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Environment and culture 
shape both the colour lexicon 
and the genetics of colour 
perception
Mathilde Josserand1, Emma Meeussen2, Asifa Majid3 & Dan Dediu1*

Many languages express ‘blue’ and ‘green’ under an umbrella term ‘grue’. To explain this variation, 
it has been suggested that changes in eye physiology, due to UV-light incidence, can lead to 
abnormalities in blue-green color perception which causes the color lexicon to adapt. Here, we apply 
advanced statistics on a set of 142 populations to model how different factors shape the presence 
of a specific term for blue. In addition, we examined if the ontogenetic effect of UV-light on color 
perception generates a negative selection pressure against inherited abnormal red-green perception. 
We found the presence of a specific term for blue was influenced by UV incidence as well as several 
additional factors, including cultural complexity. Moreover, there was evidence that UV incidence 
was negatively related to abnormal red-green color perception. These results demonstrate that 
variation in languages can only be understood in the context of their cultural, biological, and physical 
environments.

One of the major puzzles facing the language sciences is how to best account for the factors and processes shaping 
the observed patterns of linguistic diversity today. The color lexicon is particularly interesting from this perspec-
tive. The long-standing emphasis has been on establishing universals1. Recent work shows that universal tenden-
cies in color naming systems arise from perceptual structure2 and communicative needs3–5. At the same time, it is 
just as important to be able to characterize and explain variation found in color terminologies6. Languages differ 
in the number of basic color terms and which distinctions exactly are recognized for naming. Some languages 
only lexicalize ‘black’, ‘white’, and ‘red’; while others make many more distinctions, including ‘green’ and ‘blue’.

Blue is a particularly interesting color term to study since there are competing explanations for why it would 
emerge as a word. According to one class of theories, color terms emerge from salient features of the environment: 
for blue this would include water bodies, such as the sea, lakes, or rivers, as well as visibility of a blue sky which 
is affected by climate and humidity. That is, the ecological environment (such as the presence of lakes) may be a 
factor relevant in shaping the color lexicon7–10, suggesting that languages spoken in different environments may 
categorize the color continuum in different ways. An alternative account appeals to cultural practices, such as 
the presence of dyeing technologies1, 11, 12 and industrialization3. On this account, the emergence of blue comes 
about in those societies where blue dyes are used to color artifacts. More generally, it has been predicted that 
complex color terminologies (including the presence of blue) emerge in more complex societies12–14.

A third explanation for the emergence of blue is grounded in physiology15, 16. It has been suggested that 
increased exposure to ultraviolet light, specifically to UV-B, affects the physiology of the lens of the eye17–22, 
increasing, in the long term, lens opacity23, 24 and yellow pigmentation density inside the lens25, which affects in 
turn how light reaches the retina (Fig. 1 Panel D). This process of lens brunescence, where yellow pigments absorb 
short-wavelength (blue) before reaching the retina, may reduce the ability to perceive the blue part of the color 
spectrum26–29 (Fig. 1 Panel E), increasing the probability that a single ‘grue’ term combining ’blue’ and ’green’ is 
used instead. That is, there is no distinct lexicalization of ‘blue’16, 30. Lens brunescence is driven by environmental 
exposure to UV-B radiation which is related to latitude (locations closer to the equator receive more sunlight 
than those closer to the poles), altitude (higher elevations have less ozone filtering), climate and humidity (cloud 
coverage), vegetation (close versus open environments), and culture (amount and type of outdoor activity). This 
predicts that in populations with high exposure to UV-B radiation, the persistent loss of sensitivity to blue in 
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adults across generations should generate negative pressure against the development of a ‘blue’ category or a 
tendency to lose it, while in populations with low exposure to UV-B incidence, other processes may proceed 
unhindered enabling the emergence and retention of ‘blue’. If true, we should observe a statistical tendency 
for fewer languages with a dedicated word for blue at high UV-B incidence (particularly close to the equator).

Previous cross-cultural analyses linking UV-B incidence and the presence of ‘blue’16 may have been biased 
by the lack of control for various confounds (especially language contact and inheritance from a shared 

Figure 1.   (Panel A): Map of languages and populations in our data. Each circle represents one language and 
corresponding population, with the presence (blue) or absence (yellow) for a specific term for ’blue’. The circle 
radius is proportional to the population frequency of red/green abnormal color perception. The intensity 
of the background magenta is proportional to the incidence of UV-B radiation as given by the NASA Total 
Ozone Mapping Spectrometer (TOMS) for the year 1998. This map was generated with the package maps in 
R version 4.0.559, which uses public domain data from the Natural Earth project https://​www.​natur​alear​
thdata.​com. (Panel B): Posterior density plots of the best predictors of the presence of a word for blue across 
Bayesian regression models. (Panel C): Posterior density plots of the best predictors of the frequency of red-
green abnormal color perception across Bayesian regression models. The plots in panels (B) and (C) are based 
on the analyses detailed in the “Results” section and were generated using R59. (Panel D): The lens brunescence 
hypothesis, as detailed in this paper. UV rays cause the lens to opacify and become yellower (top), filtering blue 
light, so that the perceived spectrum (on the right) contains less blue and more green, compared to the non-
affected eye (bottom). (Panel E): A simulation of different types of color perception abnormalities. From left to 
right: normal vision; one type of red-green abnormal color perception (deuteranopia); strong lens brunescence 
(yellow filter and darkening of the image); both lens brunescence and deuteranopia, hypothesized to result 
in decreased biological fitness relative to other color vision types. Background image cropped from a photo 
by Joydeep Pal on Unspalsh (https://​unspl​ash.​com/​photos/​i6kcc​imZz_8) under a free-to-use license (https://​
unspl​ash.​com/​licen​se). For deuteranopia we used Coblis—The Color BLIndness Simulator (https://​www.​color-​
blind​ness.​com/​coblis-​color-​blind​ness-​simul​ator/) and checked the results with the Colorblind Web Page Filter 
(https://​www.​toptal.​com/​desig​ners/​color​filter). The lens brunescence filter is inspired by30: we used Adobe 
Lightroom classic version 10.0 with a yellow filter and darkening to simulate a Kodak yellow filter. For more 
details, see the “Results”, “Materials and Methods” and Supplementary Materials.

https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://unsplash.com/photos/i6kccimZz_8
https://unsplash.com/license
https://unsplash.com/license
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.toptal.com/designers/colorfilter
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proto-language31), exclusion of possible alternative explanatory factors (such as cultural complexity, environ-
mental influences), lack of modeling of causal pathways, and the statistical methods used. Therefore, we combine 
multiple explanatory factors and potential confounds, including language contact generally (since specific data 
about the borrowing of words for blue is not available for most languages under consideration) and language 
family, subsistence strategy and population size (as proxies for cultural complexity32, 33 as systematic, quantita-
tive data about cultural artefacts and dyeing techniques across cultures does not exist), latitude (which partly 
determines UV-B incidence), climate, ecology and distance to large bodies of water (as proxies for various envi-
ronmental influences) using a comprehensive database and advanced statistical methods. In doing so, we not 
only test the role of UV-B light on the development of the color lexicon, but also explicate the extent to which 
additional hypothesized factors shape the presence of a specific term for blue, and where relevant through which 
causal pathways specifically.

Environmentally-induced (or acquired) abnormal color perception is not the only type of color deficiency. 
Notably, inherited red-green color-blindness has a relatively simple genetic basis where certain alleles at the 
opsin genes on the X chromosome encode for abnormal pigments, resulting in a higher incidence of abnormal 
color perception in males specifically affecting the low (red) and mid (green) frequencies of the visual spectrum 
(Fig. 1 Panel E). It has previously been suggested that a subsistence strategy based on hunting and gathering might 
generate selective pressures against red-green abnormal color perception due to the high survival relevance of 
these colors in the wild, while the transition to agriculture and, in particular the industrial revolution, may have 
greatly relaxed these pressures34, 35.

Moreover, these two broad types of abnormal color perception could interact with each other. At the indi-
vidual level, for somebody already affected by a relatively profound red-green deficiency, also acquiring lens 
brunescence would have devastating effects on the ability to use color (Fig. 1 Panel E), and may affect survival 
and possibly the ability to produce and raise offspring. This predicts that, despite their different and a priori inde-
pendent causal mechanisms (environmental exposure vs genetic), a negative correlation between the two could 
emerge across evolutionary time, in that there may be stronger selective pressure against the alleles responsible for 
red-green abnormal color perception in populations with high UV-B exposure, leading across generations to an 
overall lower frequency of such inherited abnormalities in these populations9. Here, we not only test the hypoth-
esis that there is a negative relationship between UV-B incidence and the population frequency of red-green color 
deficiency using advanced methods and controls, we also include the potential influence of subsistence strategy.

In summary, we test two main hypotheses, one linking the existence of a dedicated word for blue to UV-B 
incidence while simultaneously controlling for other factors, and a second concerning the selective pressures 
against abnormal red-green vision in different environments. We do so on a large dataset of 142 populations 
(Fig. 1 Panel A) speaking languages from 32 families across the world, for which we collected information about 
the existence of a dedicated word for blue, the incidence of ultraviolet light, and the frequency of red-green color 
deficiency, as well as data on elevation, population size, subsistence strategy, climate, ecology, distance to large 
bodies of water, and several additional variables concerning the populations and physical environments they 
inhabit (see Methods and Supplementary Materials). We used Bayesian hierarchical regression, mediation and 
path analysis, and various machine learning techniques, informed by previous research and causal modeling, 
to specifically test these hypotheses in a comprehensive manner. We found that both hypotheses were by and 
large supported, but importantly they only captured part of the overall picture (Fig. 1 Panels B and C). While 
variation in UV-B incidence (ultimately due to variation in latitude) was the most important predictor of ‘blue’, 
population size and distance to large bodies of standing water also played a role, with their effects mediated by 
climate and subsistence strategy. Likewise, there was a lower frequency of people with red-green color deficiency 
in populations closer to the equator (i.e., with more lens brunescence), and whose languages lacked a dedicated 
word for blue.

Results
UV‑B incidence predicts the existence of a specific word for blue.  Here we tested the hypothesis 
that the incidence of UV (in particular, UV-B) predicts the existence of a specific word for blue, taking into con-
sideration various potential confounds and causal pathways.

Both UV-A and UV-B affected blue negatively (here, blue is the dichotomous variable ‘is there a spe-
cific term for blue in the language?’, italics indicate variable names; for more information about the vari-
ables, see Methods): UV-A: β = −1.03 , 95%HDI = [−1.65,−0.38] , p(β = 0) = 0.0154 , p(β < 0) = 1 ; 
UV-B:β = −1.12[−1.75,−0.55] , p(β = 0) = 0.0128 , p(β < 0) = 1 . Please note that for such Bayesian regres-
sion results we report the slope, β , of the fixed effect(s) of interest in terms of their mean and 95% HDI (High-
est Density Interval), as well as specific tests that capture the posterior probability that the hypothesis is true 
(i.e., they should be interpreted directly, and not as frequentist p-values in terms of the probability of see-
ing such a result were the null hypothesis true); also, while directional hypotheses should be a priori moti-
vated, point hypothesis do not have the same requirement. However, as UV-A and UV-B were highly mul-
ticollinear ( VIFmeanUVA = 36.3 , VIFmeanUVB = 36.3 ) and UV-A fitted the data worse than UV-B ( BF = 0.31 , 
LOO = −1.29± 0.77 , WAIC = −1.13± 0.77 , KFOLD = −1.20± 1.63 ; for such comparisons between two 
models, m1 and m2 , we report the Bayes Factor, BF, ideally < 0.033 or > 10, as well as the LOO, WAIC and 
KFOLD as the difference in the Expected Log pointwise Predictive Density, ELPD, between the two models 
and its standard error, for which the absolute difference should be larger than the standard error; ideally, all 
these criteria should agree, but they capture a priori different aspects of model comparison36), we retained 
only UV-B in the following analyses. The variable blue was positively affected by latitude ( β = 4.39[0.82, 8.01] , 
p(β = 0) = 0.068 , p(β < 0) = 0.99 ), population size ( β = 0.31[0.16, 0.48] , p(β = 0) = 3.8× 10−7) and climate 
PC1 ( β = 0.99[0.40, 1.57] , p(β = 0) = 0.035 ), and negatively by distance to lakes ( β = −0.56[−0.87,−0.27] , 
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p(β = 0) = 0.0074 ). Furthermore, 4 of the 10 dimensions, resulting from the multidimensional scaling (MDS) 
of the matrix of genetic distances ( FST37) between all pairs of populations, also affected blue (positively for genetic 
D7, and negatively for genetic D1, genetic D4 and genetic D6; see Supplementary Materials).

The mediation analysis (Fig. 2 Panel B) shows that latitude has a positive total effect (TE = 5.7, 95%HDI 
[2.3, 9.6]) on the presence of a distinct word for blue. There was a negative direct effect (DE = −7.4[−17.9, 2.4] ), 
as well as a positive indirect effect mediated by UV-B (IE = 13.0[3.6, 23.1]; βlatitude→UVB = −5.8[−6.2,−5.3] , 
βUVB→blue|latitude = −2.3[−4.0,−0.6] ). We explored other mediation models (see Supplementary Materials) 
which, taken together, suggest that distance to lakes also mediates between latitude and blue, and that subsistence 
is linked to blue through population size. We also constructed a complex (but largely theoretically motivated and 
conservative) path model (Fig. 2 Panel A) linking latitude and blue through UV-B and controlling for potential 
confounds. This model fitted the data very well ( χ2(1) = 0.4 , p = 0.53 ; CFI = 1.0 , TLI = 1.05 , NNFI = 1.05 , 
RMSEA = 0.0 ) and, importantly, showed that the effect of latitude on blue is fully mediated not only by UV-B 
( βlatitude→UVB = −0.96 , p < 0.001 , and βUVB→blue = −0.65 , p = 0.032 ), but also by subsistence, population size 
and distance to lakes.

The presence of a distinct term for blue was predicted by information in the full dataset using Bayesian 
mixed-effects logistic regression with family and macroarea as random effects, the conditional random trees, the 
random and conditional random forests, and the Support Vector Machines, with very little difference between 
them (accuracy from 76% for random forests to 91% for the Bayesian mixed-effects model). Moreover, all 
techniques generalized well and had comparable performance (as expected, lower on the testing sets than on 
the full database), the best being the conditional random forests and conditional trees. Across these, the most 
important predictors tended to be (not in any particular order): UV-B, population size, climate/humidity, latitude, 
and distance to lakes (see Fig. 3 Panel A).

Population frequency of abnormal red‑green vision.  In a second set of analyses, we tested whether 
the population frequency of abnormal red-green color perception (here, we designate this variable as dalto-
nism) was linked to the incidence of UV light and the presence of a dedicated word for blue (as a proxy for 
its physiological effects on blue-green color perception; see Fig.  4 Panels A and B). Bayesian mixed-effects 
regressions showed that daltonism was positively influenced by blue ( β = 0.61 [0.33, 0.88], p(β = 0) = 0.0004 , 

Figure 2.   Mediation and path analyses for the presence of a distinct word for blue. (Panel A top): Path model 
with standardized coefficients (line thickness) and p-values (stars). Single-headed arrows represent regressions, 
while double-headed arrows represent covariances. Edges: solid blue = significant negative effects (at alpha-
level 0.05), solid red = significant positive effects, and dotted gray = not significant. The thickness of the line 
indicates effect size, with a thick line indicating an effect size >= 0.5 and thin effect size < 0.5 ; significance stars 
near each arrow (*** for p <= 0.001 ; ** for p <= 0.01 and * for p <= .0.05 ). (Panel B bottom): Mediation 
analysis showing the total, direct, and indirect effects (as point estimate with 95% HDI and p-values), as well as 
regression coefficients (as point estimates with p-values in parentheses). Note, because the outcome is binary, 
the direct and indirect effects may be on different scales. Icons made by Freepik https://​www.​freep​ik.​com from 
Flaticon https://​www.​flati​con.​com/.

https://www.freepik.com
https://www.flaticon.com/
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Figure 3.   Predicting the existence of a dedicated word for blue (Panel A, left) and frequency of abnormal 
red-green color perception (Panel B, right); only the 7 best predictors are presented here (see Methods). 1st 
row: Using Bayesian mixed-effect models (BRMS), the best predictors’ (according to Bayes Factor, WAIC, LOO 
and K-Fold methods) slope estimates. 2nd row: specificity-based predictor importance from SVMs. 3rd row: 
accuracy-based predictor importance from random forests (RF), measuring the amount by which the accuracy 
decreases when one variable is removed from the model; higher values represent more important predictors. 
4th row: Gini-index-based predictor importance from random forests (RF); this measures by how much the 
Gini impurity decreases when a variable is chosen to split a node (note, only relative values matter, and there 
is a bias towards using numeric variables to split nodes). 5th row: unconditional predictor importance from 
conditional random forests (CF); this is similar to the accuracy-based importance from random forests. 6th row: 
the performance of the four methods (BRMS, SVM, RF and CF) in terms of accuracy (left; as this is a binary 
classification problem) and R2 (right; as this is a regression problem). Variable names have been abbreviated for 
legibility: popSize is population size, humid_m is median humidity, dist2lak is the distance to the closest lake, 
lat is latitude, genD4 is the 4th dimension of the multidimensional scaling of the between-populations genetic 
distances, climPC1 is the 1st principal component resulting from the Principal Component Analysis (PCA) of 
the climate variables, macroar is the macroarea, long is the longitude, and dist2wat is the distance to the closest 
body of water (ocean/sea, lake or river). Plots generated using R59.
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p(β > 0) = 1 ) and latitude ( β = 1.69 [0.78, 2.64], p(β = 0) = 0.0076 , p(β < 0) = 0 ) , and negatively influ-
enced by UV-B ( β = −0.3 [− 0.45, − 0.15], p(β = 0) = 0.083 , p(β < 0) = 1 ); it was also affected by 4 genetic 
distance dimensions (see Supplementary Materials).

Taken together, the mediation analyses suggested that the effect of latitude on daltonism was mediated 
mostly by UV-B and blue, and especially the mediation UV-B → blue → daltonism was important (TE = − 0.74 
[− 1.21, − 0.35], DE = − 0.21 [− 0.35, − 0.06], IE = − 0.53 [− 1.04, − 0.16]; βUVB→blue = −1.14 [− 1.78, − 0.55], 
βblue→daltonism|UVB = 0.49 [0.20, 0.77]). A path model (Fig. 4 Panel C) fits the data well ( χ2(1) = 4.0 , p = 0.137; 
CFI = 0.951, TLI = 0.927, NNFI = 0.927, RMSEA = 0.08) and showed that UV-B has both a direct effect on dal-
tonism ( β = −0.31 , p < 0.001) and one mediated by blue ( βUVB→blue = −0.55 , p < 0.001; βblue→daltonism = 0.4 , 
p < 0.001). Adding subsistence to the model improved the fit further ( χ2(1) = 1.6 , p = 0.45; CFI = 1.000, TLI = 
1.011, NNFI = 1.011, RMSEA = 0.0). It added a significant influence of subsistence ( βsubsistence→daltonism = 0.38 , 
p < 0.001), but removed the influence of blue to daltonism ( βblue→daltonism = 0.11 , p = 0.32).

Converging evidence across analysis methods predicted daltonism on the full dataset, but this performance 
did not generalize well. Moreover, the importance of the predictors varied across methods. Nevertheless, UV-B 
tended to be among the most important predictors, along with blue and some genetic distance measures (see 
Fig. 3 Panel B).

Figure 4.   Derivation of path models for red-green abnormal color perception. (Panel  A): A direct graphical 
representation of the hypothesis that UV-B affects the unmeasured physiology of color perception during 
the lifetime of an individual which, in turn, affects the existence of a dedicated word for blue in the person’s 
language (hypothesis 1). In addition, the physiology of color perception also drives an evolutionary interaction 
with alleles resulting in abnormal red/green color perception. (Panel B): a Structural Equation Modelling 
diagram representation of Panel A with operationalized variables. (Panel C): The latent variable ‘abn. blue 
perc.’, representing the unobserved abnormal color perception of blue, is indirectly measured by two indicators 
(‘daltonism’ and ‘blue’), while the latent ‘abn. red-green perc.’ (abnormal red/green color perception) is not of 
interest here. Therefore, we used ‘blue’ as a proxy for ‘abn. blue perc.’ and ignored ‘abn. red-green perc.’, leading 
to the path model shown here. Icons made by Freepik https://​www.​freep​ik.​com from Flaticon https://​www.​flati​
con.​com/.

https://www.freepik.com
https://www.flaticon.com/
https://www.flaticon.com/
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Discussion
Taken together, these analyses demonstrate that no single explanatory factor explains the color lexicon. This 
finding resonates with the centuries of debate on this topic with myriad variables being proposed and opposed. 
Our results show that multiple environmental and cultural factors interact. Specifically, we found that a language 
is more likely to have a dedicated word for blue when it is spoken by a larger population, which resides at higher 
latitudes (where the incidence of UV-B radiation is lower), and near large bodies of standing water (in particular, 
lakes). While number of speakers is an imperfect proxy for the unmeasured and hard-to-define variable, cultural 
complexity, which in turn is an indirect reflection of the use of complex dyeing techniques and colored artefacts, 
the environmental influences were more straightforward. For example, large lakes might not always be poster-
card blue, but they certainly tend to be a salient feature and reflect the sky more often than not. Importantly, 
the tendency of languages spoken closer to the equator to have a distinct term for blue, is likely due to the high 
incidence of UV-B light, and strongly supports the proposal that acquired lens brunescence has a negative effect 
on the development or maintenance of a lexical distinction between ‘blue’ and ‘green’.

Overall, these results suggest that variability in color perception leads to differences in the perceptual repre-
sentation of color space, which then causes differences in color lexicons. It also raises interesting questions about 
the mechanisms and time required for language change, given that we are considering acquired color deficiency 
related to aging. If language does adapt to the color vision of its speakers, then our data suggest that language 
adapts to the reduced capacities of older adults, despite also being spoken by younger adults and children, who 
are still able to perceive the distinction between green and blue. Intriguingly, other evidence suggests extreme 
variation in exposure to direct sunlight during very early development also affects color vision38. Nevertheless, 
our findings show a distinct developmental trajectory. Perhaps older adults change the fitness landscape to which 
language adapts through cultural evolution at the scale of several generations of language use and transmission39, 
a process that can be studied using agent-based computer models40, 41. The fact that we found no influence of 
environmental conditions at the putative origins of language families suggests that these effects act on timescales 
shorter than the few thousand years usually needed for language families to differentiate. The present-day lan-
guages of the same language family descend from a single ancient proto-language and, due to migrations and 
language shifts on the scale of a few thousand years42, may end up spoken in very different locations and environ-
ments to those of their proto-language. If the color lexicon needs several thousand years to adapt to changes in 
UV-B incidence, then the location of these ancient proto-languages should still have a detectable effect, but the 
lack of such a signal in our data suggests that this change is much faster.

It is striking to note that a similar phenomenon, where language adapts to an altered fitness landscape due 
to acquired changes in some of the speaker population, has been proposed for several typologically striking 
properties of Australian Aboriginal languages and the distribution of labiodental sounds. For example, the high 
frequency of chronic ear infections (chronic otitis media) among Australian Aborigine children can produce 
partial hearing loss affecting the lower and higher parts of the auditory spectrum, resulting in a loss of fricatives, 
a centralized vowel system, and a long, thin consonant system in the languages of the Australian continent43. 
Similarly, consuming processed and softer foods characteristic of agriculture leads to ontogenetic changes in bite 
(involving the teeth and lower jaw) such that the overbite/overedge is retained into adulthood, favoring the use 
of labiodental sounds (such as ‘f ’ and ‘v’) by languages of populations practicing agriculture44. Our study adds to 
this literature by showing that external pressures can shape semantic, as well as phonological aspects of language.

Finally, our data also supported an interaction between acquired blue-green and inherited red-green color 
deficits: populations closer to the equator, more affected by lens brunescence, speaking languages without a 
dedicated word for blue have a lower frequency of people with red-green color deficiency. The data also sug-
gested that populations of hunter-gatherers tend to have a lower incidence of abnormal red-green color percep-
tion. While this hypothesis requires further testing, it would support the idea that certain cultural practices and 
subsistence strategies might have higher demands on color perception, thereby generating selective pressures 
against inherited color perception deficits.

Some caution is required in interpretation, however, given limitations in the current study. First, our dataset 
contained only 14 groups classified as hunter-gatherers, which, even if representative of the current distribution 
of communities, is too small to allow strong conclusions. Second, more refined genetic data—especially includ-
ing information about the opsin alleles involved in red-green color deficiencies—would be necessary to better 
test for selection. Third, there is a need for better and, ideally, more direct measures of the exposure to complex 
dyeing technology and colored artefacts. Finally, populations and languages are reduced to geographic dots in 
our analyses, but a better approach might instead be to use aggregated measures of UV-B incidence, climate, 
ecology and proximity to large bodies of water across the whole area they occupy.

Nevertheless, our results strongly support the view that the color vocabulary is shaped, at least in part, by 
environmental factors acting on individual speakers, generating biases that are amplified by the repeated use and 
transmission of language in communities of similarly affected individuals. This is akin to other cases of individual 
biases being amplified to shape cross-linguistic diversity45, biases that can be either rooted in genetics46–48 or 
emerging due to environmental or cultural factors acting during the lifetime of individuals44.

Methods and materials
We collected data from 142 populations, extending and re-checking earlier databases9 considerably, especially 
concerning information about the color lexicon and the incidence of abnormal red-green color perception. Each 
population was uniquely identified by its Glottolog code49 of the primary language spoken and its geographic 
location. According to Glottolog, these languages belong to 32 language families (the most represented being 
Indo-European (41), Atlantic-Congo (19) and Afro-Asiatic (13)) distributed across 6 macroareas (Africa (31), 
Australia (2), Eurasia (79), Papunesia (9), North America (9) and South America (12)). We also obtained the 
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geographic location of the putative origins of each family49, 50. The geographic locations were cos-transformed: 
cos(longitude) ranges between − 1.0 (− 180) and 1.0 (180), and 1.0 − cos(latitude) ranges between − 1.0 (the 
South Pole), 0.0 (the equator) and 1.0 (the North Pole).

Based on their location, for each population we obtained the following data: the list of its geographic neighbors 
(derived from the Delaunay triangulation of our geographic locations taking into account large bodies of water51); 
its log(elevation+1) using the Mapzen data (through R’s elevatr package); the log(distances) to the nearest lake, 
ocean, river, or large body of water in general (using the OpenStreetMap data as per52); and data about specific 
humidity (using data from the NOAA, as the mean of the yearly medians and interquartile ranges), and climate 
and ecology (as in52, we conducted Principal Component Analysis on the 19 variables from World​Clim for the 
period 1960–1990, and we retained PC1, explaining 49.7% of the variance and reflecting low seasonality, wet 
and hot climates, PC2, 24.7%, high seasonality, hot and dry climates, and PC3, 8.6%, unclear interpretation). We 
calculated the incidence of ultraviolet light (UV) using the data from NASA Total​ Ozone​ Mappi​ng Spect​romet​er 
(TOMS) for the year 1998 (in order to replicate the procedure in9): these contain daily measures of UV radiation 
received by the human body at four wavelengths (305 nm, 310 nm, 320 nm, and 380 nm) in J/m2, taking into 
account the thickness of the ozone layer in the stratosphere, the amount of cloud cover, the elevation, and how 
high the sun is in the sky. Here, we use the whole-year means and standard deviations for UV-A (315 nm to 400 
nm), UV-B (280 nm to 315 nm) and the full spectrum.

Moreover, we obtained each population’s log(size) (from52) and subsistence strategy, dichotomized into popu-
lations whose subsistence mode is primarily based on hunting, fishing, gathering and/or foraging (‘HG’) and 
populations with subsistence modes centered around food production (‘AGR’), using data from44, 53–55. The 
information about color vocabulary specifically concerns the existence of a specific term for blue (a dichotomous 
variable, ‘no’/‘yes’), and we also collected data about the frequency of abnormal red/green color perception in males 
excluding, if specified, tritanopia, and those samples that do not distinguish between males and females, or with 
fewer than 50 individuals (see Fig. 1 Panel A and Supplementary Materials for details).

Finally, to control for past demography and selection (about which we do not have direct information here), 
we estimated the overall pairwise genetic distances between populations, estimated by the fixation index FST . 
We used a set of genetic markers aimed at forensic applications (FROG-​kb) from the ALFRED database56 with 
ultrametric missing value imputation57, 58, followed by classic multi-dimensional scaling (MDS), retaining the 
first 10 dimensions (goodness-of-fit 10.5%).

We used the following short variable names: glottocode (Glottolog language code), family (language fam-
ily), macroarea (the macroarea), latitude and longitude (the transformed geographical coordinates), elevation 
(transformed elevation), distance to ocean, distance to lakes, distance to rivers and distance to water (transformed 
distances to bodies of water), humidity median and humidity IQR (humidity), climate PC1, climate PC2, climate 
PC3 (the first 3 climate Principal Components, z-scored), mean UV-A, sd UV-A, mean UV-B, sd UV-B, mean 
UV, sd UV (UV incidence, z-scored), population size (transformed population size), subsistence (subsistence 
strategy), blue (is there a specific term for blue?), daltonism (frequency of abnormal red/green color perception), 
and genetic D1 ... genetic D10 (first 10 MDS dimensions of the genetic distances matrix); the suffix _family refers 
to the values at the putative family origins.

All analyses were done using R59. We used five main classes of methods in our analyses (see the Supplementary 
Materials). First, in order to understand the geographical patterning of our data, we tested it against complete 
spatial randomness60, 61 using the the χ2 test based on quadrat counts, and the G, F and K functions, and we 
also estimated its spatial autocorrelation using Moran’s I (with either the inverse of the shortest geographical 
distance “as the crow flies”, or the nearest neighbor distance on the Delaunay triangulation). Second, we fitted 
Bayesian mixed-effect regression models (as implemented by R’s package brms62 using Stan63) with family and 
macroarea as random effects, and explanatory variables and potential confounds as predictors. For blue we per-
formed logistic regression, and for daltonism we performed beta regression (after replacing the 0.0% values by 
0.01%); we used model selection based on Bayes Factors (BF), leave-one-out cross-validation (LOO), the Widely 
Applicable Information Criterion (WAIC), and K-Fold Cross-Validation (KFOLD, with K = 10). Third, we con-
ducted mediation analysis using a Bayesian mixed effects model (brms with Stan) approach which allowed us 
to include random effects. Fourth, we used path analysis (as implemented by lavaan64) to test more complex 
models involving multiple potential predictors (but without controlling for the non-independence due to family 
and macroarea). Finally, we quantified the predictive capacity of a set of variables using Bayesian mixed-effects 
regression (brms with Stan), conditional inference trees (ctree65 in package partykit66), random forests 
(package randomForest67) and conditional random forests (cforest in package partykit) and Support 
Vector Machines (rminer package68).

Data availability
All data and scripts needed to reproduce the results reported in this paper are available in the GitHub repository 
https://​github.​com/​ddediu/​colors-​UV and on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​50836​76.
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