq data (Ortega et al. 2017); (Zhu et al. 2017); (Zhu et al.
2019 preprint). One of the most important and initial steps in
the scRNA-seq pipeline is alignment. The goal of alignment is
to find the original genomic loci of short sequence reads. The
choice of aligner can directly affect the count matrix, the
subsequent downstream analysis and ultimately the biological
discoveries.
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Recently, two methods have gained popularity in the single cell
field: STAR (Dobin et al. 2013) and Kallisto (Bray et al. 2016). STAR
detects the splice junctions and aligns the sequence to the reference
genome non-contiguously. It can also be utilized to detect small
nucleotide variations (SN'Vs) in scRNA-seq data (Poirion et al. 2018).
On the other hand, Kallisto constructs k-compatibility class from
the reads and performs pseudoalignment based on the de Bruijn
graph. Previous benchmarking studies showed STAR was one
of the most reliable reference genome based aligners in RNA-seq
analysis (Baruzzo et al. 2017); (Engstrom et al. 2013); (Yang et al.
2015). Meanwhile, Kallisto was also evaluated as stable and fast for
alignment-free quantification (Zhang et al. 2017). Both STAR and
Kallisto can quantify expression, but the direct comparison between
these two specific methods was lacking, especially in the scRNA-seq
field.

To address this issue, we herein evaluated the performance
of these two methods using real datasets obtained from differ-
ent platforms (Drop-seq, Fluidigm, and 10x), some of which had
orthogonal validation results of RNA FISH. We investigated the
general characteristics of gene expression profiles, the accuracy
of gene counts, as well as the running time and memory usage
of alignment/pseudoalignment tools. We provide the first-hand
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reference to help researchers to decide how to perform the alignment
for single cell analysis.

MATERIALS AND METHODS
Datasets

Drop-seq and Fluidigm datasets: Drop-seq and demultiplexed
Fluidigm RNA-seq datasets were downloaded from GSE99330
(Torre et al. 2018). This dataset is composed of 8640 single cells
generated by Drop-seq platform and 800 single cells by Fluidigm (C1
mRNA Seq HT IFC) platforms, using WM989-A6-G3 cell line. The
availability of RNA-FISH validation data on 26 genes (housekeeping
genes and drug resistance markers) makes this an ideal dataset for
comparing alignment methods. This dataset also is accompanied by
publicly downloadable results on the same 26 genes measured
by single-molecule RNA fluorescence in situ hybridization (smRNA
FISH), a method to detect RNA within a cell using the fluorescence
probe.

PBMC 3K scRNA-Seq datasets: The fastq file of this dataset is down-
loaded from 10x genomics’ website: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.1.0/pbmc3k. The datasets were
generated from a healthy donor using 10x genomics’ V1 chemistry.

Mouse cortex I single nuclei RNA-seq dataset: The raw data could be
obtained from Human Cell Atlas Systematic comparative analysis of single
cell RNA-sequencing methods project (https://data.humancellatlas.org/
explore/projects/88ec040b-8705-4f77-8f41-181e57632f7d) (Ding et al.
2019 preprint). The sample was obtained from 1-month-old male Mus
musculus brain cortex 1 with 10x V2 single nucleus RNA-seq methods
(Flowcell lane CCJ15ANXX).

Alignment of Drop-seq scRNA-Seq data

Pre-processing: The raw Drop-seq fastq files were processed using
Drop-seq (Macosko et al. 2015) tools version 1.13 (https://github.com/
broadinstitute/Drop-seq/). Following the Drop-seq Core Computa-
tional Protocol version 1.0.1, reads with low-quality bases in the cell or
molecular barcode were filtered with a default threshold setting. The
adapter sequences at the 5’ and poly-A at 3’ of the reads were trimmed.

STAR alignment: STAR alignment was performed for Drop-seq data
using STAR version 2.5.2a provided by University of Michigan
HPC. Data were aligned to reference genome GRCh38 with the
corresponding annotation file from Ensemble. Default parameters
were used, unless notified otherwise.

Kallisto pseudoalignment: Kallisto quantification was performed for
Drop-seq data using Kallisto version 0.45.1 obtained from github.
Kallisto index was built with reference transcriptome GRCh38 with
kmer length of 31. The suggested k-mer length of 31 can avoid
ambiguities in de Bruijn graph in similar regions when k-mer length
is small. Kallisto genomebam feature was used for obtaining the BAM
output. Mapped reads with unknown reference genome locations
were removed from BAM using Samtools version 1.9. The filtered
BAM files were passed down into the Drop-seq pipeline for digital
expression generation.

Bowtie2 alignment: Bowtie2 version 2.3.5.1 was used (Langmead and
Salzberg 2012). Bowtie2 index was generated using GRCh38 reference
genome with corresponding gtf file from Ensemble.

1776 | Y.Du etal.

Alignment of fluidigm scRNA-Seq data

Pre-processing: PolyA was trimmed from the 3’ end using Trim
Galore version 0.4.2.

STAR alignment: STAR alignment was performed for trimmed data
using STAR version 2.5.2a, and aligned to reference genome GRCh38.

Kallisto pseudoalignment: Kallisto quantification was performed
using Kallisto version 0.45.1. Kallisto index was built with reference
transcriptome GRCh38 only with the kmer length of 31. Kallisto
-genomebam feature was used, and the output BAM files were filtered
in the same manner as Drop-seq data.

Bowtie2 alignment: the same version and index files were used, as in
Drop-Seq data above.

Count matrix: Aligned data were quantified using featureCounts
(Liao et al. 2014) from Subread (Liao et al. 2013) version 1.6.1 with
annotation for GRCh38. The configuration for featureCounts was the
default: featureCounts -pPBCM-primary -T 3 -O -a /Annotation/
Homo_sapiens.GRCh38.95.gtf -o aligned.bam.txt aligned.bam.

Gini coefficient calculation and smRNA FISH validation
RNA FISH data, Drop-seq data and Fluidigm data were normalized
against GAPDH, following the method described previously
(Arisdakessian et al. 2018). Gini coefficients were calculated for
25 drug resistance markers and housekeeping genes in the same
way as in SAVER(Huang et al. 2018).

For gene i, the level of expression across cells is sorted. Then for
the sorted array of expression values, Gini index is calculated as
following:

n
>(2-j— n— 1)Expression;j

n
n- Yy Expression;;
i=1
Where j is the index for the sorted array of expression ranging from
1 to n (total number of the cell).

Data processing and analysis on 10x Genomics PBMC

3K data

Cell Ranger filtered genes and cell matrix(available on 10x website)
were processed using Seurat version 3.2.0 (Butler et al. 2018; Stuart
et al. 2019), following the configuration from https://satijalab.org/
seurat/v3.0/pbme3k_tutorialhtml. Clusters were annotated using
provided labels by the Seurat group based on the pre-defined gene
markers. Fastq files were preprocessed to fit the input scheme for both
STAR and Kallisto.

STARsolo: STARsolo for V1 chemistry requires two files: cell barcodes
with UMIS, and cDNA read. STAR version 2.7.1a with —solo command
was used. The STAR index was built with a read length of 98. STARsolo
was configured for 14bp GemCode barcode, 10bp UMI, and 98bp
transcript.

Kallisto bustools: Kallisto for V1 chemistry requires three files: cell
barcodes, UMIs, and cDNA reads. Kallisto version 0.45.1 was used.
Kallisto bus was configured for vl chemistry (-x 10xv1). The bus
output was processed using bustools(Melsted et al. 2019 preprint)
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downloaded from https://github.com/BUStools/bustools. The ma-
trix was generated following the python code available at URL:
https://github.com/BUStools/BUS_notebooks_python/blob/master/
dataset-notebooks/10x_hgmm_100_python/10x_hgmm_100.ipynb.

Kallisto With Human cDNA and intron index: Kallisto version
0.46.1 and bustools version 0.39.3 were used. The cDNA*intron
index and relevant files were downloaded from the github page:
https://www .kallistobus.tools/velocity_tutorial. html. The pseudoa-
lignment and sequential correction and counting processes were
done following the instruction from https://www.kallistobus.tools/
velocity_tutorial.html. The spliced and unspliced matrices were pro-
cessed following the instruction from https://github.com/BUStools/
getting_started/blob/master/velocity_tutorial.ipynb. The cells with
less than 3 expressed genes, and genes expressed in less than 200 cells
were removed.

Downstream clustering analysis: Seurat version 3.2.0 was used for
downstream analysis. The filtration criteria include min.cells = 3, min
features = 200. Data were then log normalized with a scale factor of
10000 in Seurat. The cell types were annotated manually based on the
FeaturePlot of each marker gene.

Data processing and analysis on 10x mouse cortex
1 single nuclei RNA-seq data

STARsolo: STAR version 2.7.3a with -solo command was used. For
single nuclei RNA-seq data, command “-soloFeatures Gene SJ
GeneFull” was used for generating counts for both exonic RNA
and pre-mRNA. The STAR index was built with a read length of 50.
STARsolo was configured for 16bp GemCode barcode, 10bp UMI,
and 50bp transcript.

Kallisto with mouse cDNA and intron index: Kallisto version 0.46.1
and bustools version 0.39.3 was used. The mouse ensembl 86 cDNA*
intron index and relevant files were downloaded from the github page:
https://github.com/pachterlab/MBGBLHGP_2019/releases. The pseu-
doalignment and sequential correction and counting processes were
done similarly as the PBMC 3k data. The spliced and unspliced matrices
were processed in Python 3.7. The cells with less than 3 expressed genes,
and genes expressed in less than 200 cells were removed.

Downstream clustering analysis: Seurat version 3.2.0 was used for
downstream analysis. The filtration criteria include min.cells = 3, min
features = 200. Data were then log normalized with a scale factor of
10000 in Seurat. The cell types were annotated manually based on the
FeaturePlot of each marker gene.

Time and memory measurement

Time and memory usages on Fluidigm dataset were measured on a
dedicated group computer server cluster (consisted of 4 nodes (Dell
PowerEdge C6420) of 2 X Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz,
192GB RAM, one node (Dell Poweredge R740) with 2 X Xeon(R)
Gold 6148 CPU @ 2.40GHz, 192 GB RAM, and two 16GB Nvidia
V100 GPUs.) with Slurm job scheduler. One processor and 60GB
memory were reserved for each job. “Resources_used.cput” and
“resources_used.walltime” were collected from the job log for analysis.

Code availability

All code for the tools configurations and analysis could be found on
GitHub page: https://github.com/yhdu36/aligner
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Data availability

The authors state that all data necessary for confirming the conclu-
sions presented in the article are represented fully within the article,
figures and tables. Supplemental material available at figshare: https://
doi.org/10.25387/g3.11866281.

RESULTS AND DISCUSSION

Comparisons of STAR vs. Kallisto alignment results on
Drop-Seq and Fluidigm data
STAR and Kallisto are based on different concepts. STAR is a
conventional aligner that aligns to the reference genome, whereas
Kallisto uses transcriptome quantification for pseudoalignment.
To compare these two methods, we downloaded the raw sequencing
reads from a previously published GEO data set (GSE99330) (Torre
et al. 2018). Briefly, this dataset is composed of 8640 single cells
generated by Drop-seq platform and 800 single cells generated from
Fluidigm (C1 mRNA Seq HT IFC) platforms, using WM989-A6-G3
cell line as the biological material. The RNA-FISH validation data on
26 genes serve as the standard that could help validate the expression
level as the result of different alignment methods. We used GRCh38
as the reference genome for STAR and GRCh38 as the reference
transcriptome for Kallisto, per recommendation of the authors.
For the scRNA-seq reads from Drop-seq platform, STAR has
62.40% alignment rate, compared to 35.11% pseudoalignment
rate from Kallisto; for the reads from Fluidigm platform, STAR
has 66.57% alignment rate, compared to 34.03% from Kallisto
(Table S1). To generate the count matrix, we used STAR and
Kallisto genombam command (Yi et al. 2018 preprint) followed by
featureCount. Kallisto genombam command projects the pseudoalign-
ments to genomic space using a model of transcriptome consisting of
genes, transcripts and exon coordinates, which allows the interchange
between pseudoalignment and genome alignment possible. We then
evaluated the aligners on the count matrix output (Figure 1).
Specifically, we first checked the overall correlation of alignments
from STAR and Kallisto workflows. We added a pseudo-count of
1 to all gene counts before log transformation, then calculated the
Pearson’s correlation of all genes across all cells between STAR
and Kallisto. As shown in Figure 1A-B, the correlation coefficient
between Kallisto and STAR aligned gene counts is 0.836 and 0.862
for Drop-seq and Fluidigm data, respectively, demonstrating a
strong concordance between them. However, further examination
shows that STAR yields more uniquely expressed genes for both
Drop-seq and Fluidigm platforms (Figure 1C-D). For Drop-seq
data, STAR and Kallisto detect 16892 common genes, but 7116 and
1906 unique genes, respectively. For Fluidigm data, STAR and
Kallisto detect 23193 common genes, but 13710 and 645 unique
genes, respectively. The modes of the density distribution of gene
numbers in each cell (Figure 1E-F) shift to higher values for STAR
alignment, confirming that indeed STAR systematically detects
more genes in each cell. Interestingly, while the Drop-seq platform
yields a single peak of density distribution for gene counts, Fluidigm
yields two peaks, both of which have higher gene counts than the peak of
Drop-seq. Overall Kallisto pseudoaligned to more genes (proportion-
wise) with shorter length (<3000bp), whereas STAR can handle longer
gene alignment better, as shown in Figure 1G-H. Since dropout is a
significant issue in single cell RNA-Seq data, we also compared dropout
rates among commonly detected genes using cumulative density plots
(Figure S1A-B). Overall, genes detected using STAR have cumulatively
significantly lower dropout rates for both Drop-seq (K-S test p-value<<
2.2 e-16) and Fluidigm (K-S test p-value < 2.2e-16) platforms.
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Figure 1 Comparison of single-cell gene expression from STAR and Kallisto Alignment. (A-B) Log 10-transformed (gene counts +1) obtained after
alignment/pseudoalignment. The gene counts were calculated by taking log 10-transform on the summation of the estimated counts across all
samples. The x-axis represents the expression level with STAR protocol, and the y-axis represents the expression level with Kallisto protocol.
Pearson correlation coefficients are shown on the graph as “Pearson”. (C-D)Venn diagrams for the counts of expressed genes detected in Drop-seq
and Fluidigm datasets. The intersect regions are the genes that are detected in common by STAR and Kallisto. (E-F) Density plots of the total number
of detected genes within each cell for Drop-seq and Fluidigm data. The x-axis represents the log 10-transformed total estimated gene counts in
each sample, and the y-axis represents the density. (G-H) Density plots of the length of expressed genes in Drop-seq and Fluidigm datasets. The

x-axis represents the log-transformed gene length of expressed genes, and the y-axis represents the density.

In conclusion, despite high correlations between STAR and
Kallisto, STAR detected more genes and also yielded more abundant
gene expression counts across cells compared to Kallisto. However,
since the absolute truth of gene expression is not used, the observa-
tions herein are relative measures.

Validation of STAR and Kallisto results using RNA

FISH data

To address the issue of lack of absolute truth of gene expression in the
comparisons above, we next assessed STAR and Kallisto performance
using smRNA-FISH data as the ground truth measurement. Single-
molecule RNA fluorescence in situ hybridization (smRNA FISH) is a
method to detect RNA within a cell using the fluorescence probe.
Torre et al. originally used smRNA-FISH to measure 26 genes and
represented their distribution across cells using the Gini coefficient
(Torre et al. 2018). Gini coefficient is a metric for inequality. A Gini
coefficient of 0 represents that gene expression is perfectly even across
all cells, whereas a Gini coefficient of 1 means that the gene is
expressed in only one cell. In the context of gene expression, it can
measure the variation of gene expression for a gene across all cells,
and it is indeed influenced by the level of expression (see Equation 1).
By comparing the Gini coefficient calculated from two alignment
methods with that of the RNA Fish experiment, we can evaluate
whether the alignment methods preserve the variability similar to
the RNA Fish method. We compared the Gini coefficients be-
tween aligned scRNA-Seq data and smRNA-FISH data (Figure 2),
and observed significant zero inflation in Gini coefficients from
scRNA-Seq platforms, comparing to smRNA-FISH measurement
(Torre et al. (Torre et al. 2018)). For Drop-seq data, as shown in
Figure 2A-B, both STAR and Kallisto missed detecting some of
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the 26 genes. STAR missed three genes: VEGFC, AXL and WNT5A,
whereas Kallisto missed four genes: VEGFC, WNT5A, NGFR,
PDGFRB. After removing these outliers, the correlation between
STAR Gini and smRNA-FISH Gini was 0.50, and the correlation
between Kallisto Gini and smRNA-FISH Gini was 0.53. For Fluidigm
data, as shown in Figure 2C-D, STAR detected all 26 genes, whereas
Kallisto missed to detect 3 genes: VEGFC, WNT5A, and NGFR.
The correlation between STAR Gini and smRNA-FISH Gini is
0.55, whereas the correlation between Kallisto Gini and smRNA -
FISH was 0.47 (after removing undetected genes). In summary,
the comparisons with smRNA-FISH data show that STAR tends
to miss fewer genes. Moreover, STAR has on par with (Drop-seq)
or slightly better (Fluidigm) correlations with smRNA-FISH based
truth measure, despite the fact that the Gini coefficients between
STAR and Kallisto are highly correlated for commonly detected genes
(Figure S2A-B).

Comparison of Bowtie2 vs. STAR and Kallisto alignment

We further compared Bowtie2, a popular alignment method on bulk
RNA-Seq data, to STAR and Kallisto, on the above mentioned single
cell datasets (Figure S3). Among all three methods, STAR still has
the most abundant genes detected (24008). Bowtie2 is the second
(21572), and Kallisto is the third (18789). However, Bowtie2 has
slightly lower detected gene count per cell compared to both STAR
and Kallisto (Figure S3 G and H). This indicates that even though
Bowtie2 detected more unique gene counts than Kallisto, the average
gene expression level across cells was lower than Kallisto. For Gini
coefficient comparison, Bowtie2 has closer coordination with STAR
(Figure S3 F), compared to Kallisto (Figure S3 E). STAR failed to
detect two of 26 genes, whereas Bowtie2 and Kallisto both missed four
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Figure 2 Validation of STAR and Kallisto results using RNA FISH data. (A-B) Scatterplots of Gini coefficients for Drop-seq vs. FISH data with STAR
and Kallisto protocols for selected genes. The x-axis represents the Gini coefficient obtained from RNA FISH study, and the y-axis represents the
Gini coefficient from the Drop-seq experiment using STAR and Kallisto respectively. (C-D) Scatterplots of Gini coefficients for Fluidigm vs. FISH data
with STAR and Kallisto protocols. Pearson correlation coefficients are shown as Pearson (after removing the non-detected genes).

genes (Figure S3 D-F). For efficiency, with premade reference,
STAR took 15 min and 28G memory to finish the alignment,
whereas Bowtie2 used 56 min and 14.2G memory. Therefore, by
comparing with another traditional aligner Bowtie2, we have
reached the consistent conclusion with other aligner benchmarking
studies on the real and simulated datasets (Baruzzo et al. 2017);
(Teissandier et al. 2019) that STAR is currently one of the top
performing methods on alignment rates and speed comparing to
other traditional aligners.

Running time and memory comparison on Fluidigm data

We performed time and memory usage comparison on a computer
cluster (detailed configuration could be found in the Methods
section) with Slurm job scheduler using Fluidigm data (800 cells).
For Fluidigm data, the experiments were conducted using the
same pipelines as in Figures 1 and 2, with the notation that STAR was
aligned to reference genome GRCh38 whereas Kallisto used GRCh38
cDNA*intron index. Both Kallisto and STAR were assigned with
one processor and 60GB memory and ran in one thread mode
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to minimize the effect of parallel processing. Overall, Kallisto
pseudoalignment takes 1/4 amount of time as STAR (Figure 3A).
Moreover, the maximum memory usage of Kallisto was ~3.6GB,
which is about 1/7 of the memory usage (~28GB) of STAR
(Figure 3B). Thus, Kallisto with cDNA-only index demonstrates
significant advantages of pseudoalignment both on speed and
memory.

STARsolo and Kallisto bus comparison on human 10x
Genomics PBMC data

In order to see the effect of align/pseudoalignment method on
downstream clustering analysis, we compared STARsolo (Dobin
et al. 2013) and Kallisto bustools (Melsted et al. 2019 preprint) on
10x genomics’ publically available PBMC 3K scRNA-Seq datasets.
STARsolo (available in STAR after version 2.7.0) and Kallisto
bustools are pipelines developed based on each method to analyze the
UMI-based data, such as 10x genomics data. For fairness, cDNAs plus
introns sequences were used as the reference to generate index files
for both methods. Both pipelines produced the same output format
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Figure 3 Time and memory comparison on Fluidigm datasets. (A) Computing time of Fluidigm data (800 cells) on the computer cluster
(configurations in Methods section), using STAR and Kallisto. The x-axis represents the number of reads (in a given cell), and the y-axis represents
the time usage in seconds. (B) Memory usage plot for Fluidigm data using STAR and Kallisto. The x-axis is the method, and the y-axis represents the

memory usage in Gigabytes.

from 10x’s Cell Ranger tool, so we next used the Seurat package
(Butler et al. 2018; Stuart et al. 2019) to find cell clusters using
unsupervised clustering method.

For the PBMC 3K dataset, STARsolo showed 89.5% alignment
rate, whereas Kallisto bustools has 61.89% pseudoalignment rate
(Table S1). STARsolo output resulted in nine clusters (Figure 4A),
each assigned to a cell type using the predefined markers in the
Seurat vignette. 90.73% of cell labels from STARsolo matched with
those from Cell Ranger (based on STAR), confirming the simi-
larity between the two workflows (Table S2). Given the same
reference genome (GRCh38), the difference between Cell Ranger
and STARsolo could be caused by different correction and filter-
ing criteria. In comparison, 1 out of 9 cell types, FCGR4A+Mono
cells, could not be identified after Kallisto alignment (Figure 4C).
This is largely due to the fact that Kallisto could not detect high
enough FCERIA expression, one of the marker genes to identify
the FCGR4A+Mono cell type (Figure 4D). For the proportions of
cell types, STARsolo and Kallisto generate similar proportions for
different cell types (Figure S4A), with STARsolo identifying more
memory CD4+ T cells but fewer CD8+ T cells.

Worth noticing, the mapping rate (61.89%) using cDNA and
intron index in Kallisto is much better than the mapping rate
(51.30%) when only cDNA index was used. However, this improve-
ment comes with the price of memory usage. With only cDNA
index, Kallisto used 3.7 Gigabytes of memory, and the runtime was
46 min. With cDNA*intron index, Kallisto used 67.1 Gigabytes of
memory, and the runtime was 1.5 hr. The clustering result from
the Kallisto pipeline (with cDNA and intron index) is also much
improved from that built on cDNA index. In the latter case, seven
clusters are identified (Figure S5A), and the cell-type specific marker
genes are either missing or do not co-locate well with the clusters
(Figure S5B). Therefore, including introns in the reference genome
can largely increase the accuracy for Kallisto.

STARsolo and Kallisto bus comparison on single nuclei
RNA-seq mouse cortex data

Single nuclei RNA-Seq is one solution for human studies where
fresh materials are lacking (Lake et al. 2017). We downloaded
the single nuclei Mouse Cortex 1 data published earlier (Ding
et al. 2019 preprint). As single nuclei RNA-Seq data contain
high content of intronic fragments, we evaluated the performance
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between STARsolo and Kallisto bus using cDNA*intron as the
reference.

For the mouse cortex single nuclei RNA-seq data, Kallisto bus
required 58.9 Gigabytes of memory, whereas STARsolo used
31.4 Gigabytes. The run time was similar. Both STARsolo and
Kallisto bus took 3 hr to complete (pseudo)alignment without the
indexing step. STARsolo recovered 81.6% of reads, compared to
74.9% mapping rate for Kallisto (Table S1). This resulted in more
genes detected by STARsolo. Both alignment methods detected
seven cell types: excitatory neurons, inhibitory neurons, astro-
cytes, oligodendrocytes, oligodendrocyte precursors and microglia
(Figure 5A and 5C). The proportions of detected cell types were
similar using both STARsolo and Kallisto (Figure S4B). However,
closer investigation showed that STARsolo detects more marker
genes than Kallisto. For example, mbp, a marker gene for oligo-
dendrocytes, is missing in Kallisto aligned result (Figure 5D vs.
5B). In fact, among the 47 cell-type specific markers, STARsolo
only failed to identify one marker (Des), whereas Kallisto could
not identify 7 markers (Table S3). In all, comparison on the single
nuclei RNA-seq data further shows the significance to include
intronic information for Kallisto alignment.

DISCUSSION

As single cell RNA-Seq (scRNA-Seq) technologies continue to gain
popularity, the amount of generated data are increasing faster than
ever, which subsequently imposes increasing demand to process
these datasets. Alignment is one of the most time consuming yet
most critical steps to process scRNA-Seq data. Currently, an unbiased
third-party comparison on the alignment tools of scRNA-Seq data are
lacking, although during the manuscript preparation time the authors
of Kallisto had made a comparison preprint available (Melsted et al.
2019 preprint).

In this report, we compared the performance of the two most
popular alignment/pseudoalignment methods: STAR and Kallisto.
We aimed to provide readers the details on gene expression char-
acteristics, beyond simple correlations between the two methods.
Toward this goal, we purposefully selected datasets that have the
“reference measures”. We first used a dataset with both scRNA-Seq
(in both Drop-seq and Fluidigm platforms) and smRNA FISH vali-
dation results. Through the comparison, it appeared that in this dataset,
despite high correlations between STAR and Kallisto, STAR tends to
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Figure 4 STARsolo vs. Kallisto result comparison on marker genes of 10x PBMC 3K data. (A, C) Clustering annotation using known cell-type
specific markers, from results generated by STARsolo (A) and Kallisto with cDNA*intron index (C). The annotated cell types are: memory
CDA4 T cells (Memory CD4 T), naive CD4+ T cells (Naive CD4 T), CD14+ monocytes (CD14 + Mono), B cells (B), CD8+ T cells (CD8 T), Natural
Killer cells (NK), FCGR3A+ monocytes (FCGR3A + Mono), Dendritic cells (DC), and platelet cells (Platelet). FCGR3A + Mono cell type
cannot be assigned from results based on Kallisto. (B, D) Feature plot of known marker genes from results generated by STARsolo (B) and

Kallisto (D).

yield more genes overall, as well as more abundance of the genes,
compared to Kallisto; whereas Kallisto detects more shorter genes
compared to STAR. Based on the 26 genes that have smRNA FISH
results, STAR appeared to detect more of them, compared to Kallisto;
also STAR had on-par (Drop-seq) or slightly better (Fluidigm)
correlations with the “reference measure” of smRNA-FISH.

We subsequently compared the alignment results using PBMC
3K cells, by examining the clustering results based on the count
matrix. We chose this PBMC 3K dataset because the Seurat group
provided marker genes and cell types, so we could use such knowl-
edge as the “reference”. The result showed that STAR alignment
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harvested cell clusters that could be well identified by predefined
cell-specific markers; the cell clusters generated from Kallisto with
cDNA plus intron (not just cDNA) index information were very
similar, but still missed one cell type. This dataset was not one
of the 20 datasets reported by Melsted et al. (Melsted et al. 2019
preprint). We additionally applied these two methods on a single
nuclei RNA-seq dataset from mouse cortex, in order to fur-
ther investigate the necessity of including intronic reference
for Kallisto. With cDNA and intron as the reference, Kallisto
identifies the same cell types as STARsolo, despite missing slightly
more marker genes. Thus, adding introns to cDNA sequences is vital
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Figure 5 STARsolo vs. Kallisto on 10x Single nuclei Mouse Cortex (A, C) Clustering annotation using known cell-type specific markers, from
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shown as NOT FOUND.

to the alignment/ pseudoalignment step for Kallisto. Our results
are consistent with Vieth et al. in their single cell pipeline eval-
uation studie: Kallisto with ¢cDNA index had a low fraction of
assigned reads, and for UMI-based methods STAR performs
better (Vieth et al. 2019).

Consistent with the observation of Melsted et al., we also
found that Kallisto (with only cDNAs as the reference) is 4 times
faster than STARsolo, the recent version of STAR aligner adapter
for scRNA-Seq, and the memory usage of Kallisto is 7.7 times less
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than STARsolo. Including intron sequences in reference signif-
icantly improves the accuracy of Kallisto, however, this improve-
ment is at the cost of computer memory. In summary, based on
the datasets used in this study, we conclude that Kallisto’s use of
computing resources is much less demanding than STAR when
only ¢cDNA sequences are used as the reference; however, such
efficiency gain is at the cost of loss of information. The users
should make decisions based on their preferences in accuracy vs.
computing resources.
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