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Abstract Division of labor between cells is ubiquitous in biology but the use of multicellular 
consortia for engineering applications is only beginning to be explored. A significant advantage of 
multicellular circuits is their potential to be modular with respect to composition but this claim has 
not yet been extensively tested using experiments and quantitative modeling. Here, we construct 
a library of 24 yeast strains capable of sending, receiving or responding to three molecular signals, 
characterize them experimentally and build quantitative models of their input- output relationships. 
We then compose these strains into two- and three- strain cascades as well as a four- strain bistable 
switch and show that experimentally measured consortia dynamics can be predicted from the 
models of the constituent parts. To further explore the achievable range of behaviors, we perform 
a fully automated computational search over all two-, three-, and four- strain consortia to identify 
combinations that realize target behaviors including logic gates, band- pass filters, and time pulses. 
Strain combinations that are predicted to map onto a target behavior are further computationally 
optimized and then experimentally tested. Experiments closely track computational predictions. 
The high reliability of these model descriptions further strengthens the feasibility and highlights the 
potential for distributed computing in synthetic biology.

Editor's evaluation
This paper used multiple strains to build gene circuits and demonstrate the modular composition of 
strain circuits with an automated design strategy to achieve a target behavior from a large space of 
possible functional circuit architectures. This paper provides synthetic biologists with an alternative 
solution for the problems of scalability, robustness, and modularity.

Introduction
The leading paradigm for genetic circuit design is to combine biological parts in a delicate balance 
within the same cell (Ellis et al., 2009; Kosuri et al., 2013; Ottoz et al., 2014). This approach has 
resulted in increasingly large genetic circuits that realize functions such as logic gates and circuits 
(Moon et al., 2012; Bonnet et al., 2013; Nielsen et al., 2016; Gander et al., 2017), time pulses 
(Gao et al., 2018; Guo and Murray, 2019), incoherent feed- forward loops (Entus et al., 2007; Ellis 
et al., 2009), bistable switches (Chen et al., 2012; Huang et al., 2012; Yang et al., 2019; Barbier 
et  al., 2020; Grant et  al., 2020), or oscillators (Elowitz and Leibler, 2000; Tigges et  al., 2009; 
Tigges et  al., 2010). Albeit very successful, single cell circuit engineering has limited scalability 
and robustness because parts cannot be reused, the genetic burden on the cell grows with circuit 
size (Nikolados et al., 2019), and retroactivity (Del Vecchio et al., 2008) and component crosstalk 
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(Del Vecchio, 2015) interferes with expected behavior. Furthermore, competition over shared gene 
expression resources makes unrelated circuits unintentionally coupled (Zhang et al., 2021).

An alternative approach is to generate complex behaviors using consortia of cells wherein different 
cell types perform distinct functions and communicate with each other through chemical signals to 
realize more complex behaviors. Such division of labor is common in nature and interest has recently 
emerged in engineering multi- cellular synthetic systems (Brenner et al., 2008). Although developed 
later, synthetic consortia have caught up with single- cell circuits in terms of the complexity of functions 
that have been realized, generating behaviors such as multicellular time pulses (Basu et al., 2004), 
oscillations (Chen et al., 2015; Danino et al., 2010), and logic gates (Regot et al., 2011; Tamsir 
et al., 2011), bioproduction (Egbert et al., 2016), or circuits that use quorum sensing to define social 
interactions (Kong et al., 2018; Balagaddé et al., 2008; Weber et al., 2007). Furthermore, the emer-
gence of novel orthogonal cross- species signaling molecules (Billerbeck et al., 2018; Du et al., 2020) 
and genetic channel- selector devices to multiplex individual signals (Sexton and Tabor, 2020) has 
opened the path for engineering more complex and precise multicellular behaviors.

To date, synthetic multicellular systems were largely designed with specific target behaviors in 
mind, rather than optimizing modularity of components to make them usable in a large number of 
contexts. Still, mathematical modeling has demonstrated that multi- cellular computation should 
easily access a larger space of behaviors: for instance, just three different cell populations can, in 
theory, generate up to 100 different logic functions (Regot et al., 2011) and even bimodality and 
cell- synchronization (Thurley et al., 2018). Furthermore, the intuitive modular nature of cell- to- cell 
communication should provide a useful tool to rationally design synthetic circuits with predetermined 
performance. Rational design significantly speeds up circuit assembly (Chen et al., 2012; Chen et al., 
2020) and allows design of global functions from local behaviors (Salis et al., 2009; Carothers et al., 
2011). As a matter of fact, mathematical models have been successful to bridge the gap between 
individual processes and collective behaviors when applied to ecological interactions between distinct 
populations of communicating cells (Shou et al., 2007; Momeni et al., 2013, Egbert et al., 2016). 
However, an example of a model- driven strain selection for multicellular circuit design is currently 
missing.

Here, we propose a large vocabulary of yeast strains that use chemical signals for cell- to- cell commu-
nication and that can be modularly combined to realize a large number of functions (Figure 1A). Each 
strain senses one or two inputs and produces a single output. The transfer function relating inputs 
and outputs can be either activating or repressing. The output is a fluorescent protein which can be 
used to read out circuit behavior, another signaling molecule which can be used to connect strains 
or an enzyme that sequesters or degrades a signal thus disrupting communication. We experimen-
tally characterize each strain, model their dynamics using differential equations and then use these 
models to predict the behavior of strain combinations (Figure 1B). Using a library of 24 strains, we 
rationally design complex multicellular behaviors, such as bandpass filters, negative and positive feed-
backs, time pulses, logic gates, and bistable switches. These behaviors are common in nature and 
they underlie cell decisions on metabolism (for instance, responding to environmental signals, [Lee 
et  al., 2002], utilization of carbon sources, [Brandman et  al., 2005]) or cell differentiation (Kueh 
et al., 2016; Duddu et al., 2020), and have been repeatedly connected to multicellular organization 
(signal gradients in development) and signaling (auxin pulses in plants). The modularity of composition 
achieved by our multicellular circuits allow us to design these non- trivial behaviors based on model 
simulations alone. This qualitative and quantitative precision demonstrated in both time and steady- 
state experiments further extend circuit design automation (Nielsen et al., 2016; Chen et al., 2020).

Results
Engineering yeast strains for signal sensing, synthesis and depletion
As a first step toward the construction of a vocabulary of modular yeast strains, we selected a set of 
signals to enable cell- to- cell communication and then optimized chassis strains for signal sensing, 
synthesis, and depletion. We selected the plant hormone auxin (we will also refer to it as IAA, indole- 3- 
acetic acid) and the yeast hormone α- factor as signaling molecules and additionally used the mamma-
lian hormone β- estradiol as an inducer.

https://doi.org/10.7554/eLife.74540
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Figure 1. Modular components for engineering multi- cellular signaling circuits. (A) Three input signals, two transfer functions and five outputs are used 
to assemble 24 distinct strains. (B) Differential equations are used to model and predict behavior of all strains and strain combinations in the paper. 
In this example, a model (Model 1) and symbolic representation for a fluorescent reporter repressed by high auxin concentration are shown. (C) Left: 
Time course fluorescence data for different auxin concentrations for the sensor strain shown in (B). Full lines are model simulations. Right: End point 
fluorescence data is shown as a function of auxin concentration color- matching the time series on the left. The steady- state simulation is shown in 
orange. (D) Symbolic representation, steady state data and model fit for all other single input reporter strains. (E) Modeling framework (Model 2) and 
fluorescence kinetics data for two different two- input reporter strains. Error bars represents the s.d. of three biological replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. The data used for plotting Figure 1 and supplements.

Figure supplement 1. Effect of PGP1 on auxin secretion and sensing.

Figure supplement 2. Auxin conjugation to Asp mediated by the GH3 protein in yeast.

Figure supplement 3. Mass spectrometry data for IAA- Asp synthesis from IAA in GH3- expressing strains.

Figure supplement 4. Circuit pathways for repressing strains using α- factor and β- estradiole as inputs.

Figure supplement 5. Pathway optimization for IAA- sensing strains.

Figure supplement 6. Strains constructed but not used in this study.

Figure 1 continued on next page
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The α- factor pathway has been subject of extensive studies and mechanisms for sensing through 
the surface receptor STE2, synthesis by the MFα1 gene and degradation through the BAR1 protease 
are well understood and have been engineered to generate a wide range of behaviors (Youk and 
Lim, 2014; Groves et al., 2016; Shaw et al., 2019). To have a baseline strain that does not interfere 
with signaling, we knocked out the native BAR1 gene as in Youk and Lim, 2014 to prevent α- factor 
degradation. Moreover, to account for growth- arrest induced by α- factor, which affects gene expres-
sion on a large scale, we knocked out FAR1 a protein that contributes to arresting the cell cycle at 
G1Chang and Chang and Herskowitz, 1990, and constitutively expressed POG1, a protein that 
promotes growth- arrest recovery (Leza and Elion, 1999). Unexpectedly, we detected no α- factor 
output from strains that both sense and secrete α- factor. We suspected that this was caused by the 
surface receptor STE2 internally binding to α- factor. It has been shown that, upon binding to α- factor, 
STE2 undergoes endocytosis and then shares the secretory pathway of α- factor itself (Schandel and 
Jenness, 1994). We solved this problem by overexpressing STE2 on a pGPD promoter Sun et al., 
2012 in these strains, aiming to have some protein copies escaping this interaction.

Next, we turned to the optimization of components for Auxin sensing, synthesis, and elimination. 
In prior work from our group, we (Khakhar et al., 2016; Pierre- Jerome et al., 2014) developed an 
auxin- responsive transcription factor using a chimeric dCas9- Aux/IAA protein regulation. In the pres-
ence of Auxin, the Aux/IAA degron part of the protein binds to the auxin signaling F- box protein (a 
modified TIR1 for this study) and acts as part of an E3 ubiquitin ligase to catalyze ubiquitination and 
degradation of the Aux/IAA- degron- containing protein. Similarly, we constructed a synthetic auxin 
synthesis pathway in yeast (Khakhar et  al., 2016). We demonstrated conversion of the precursor 
molecule IAM (indole- 3- acetamide) into IAA through expression of the IaaH gene in yeast. Here, we 
amplified Auxin secretion and thus effectively the strength of the signal produced, through integration 
of the auxin- efflux pump ABCB1/PGP1 from A. thaliana into our yeast strains, as previously reported 
in Geisler et al., 2005. We measured a significant increase in the auxin- synthesis yield as measured 
by a neighboring IAA- detecting cell when PGP1 was integrated (Figure 1—figure supplement 1).

Unlike for α- factor, a depletion mechanism for Auxin had not yet been reported in yeast. To create 
an IAA depletion mechanism, we thus selected the plant protein GH3.3 that has been shown to 
conjugate IAA to aspartic acid, forming the signaling- inactive IAA- Asp. GH3.3 is part of a family of 
proteins that encode IAA- amino synthetases, which have been reported to control auxin homeostasis 
(Staswick et al., 2005). To test whether GH3.3 or related proteins could be used to inactivate Auxin 
in yeast, we first expressed codon- optimized versions of GH3.3 and GH3.6 from A. thaliana and C. 
papaya from a highly expressed pGPD promoter. We then tested the IAA to IAA- Asp conversion rate 
using mass spectrometry and found that GH3.3 from A. thaliana had the higher efficiency (Figure 1—
figure supplement 1). Finally, we tested that IAA- Asp does not activate the IAA- mediated degrada-
tion pathway in yeast, by adding 10 µM of IAA- Asp in an auxin- sensor yeast culture and detecting no 
variation in fluorescence (Figure 1—figure supplement 1).

Establishing a vocabulary of parts for cell to cell communication
Having established conditions for efficient signal sensing, synthesis and inhibition, we combined 
signals with activating and repressive transfer functions to create a vocabulary of strains. Transfer 
functions that use α- factor as input are mediated by the transcription factor (STE2) that either directly 
induces expression of the gene of interest (activation) or induces expression of a repressor that inhibits 
the output (repression). Similarly, β- estradiol binds and activates a transcription factor (ZEV4, McIsaac 
et  al., 2013) that either directly activates gene expression (activation) or induces expression of a 
repressor and inhibits output synthesis (repression). For both signaling molecules, we chose dCas9 
fused with the repressor domain Mxi1 (Gander et al., 2017) as repressor (Figure 1—figure supple-
ment 1 for the full pathways).

To induce activation or repression with auxin, we build on the same auxin- mediated degradation 
pathway used for auxin sensing above. Specifically, activation results from degradation of a repressor, 
while repression results from degradation of an activator. We chose a dCas9- Mxi1- auxin degron 

Figure supplement 7. Orthogonality between signaling molecules.

Figure 1 continued
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(Khakhar et al., 2016) fusion as a repressor and used a dCas9- VP64- auxin degron fusion as the acti-
vator (Figure 1—figure supplement 1).

We conducted extensive pathway optimization to increase the separation between high and low 
expression levels and IAA sensitivity, using a mechanistic model to explore the parameter space and 
guide the genetic engineering (Figure 1—figure supplement 1). We adopted the model proposed 
in Pierre- Jerome et al., 2014, where each parameter easily translates to a biological function, and 
performed parameter sensitivity analysis with respect to fold change between the baseline and the 
Aux/IAA- induced fully repressed state. We then selected the top six highest scoring parameter 
perturbations, designed circuit variants that reflected those changes, and tested them resulting in a 
good agreement with our predictions (Figure 1—figure supplement 1). Guided by the model, we 
combined five of the tested circuit variants to increase the fold change from 1.3- fold (sensor from 
Khakhar et al., 2016) to 3.1- fold: we used this final circuit for all the repressive strains, swapping the 
fluorescent reporter gene with the output gene for non- sensor strains. For the auxin activating strains, 
we used a similar model- driven approach to rationally design the activating pathway novel to this 
paper, obtaining a threefold- change activation.

Combining the three different input signals, the activation/repression circuits and output secre-
tion, we built and tested all the possible combinatorial designs presented in Figure 1A. The strains 
that sense β- estradiol and repress expression of BAR1 and GH3.3, the strain that senses α- factor and 
represses expression of GH3.3, and the strain that senses IAA and represses BAR1 expression are 
shown in Figure 1—figure supplement 1 and not used below, since their response was too slow to 
produce meaningful results. Of the remaining 24 strains, 6 sensor strains express GFP in response 
to the three input signals (three activators and three repressors), 12 strains (six activators and six 
repressors) synthesize a signaling molecule, and 6 strains act as signal attenuators (expressing BAR1 
or GH3.3). Four of these 24 strains sense and secrete the same signaling molecule (α- factor or IAA, 
‘positive’ or ‘negative’ feedback strains). Finally, two strains express repressors of their own input 
(α- factor expressing BAR1 and IAA expressing GH3), also describing a negative feedback topology 
(Figure 1—figure supplement 1).

Sensor strain characterization
For sensor strain characterization, we collected time series data for eight different input concentra-
tions. Input concentrations were selected to fully cover the sensor dynamic range for model fitting. 
We normalized fluorescence data by cell size and took the mean of the histogram as in Groves et al., 
2016 and then subtracted background fluorescence. Each measurement in the figure is an average of 
three experimental repeats (error bars representing the standard deviation).

With a scalable and modular system in mind, we fitted a set of three ordinary differential equations 
(ODEs) with eight parameters for each strain to describe input sensing (x1), signal processing (x2) and 
fluorescence output synthesis (x3) (Figure 1B, Model 1). Signal processing (activation or repression) is 
modeled with a simple Hill function (Model 1b), which naturally incorporates signal saturation. Input 
sensing and output synthesis are modeled as linear ODEs (Model 1 a and c). A constant term in the 
last ODE accounts for background promoter activity. For instance, for the auxin sensor in Figure 1B, 
x represents the TIR1- auxin complex concentration, x2, the dCas9- VP64- auxin degron population, and 
x3, GFP concentration. These simple models capture the system dynamics, with the benefit of being 
easy to fit and analytically approachable. Parameters were fitted independently for each experimental 
repeat to obtain a mean and a standard deviation for the Hill coefficient. We also separately fitted 
a Hill curve to an average of the three experimental repeats and the resulting Hill coefficient ( n ) is 
reported in the figures and used for simulations (Figure 1B). The sensor strains range in sensitivity 
depending on the input. The β- estradiol sensors respond to inputs concentration ranging from 0.1 to 
100 nM with an  EC50  of 0.5 ± 0.0 nM for repression and 12.6 ± 0.9 nM for activation. α- factor sensors 
are sensitive to input concentrations ranging from 1 to 500 nM range with an  EC50 ∼ 6.0 ± 0.4  nM 
for activation and 89.0 ± 6.6 nM for repression. Finally the IAA sensor is least sensitive and responds 
to inputs ranging from 5 nM- 10 uM withe an  EC50 ∼ 964.8 ± 93.8  nM for activation and 276.5 ± 8.8 
nM for repression. The Hill coefficients for these sensors vary between 0.8 (3- repeat interval: 0.8 ± 
0.0, α- factor repression) and 1.0 (1.2 ± 0.02, α- factor activation), 2.2 (2.1 ± 0.3, β- estradiol repression) 
and 1.3 (1.25 ± 0.0, β- estradiol activation), 1.0 (1.0 ± 0.4, auxin repression) and 0.8 ( 0.8 ± 0.0 , auxin 
activation) consistent with previously reported values for β- estradiol repression (dCas9- Mxi1 confers 

https://doi.org/10.7554/eLife.74540
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stronger and more consistent repression than dCas9 alone, leading to ultrasensitivity, Gander et al., 
2017) and α- factor activation (Groves et al., 2016). Finally, the sensors achieve an ON/OFF fold- 
change that ranges between a minimum of 3 (IAA activating GFP) and a maximum of 42 (β- estradiol 
activating GFP). We tested signal orthogonality by adding pairwise combinations of inducers at satu-
ration concentration to single- input repressive sensors (Figure 1—figure supplement 1). Variations 
across the treatments are contained within 11% of the nominal value for signal concentrations within 
the range used for circuit experiments.

In addition to single- input sensors, we constructed two sensor strains that respond to both α- factor 
and IAA. In the first strain, α- factor induces fluorescence expression and IAA represses it, while in the 
second strain, IAA induces fluorescence expression and α- factor represses it (Figure 1E).

We collected data points for eight different input combinations taken at five time points up to 
saturation. The output signal is monotonic with respect to each input and the input functional range is 
similar to the one measured for the correspondent strains that respond to only one of the two inputs.

To model these strains, we used a simple extension of our previously introduced models with five 
ODEs (Figure 1E, Model 2): two ODEs model input sensing (a), two model input processing (b), and 
one ODE (c) combines the signals according to their activating or repressing nature and defines output 
synthesis. These models fit the experimental data even when the output is non- monotonic over time.

Assembling modular, tunable and easily-extendable circuits using cell-
to-cell communication
To determine the potential to build biological circuits using cell- to- cell communication, we experimen-
tally tested if communication occurs between strains that secrete an output and their corresponding 
sensor strains. For example, a strain that produces auxin in response to α- factor sensing was grown in 
co- culture with a sensor that switches off GFP expression in response to auxin (Figure 1B). The two 
strain populations were added at the same concentration and the fluorescent output was measured 
at steady state (10 hours after induction). The experimental data is consistent with a negative α- factor 
sensor as expected (the more α- factor, the lower the fluorescent signal, as seen in Figure 2A).

Since the core genetic circuit of this sender strain is identical to the α- factor repressing sensor, we 
tested if the mathematical model previously fit to the sensor data preserves its predictive power. We 
re- fit only the 3 output parameters to account for the fact that the output is now auxin rather than 
GFP. The output of the sender cell model was used directly as input of the sensor cell model. To test 
the hypothesis that strains that have common input/processing parts share parameters and model 
structure, we collected two datasets on two different experiments composed of four data points 
each: we used one for fitting (yellow dots, first experiment), and the other for validation (orange dots, 
second experiment, Figure 2A). A time- series at EC50 input concentration was also used for fitting 
(not present in the figure).

Intuitively, we expected that higher initial sender cell concentration would result in an overall higher 
concentration of their output signal over the same time scale. Most importantly, we wanted to know if 
this output ‘gain’ can be predicted by our models so that we could use it to tune circuit behavior. We 
modeled this effect with a factor  K   multiplied by the output signal, where  K   is the fold- change with 
respect to the standard initial concentration: we represented this gain using the same iconography 
used in electronic circuits (Figure 2B). Our predictions matched closely with data collected using 5 X 
and 10 X the original concentration of sender cells (green and blue lines) using the same strain co- cul-
ture as in the previous panel (orange line). Notice that the fold- change, as we just defined it above, is 
not equivalent to the ratio between the strains. Hence, difference in growth rates are not relevant for 
model predictions provided that there is no dilution or competition for resources, which is minimal in 
these experiments (the strains are kept in log- phase throughout the experiments and their concentra-
tions are kept below saturation).

We further tested if we could modulate the concentration of signaling molecules by removing it 
from the system through BAR1 and GH3.3- expressing strains (Figure 2C). We modeled signal degra-
dation as a first- order Hill repressing function, where the output of the sender cell acts as a negative 
regulator. As before, only the three output parameters of the sender strain were fitted using receiver 
cell fluorescence data. Finally, we tested all the sender- receiver pairs in our vocabulary with the excep-
tion of those generating positive or negative feedback. All activating strains function within the sensor 
range of their receiver strains (Figure 2D), and the models correctly fit or predict the data. On the 

https://doi.org/10.7554/eLife.74540
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Figure 2. Multi- strain signaling cascades. (A) Symbolic representation of a two- strain cascade that uses α- factor as the input and auxin as an 
intermediate signal. To model multi- strain cascades, models for individual strains are concatenated and only the last differential equation of the first 
model is fit: the GFP output (dashed yellow semi- circle) is substituted with IAA (solid blue semi- circle). End- point fluorescence data and fit are shown 
for the example cascade. (B) By varying the concentration of the upstream strain, the strength of the signal seen by the downstream strain can be 

Figure 2 continued on next page
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other hand, the output of repressing strains (Figure 2E) did not fully cover the input range of their 
receiver strains, as seen in the limited fold- change of the fluorescent signal. Models suggested that 
increasing the sender strain population to 10- fold its original value would produce a more noticeable 
response, which we successfully verified experimentally (purple dots and lines, Figure 2D and E).

After the two- strain combinations, we also verified the predictive power of our model on two 
3- strain chains with different topologies and different strain stoichiometries (Figure 2F). Here too, the 
simple model strategy we outlined earlier captured the overall dynamics even when different strain 
concentrations were used. These results support the hypothesis that multicellular circuits behave like a 
sum of their individual parts (modularity), are easy to modulate (whether through altering initial strain 
concentrations or signal degradation) and can be extended to longer chains.

Increasing nonlinear response using external positive feedback
Thus far, we explored ways to simulate and design multicellular circuits with tunable gains to obtain 
monotonic, quasi- linear dynamic systems with a single equilibrium point. To extend the range of 
observable behaviors and generate non- linear responses to the inputs, we used positive feedback 
strains that sense and secrete the same signaling molecule (Figure 3A).

To highlight the increase of nonlinear response, on top of fitting models to the positive feedback 
strains (as in Figure 2A), we also re- fitted the sensor strains to estimate a new Hill coefficient (much as 
in Shaw et al., 2019). We then plotted these fitted curves, the data points and the two Hill coefficients 
for both the feedback system and the nominal response (in this case, the sensor alone). In both cases, 
the positive feedback increased the nonlinearity of the response (from 0.8 ± 0.0 to 1.5 ± 0.1 and from 
1.0 ± 0.4 to 1.2 ± 0.3 for the α- factor and the auxin case respectively). We also considered positive 
feedback circuits that operate through double repression (Figure 3B). In this case, we tested topolo-
gies where either α- factor represses BAR1 synthesis, or auxin represses GH3.3 synthesis. Ideally, at low 
signaling molecule concentration, signal degradation through BAR1 or GH3.3 is predominant so there 
is no fluorescence response in the receiver cells. But at high input concentration, the degradation 
pathway is switched off and the input is free to reach the receiver cells. As in Figure 3A, we measured 
the Hill coefficients of these circuits and reported an increase in nonlinear response (from 0.8 ± 0.0 to 
1.0 ± 0.0 and from 1.0 ± 0.4 to 1.4 ± 0.6 for α- factor and auxin circuits respectively).

Constructing a multicellular bistable switch
We next turned to the construction of a bistable switch circuit. We opted to use a mutual- repression 
topology to generate bistability (Gardner et  al., 2000; Oyarzún and Chaves, 2015). For a first 
design, we combined the strain that senses α- factor and represses auxin synthesis with the strain 
that senses auxin and represses α- factor synthesis. Here, the main state variables are signaling mole-
cule concentration in the media rather than the internal state of the cells (specifically, high auxin/low 
α- factor and low auxin/high α- factor). However, both model simulation and experimental data showed 
that this circuit can generate only a single equilibrium, independently of the strain stoichiometry 
(Figure 3—figure supplement 3). This result is not unexpected given the low Hill coefficients of the 
two repressive circuits (0.8 and 1, respectively). Rather than re- designing the gene regulatory circuits 
internal to these strains to be more suitable for a bistable switch, we decided to take advantage of the 
composable nature of the system and incorporate more strains to the architecture.

As shown in Figure 3B, combining strains that work cooperatively increases the Hill coefficients. 
Hence, to boost non- linearity, we added two strains to the mix that induce signal degradation: a strain 
that senses α- factor and synthesizes GH3 and one that senses auxin and synthesizes BAR1 (Figure 3C). 

predictably controlled. This change in signal is modeled with a single parameter K. Right: data and model predictions for three experiments with the 
same strains but varying concentrations of the upstream strain. (C) Symbolic representation, model and data for a two strain cascade wherein the 
upstream strain removes a signal rather than secreting it. (D) Symbolic representation, model and data for all two strain cascades where the upstream 
input is activating the production of the intermediate signal. (E) Symbolic representation, model and data for all two strain cascades where the upstream 
input is repressing the production of the intermediate signal. (F) Symbolic representation, model and data for three- layer signaling cascades. Error bars 
represents the s.d. of three biological replicates.

The online version of this article includes the following source data for figure 2:

Source data 1. The data used for plotting Figure 2.

Figure 2 continued
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The resulting system can still be seen as two modules that repress each other’s activity: α- factor lowers 
auxin concentration (through pathway repression and GH3 expression) and auxin reduces α- factor 
concentration (through pathway repression and BAR1 expression). We studied this new system with 
a steady- state model for auxin and α- factor concentrations (Figure 3C, Model 3 and Appendix 1 for 
model derivation). The model suggests that one of the two Hill coefficients (n1) is higher than 2, a 
necessary condition for the existence of more than one equilibrium.

We investigated the existence and properties of the equilibria while varying the individual concen-
trations of the four strains in the circuit: these variations are captured by the four  K   parameters in the 
model, representing the gains of the four strains in the circuit as explained earlier. Using the model, 
we identified a range of concentrations predicted to result in multiple equilibria (for the analysis, see 
Appendix 1). For further investigation, we picked a set of concentrations that maximize the distance 
between equilibria such that the equilibria are robust to small variations in strain concentrations (red 
diamond, Figure 3D). This solution generates two nullclines that intersect three times, resulting in 2 
stable (red crosses) and 1 unstable (black empty circle) equilibrium as expected (Figure 3E).
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Figure 3. Feedback strains and bistability. (A) Symbolic representation, model and data for two self- activating positive feedback circuits using alpha 
factor (left) and auxin (right) as the activating signal. (B) Symbolic representation, model and data for two positive feedback circuits that act through 
double repression. (C) Architecture and model for a bistable switch assembled from four separate strains. (D) Area of bistability as a function of strain 
concentrations, where the dark blue color represents one stable equilibrium and color shades report predicted fold- change between ON and OFF 
states. The coordinates of the red diamond are the concentrations chosen for experimental testing. (E) For the chosen solution, the nullclines show the 
IAA and alpha- factor concentration for the three equilibria (× = stable, ο = unstable) (F) Experimental data for the bistable switch. Full line is Model 3 
simulation, and exogenous auxin and alpha- factor concentrations are reported as a function of dilution over time,depicted in the figure as jagged blue 
and red lines (the peaks are normalized to simplify their graphical representation). Error bars represents the s.d. of three biological replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. The data used for plotting Figure 3 and supplements.

Figure supplement 1. Mutually repressing strains do not generate bistability.

Figure supplement 2. Model explanation for the stable- to- unstable shift.

Figure supplement 3. Growth rate of the five strains in the bistable switch.

https://doi.org/10.7554/eLife.74540
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We tested this model- guided design experimentally (Figure 3F). Strains were mixed according 
to the chosen concentrations and an auxin negative sensor strain was added. Upon reaching log 
phase (Time 0 in Figure 3F), samples were diluted at regular time intervals to prevent the cells from 
saturating (see the Materials and methods section). To alternate between the states, we exogenously 
added first auxin (at 3 hr) and then α- factor (at 15 hr) and let dilution reduce their concentration to 
below detectable levels for our sensor (at 12 and 24 hr, respectively).

Model 3 simulation and data largely agree, although there is a lag between the two. We hypoth-
esize that the lag is due to a signaling delay between the strains that was not fully captured by the 
models in this five- strain circuit (four strains for bistability plus one auxin sensor). More importantly, 
the ‘high’ equilibrium is stable in the first 3 hr of the experiment, but seems to become unstable after 
25 hr, as shown by a negative trend in the data toward the ‘low’ equilibrium. Modeling suggests that 
a small increase in the K4 gain (strain: IAA expressing BAR1) would lead the system to a single ‘low’ 
equilibrium (Figure  3—figure supplement 3). This could occur if the corresponding strain grows 
slightly faster than the other strains (although, in practice, we could not detect any growth difference 
between the single- input/single- output strains using an ANOVA test, Figure 3—figure supplement 
3). An alternative explanation is that metabolic load affects the growth rates depending on strain 
circuit activity (Sadeghpour et al., 2017; Zhang et al., 2020). Accordingly, active strains grow more 
slowly than inactive ones, affecting their intended concentrations over time, which could result in 
leaving the bistability region. To test this hypothesis, we introduced metabolic load to our models 
(Appendix 1). Following Sadeghpour et al., 2017, we assumed metabolic load to be linearly propor-
tional to (normalized) gene expression This dependency is captured by a parameter  0 ≤ ρ ≤ 1 , where 

 ρ = 0  represents no impact and  ρ = 1  represents a high impact on growth rate (no growth at maximum 
gene expression). Simulations show that a behavior qualitatively similar to the loss of stability after 
25 hours is possible for high metabolic load ( ρ ≥ 0.5 ), although at a later time than the experimental 
data (∼36 hrs, Figure 3—figure supplement 3) according to this model representation. Moreover, 
since growth rates are statistically identical for active and inactive strains (Figure 3—figure supple-
ment 3), we concluded that metabolic load is unlikely to significantly affect our bistable circuit. This 
result is consistent with previous work supporting robustness of the repressive circuit topology to 
growth feedback (Zhang et al., 2020).

Automated design of strain circuits to generate logic gates
In order to expand our target behaviors, we developed an automated approach to select circuits 
using the twenty- four strains introduced above. Specifically, we simulated all possible strain combi-
nations for networks of size 2, 3, and 4 strains using Models 1 and 2. For each network, we simulated 
the system response over 12 hours to all possible combinations of α- factor (in the discretized range 
of  

[
0 > 1 > 5 > 10 > 50 > 200 > 1000

]
  nM), auxin ( 

[
0 > 100 > 500 > 1000 > 5000

]
  nM), and β- estr 

( 
[
0 > 1 > 5 > 10 > 100

]
  nM). The ranges were chosen to properly sample the operational range of 

the strains (see Figure 1C, D and E).
Next, we screened our simulation space for steady- state behaviors whose profiles resemble AND, 

OR, NAND, or NOR logic gates. For each strain combination, we restricted the steady- state behavior 
space to simulations obtained using combinations of the highest input concentrations (α- factor = 
1000 uM, auxin = 5000 µM, β- estr = 100 nM) or no input to match the  

[
01

]
  logic table input entries. 

This selection resulted in 120 combinations from the 2- node networks, 560 from the 3- node networks, 
and 1,820 from the 4- node networks. After normalization to allow for comparison between different 
sensors (Appendix 2), each of these combinations was scored according to how well they match one 
of the logic gate truth tables. If the predicted output for one of the expected OFF states was higher 
than the output for one of the expected ON states then the metric would return a value below 1 
labeling that strain combination to be a poor logic gate realization. On the other hand, values above 
1.0 imply a match between the output vector and the target truth table: the higher the value, the 
better the separation between the ON and OFF state.

We first applied this method to identify circuit topologies that generate AND gate profiles 
(Figure  4A). Each network topology is represented as a diamond, color- coded according to the 
network size (blue for 2- node, red for 3- node and yellow for 4- node networks), and divided in 4 
groups according to the sensor strain reporter. Each network was scored, and its value reported on 
the x- axis.

https://doi.org/10.7554/eLife.74540


 Research article      Computational and Systems Biology

Carignano et al. eLife 2022;0:e74540. DOI: https://doi.org/10.7554/eLife.74540  11 of 26

A

B

K2

Aα K3

K1

A
A

AB

K2

Aα K3

K1

A

K4

0

5

10

15

20

25

30

(0,0) (0,β) (α,0) (α,β)
0

5

10

15

20

25

30

35

40

(0,0) (0,β) (α,0) (α,β)
0

5

10

15

20

25

30

35

(0,0) (0,β) (α,0) (α,β)

AND gate score

N
et

w
or

k 
si

ze

0.4 0.6 0.8 1 1.2 1.4

2
3
4

2
3
4

2
3
4

2
3
4

SensorStochiometry-optimized 
gates

= network simulation steady state

A

B

αK3

K2

Aα K4

K1

A

Aα K2

AB K1

A

NOR gate NAND gate OR gate

A

B

Experimental data
Prediction

Experimental data
Prediction

Experimental data
Prediction

0

5

10

15

20

25

30

35

(0,0) (0,β) (α,0) (α,β)

Experimental data
Prediction

ON
OFF

ON
OFF ON

OFF ON
OFF

e
c

n
e

cs
er

o
ul

F 
n

a
e

M 
e

vit
al

e
R

R
e
la

ti
v

e
 M

e
a
n

 F
lu

o
re

sc
e
n

c
e

Figure 4. Model- generated implementation of Boolean logic gates. (A) We used an automated search algorithm to screen all possible strain 
combinations up to size four (and including exactly one sensor strain) for their ability to realize a set of logic functions. In the example, each strain 
combination is scored according to how close the combination is to realizing an ideal Boolean AND gate. Each colored diamond corresponds to one 
strain combination. Circuits consisting of two strains (+ a sensor) are shown in blue, three- strain gates are shown in red, and four- strain gates in yellow. 
All strains in these simulations are at equal stoichiometry. Higher scores indicate more AND- like behavior. The top- performing strains (score >1, teal 
box) are selected for further computational optimization of strain stoichiometry. Optimized strain combinations have higher AND scores. Optimized 
circuits consisting of two strains are shown in light blue, three- strain gates are shown in green, and four- strain gates in purple. Simulations are 
separated according to which sensor strain is used. A specific high- scoring four- strain combination was chosen for experimental testing (red box). The 
experimental data (blue bars) show good quantitative agreement with the predictions (orange bars). (B) Similar optimization procedures to the ones 
shown in (A) were used to identify strain combinations that realize NOR, NAND, and OR logic functions. Example implementations, model predictions 
and experimental data are shown for all three logic functions. Error bars represents the s.d. of three biological replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The data used for plotting Figure 4 and supplements.

Figure supplement 1. Optimal circuits, simulation, and experimental realization of the AND gate for 2, 3, and 4- node topologies.

Figure 4 continued on next page
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Next, we selected all the network topologies that scored higher than 1.0 and performed an opti-
mization step. Optimization aimed to maximize the target metric using strain concentration (gains) 
as optimization parameters (Figure 4A, left panel). Finally, we picked the highest scoring topology 
for experimental testing. The best AND gate was a 4- node network topology that used α- factor and 
β- estradiol as inputs and a negative auxin sensor to determine the output.

This strain combination included two strains repressing auxin output in the presence of α- factor and 
β- estradiol respectively. These strains by themselves should ideally generate an AND gate in concert 
with the negative auxin sensor. The other two strains improve performance of the AND gate, likely 
by reducing the effect of leaky auxin synthesis from the α- factor- sensing/auxin- repressing strain. The 
experimental realization of this circuit shows separation between the ON and OFF states. In fact, the 
data (blue bars) seem to slightly outperform the predictions (Figure 4A, right panel).

We repeated this same procedure for NOR, NAND, and OR gates (Figure 4B). The optimal NOR 
gate is also a four- node network, while the optimal NAND gate is a three- node network, and both use 
the same auxin sensor as the optimal AND gate. The bar separating ON and OFF states as defined 
for the AND gate holds for all the gates sharing the same sensor. The optimal OR gate is the naive 
realization with two strains synthesizing auxin from different inputs and an activating an auxin sensor. 
All the gate profiles are close to their predicted values from simulation, showing the high degree of 
modularity of our vocabulary of strains, even for complex systems with internal feedback as the NOR 
gate architecture. For each gate, we also tested the optimal realization of the strain combinations for 
the two remaining network sizes with similarly positive results (Figure 4—figure supplement 4).

Identification of circuit designs for time pulses and band pass filters
We next extended our automated design strategy to circuits that either generate time pulses or that 
acts as band pass filters on the input signal concentrations. Starting from the simulation dataset of all 
possible strain combinations, we selected all those that displayed non- monotonic behaviors (having 
at least one local maximum/minimum) as a function of time or as a function of the steady state input 
concentration. We defined a non- monotonicity metric as the distance between the local maximum/
minimum and the maximum/minimum between the initial value and the final value of the series. 
Higher values of the metric hint to more pronounced non- monotonic behaviors, while 0 implies that 
no local minimum/maximum is present (Figure 5A). We then selected the top six candidates (one for 
each sensor type in Figure 1B, D and E, excluding the β- estradiol ones), and performed optimization 
to maximize the metric using cell concentrations and input concentration as parameters. Finally, we 
experimentally tested the top two topologies overall for both time pulses and steady- state band- pass 
filters. It is worth noticing that only 0.52% of all possible topologies across network sizes generated 
non- monotonic behaviors in time (of about 106 in total, Figure 5A) and only 0.32% at steady state (of 
about 105 in total, Figure 5B). Hence, a ‘brute force’ experimental approach to test all possible strain 
combinations would be evidently out of reach.

The highest performing time pulse topology (Figure 5C) is induced by α- factor that activates both 
fluorescence expression and auxin synthesis. In turn, auxin induces BAR1 production, which degrades 
the exogenous α- factor signal: unsurprisingly, this is an incoherent feed- forward loop, type 1 (as in 
Mangan and Alon, 2003). The optimal ‘reversed’ time pulse, that is, a dip in the output at inter-
mediate times (Figure 5D), responds to α- factor induction and implements a modified incoherent 
feed- forward loop type 3, where α- factor both represses and activates fluorescences. Model predic-
tions suggested that three different α- factor concentrations would generate this behavior at different 
capacities (0.1 nM, 1 nM and 5 nM α- factor).

According to the models, both these nonmonotonic behaviors are a consequence of delay between 
an activator and an inhibitor pathway.

The low- pass concentration filter (Figure 5E) uses very similar components but the sensor with 
opposite topology. In this case, α- factor activates fluorescence expression but also auxin synthesis, 

Figure supplement 2. Optimal circuits, simulation, and experimental realization of the OR gate for 2, 3, and 4- node topologies.

Figure supplement 3. Optimal circuits, simulation, and experimental realization of the NAND gate for 2, 3, and 4- node topologies.

Figure supplement 4. Optimal circuits, simulation, and experimental realization of the NOR gate for 2, 3, and 4- node topologies.

Figure 4 continued
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Figure 5. Model generated implementations of analog functions. (A) An automated search algorithm was used to screen all possible strain 
combinations up to size four (plus one sensor strain) for non- monotonic behaviors. Specifically, we set up the search to find combinations that result in 
a pulse as a function of time or as a function of concentration (B). Top row: We define a non- monotonicity metric and rank all combinations according 
to that score. Bar graphs show the total number of possible strain combinations (blue) and the percentage that show non- linear behaviors. Results are 

Figure 5 continued on next page
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which then activates its own expression in a positive feedback. This topology is also an incoherent feed- 
forward loop (type 1) and results in a band- pass filter output. Finally, the band- stop filter (Figure 5F) 
uses both β- estr and α- factor as inputs, and the circuit topology presents a combination of negative 
feedback and an incoherent feed- forward loop (type 3). The circuit operates as a ‘reversed’ band- pass 
filter over α- factor concentration, while β- estr is kept constant and only adds a baseline of α- factor and 
auxin through the two top strains in the circuit.

The experimental data qualitatively agreed with the predictions, although we notice a time delay 
for the first two circuits and a shift in baseline for the latter two. The time delay is caused by under-
estimation of sensor strain activation due to difficulty in isolating the sensor strain from the other 
strains through gating of the fluorescence data (Figure 5C) and possibly by an under- modeled delay 
of auxin synthesis (Figure 5D). The baseline shift is consistent with a higher concentration of auxin in 
the system in both cases. As a matter of fact, these two experiments (Figure 5E F) ended at a higher 
cell concentration than usual (running time of 12 and 14 hr, respectively), and it is known that yeast 
natively synthesizes auxin at saturation (Rao et al., 2010).

Discussion
Here, we demonstrated the potential of synthetic multicellular circuits to generate a wide range of 
behaviors starting from simple activating or repressing individual strains. Instead of implementing 
complex circuits in isogenic populations, we designed simple monotonic circuits in different strains and 
allowed them to communicate using just two signaling molecules (α- factor and auxin) or to affect their 
environment by attenuating those signals (through BAR1 and GH3.3). These simple constructs alone 
were capable of recapitulating many behaviors previously realized with synthetic gene circuits such as 
bistability, band- pass filters, pulses, and logic gates. While these behaviors were previously realized 
with fewer strains, it is important to point out that none of the strains in this study were designed with 
specific behaviors in mind other than monotonic activation/repression. Strain composition here plays 
the role of genetic fine- tuning, with a significantly lower experimental cost while maintaining high 
predictability. Strains with higher nonlinear response would simplify the topologies presented in this 
study but would not demonstrate the property of composition as much. Moreover, our last results on 
automated identification of circuit topologies that realize a target behavior (Figure 5) hint that the 
space of possible functional circuit architectures is larger than we explored.

We demonstrated through an extensive use of mathematical models, that these synthetic multi-
cellular circuits are modular, easy- to- tune and extendable. Modularity is achieved through cell- cell 
communication that avoids cross- talk, and is demonstrated by combining input and output of our 
simple models. Multi- cellular circuits are tuned using different cell concentrations or positive- feedback 
architectures. Finally, we realized that we could tune the circuit behavior by extending or shortening 
the length of the signaling chain by adding or removing intermediate strains. We exploited this prop-
erty to build the two time- pulses (Figure 5, A and B): a slower repression or activation dynamic allows 
for the opposite signal to operate first, generating the non- monotonic behaviors we observed. We 
imagine this property will gain more practical applications when the number of signaling molecules 
increases, which is the current major limitation in our system.

We reported that our most complex circuits display some discrepancies between simulations and 
experimental data, whose explanation is not always clear. It is possible that the delay between sending 
and receiving is not adequately modeled, or that factors that were not modeled, such as the effect of 

organized by size of the strain combination and the type of target behavior. (C) Strain stoichiometries are optimized for the most promising strains to 
obtain more extreme maxima or minima. Left: a diagram of the highest scoring circuit for time pulses selected for testing. Center: behavior prediction 
after circuit stoichiometry optimization. Right: Experimental data for the time pulse circuits is shown. (D) Strain combination, model prediction, and 
experimental data for a system that results in a dip in fluorescence as a function of time rather than a peak. (E) Strain combination, model prediction and 
experimental data for a system that generates a peak at intermediate auxin concentration thus realizing a band- pass filter. (F) Strain combination, model 
prediction and experimental data for a system that generates a dip at intermediate alpha- factor concentrations. This system realizes a ‘band- stop’ filter, 
which is a combination of a low and a high- pass filter. Error bars represents the s.d. of three biological replicates.

The online version of this article includes the following source data for figure 5:

Source data 1. The data used for plotting Figure 5.

Figure 5 continued

https://doi.org/10.7554/eLife.74540


 Research article      Computational and Systems Biology

Carignano et al. eLife 2022;0:e74540. DOI: https://doi.org/10.7554/eLife.74540  15 of 26

metabolic load on cellular population distribution (Blanchard et al., 2018), are affecting those circuits. 
Future work should account for these factors at the modeling steps, for instance using distributions to 
describe input- output relationships Thurley et al., 2018 or more complex models.

Finally, we leveraged the mathematical description to define an automated method to design 
behaviors according to performance specifications. Computationally, the method simulates all the 
possible strain combinations given a fixed number of nodes, and then scores them according to 
how well they reproduce the behavior of interest. As it is defined, the method is not easily scalable 
because the number of total simulations increases exponentially with the number of strains and does 
not account for differences in the initial strain concentrations (also defined as ’gains’ in this study). 
However, we found no catastrophic failures in the experimental validations, such as a qualitatively 
different behavior, owing to the modularity of our system. Future efforts should be directed towards 
more efficient ways to simulate the networks, for instance by training a neural network on the current 
simulation sets to predict the output of interactions.

Materials and methods
Construction of yeast strains
Yeast transformations were carried out using a standard lithium acetate protocol used by Gander 
et al., 2017. Yeast cells were made competent by growing 50 ml cultures in rich media to log growth 
phase, then spinning down the cells and washing with sterile deionized water. Next, linearized DNA, 
salmon sperm donor DNA, 50% polyethylene glycol and 1 M LiOAc were combined with cell pellet 
and the mixture was heat shocked at 42° for 15 min. The cells were then spun down, supernatant was 
removed and they were resuspended in sterile deionized water and then plated on selective agar 
media. Transformations were done into Saccharomyces cerevisiae strain MATa W303 - 1A.

Cytometry
Fluorescence intensity was measured with a BD Accuri C6 flow cytometer equipped with a CSampler 
plate adapter at room temperature using excitation wavelengths of 488 and 640 nm and an emission 
detection filter at 533 nm (FL1 channel). A total of 10,000 (20,000 for the bistable switch samples) 
events above a 400,000 FSC- H threshold (to exclude debris) were recorded for each sample using 
the Accuri C6 CFlow Sampler software at fast flow rate (66 µL/min, 22 μ core). Cytometry data were 
exported as FCS 3.0 files and processed using a custom Python script to obtain the mean FL1- A value 
for each data point.

Data collection for sensor strains
Synthetic complete growth medium was used to grow the cells overnight from glycerol stock, while 
300 µM IAM (Indole- 3- acetamide) was added in all the experimental medium (also synthetic complete). 
All yeast cultures in all experiments of this study were grown in a 30° shaker incubator at 250 rpm 
in 14 ml Corning Falcon polypropylene round- bottom tubes (cat #: 352059) unless otherwise stated. 
Experiments involving time course data were taken during log phase via the following preparation: 
16 hr of overnight growth in the synthetic complete medium in a shaker incubator followed by dilution 
to 30 events/μL into fresh, room- temperature medium. After 10 hr of growth at 30°, we performed 
a new dilution to 30 events/μL in 3 ml of medium, added the inducers from dilution aliquots of 100 
µM stocks, and started collecting 100 µL samples without replacement for measurements periodi-
cally until the completion of the experiment.Ten thousand events were collected for each condition. 
Experimental replicates are intended as biological replicates of the same overnight sample (replicates 
conducted on the same day) or the same glycerol stock (replicates conducted on different days). 
Fluorescence data was labeled as outlier and discarded if the negative control differed with previous 
measurements to an evident amount.

Data collection for co-culture experiments
Sample preparation was conducted as described above with each strain in a separate test tube. At the 
start of the experiment, each strain concentration was first measured and then strains were combined 
at the concentration specified by the experiment. We considered the concentration of 30 events/μL 
as the baseline concentration for all the experiments and all concentrations are expressed as multiples 
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of this reference concentration. Once the samples were added together at the desired concentra-
tions, inducers were added and measurements were taken periodically until the completion of the 
experiment as described for experiments with sensor strains. For the duration of the experiment, 
the samples were kept in a 30° shaker at 250 rpm. Experimental replicates are intended as biological 
replicates of the same overnight sample (replicates conducted on the same day) or the same glycerol 
stock (replicates conducted on different days). Fluorescence data was labeled as outlier and discarded 
if the negative control differed with previous measurements to an evident amount.

Data collection for bistable switch data
The sample preparation was conducted as described above, each strain in individual test tubes. Then, 
each of the five strains in the bistable switch were combined together at the concentration as outlined 
in the main text in a 3 ml test tube kept in a 30°C shaker at 250 rpm for the duration of the experi-
ment. Every 40 min, we performed a  

1
3  dilution with fresh media with 300 µM concentration of IAM, 

through manual pipetting. Samples of 120 µL were collected from the sample without replacement. 
Alternatively, samples were collected from the dilution discard when available for the duration of the 
experiment approximately every 3 hr. Experimental replicates are intended as biological replicates of 
the same overnight sample.

Model fitting procedure and simulations
Model parameters were estimated using Matlab fminsearch function to minimize the L2- norm of the 
difference between observations and simulations. For sensor strains in Figure  1, each parameter 
was estimated three times on three different experimental repeats to identify mean and standard 
deviation. Then, the parameters used for all the simulations in this study were estimated by fitting the 
average of the three measurements. Model parameters for the non- sensor strains were estimated by 
minimizing the L2- norm of the difference between the simulations and the average of three experi-
mental repeats as data points. Models were simulated using the Matlab code 15s function. All models 
parameter values are contained in Appendix 3.

Codes and data availability
Codes and data are available at https://github.com/Alby86/MulticellularYeast, (Carignano, 2021 copy 
archived at swh:1:rev:7dc5d2f016054123df8a2bdbdd9543a06e9be63d).
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Appendix 1
Model derivation for the bistable switch
Starting from the steady state expressions with general parameters:

 α ⊣ IAA : xss = x0 + a0
φ0+αn1   (1)

 α �→ GH3 : yss = y0 + a1α
n2

φ1+αn2   (2)

 IAA ⊣ α : zss = z0 + a2
φ2+IAAn3   (3)

 IAA �→ BAR1 : wss = w0 + a4IAAn4
φ4+IAAn4   (4)

One obtains that the steady- state quantities of signaling molecules are:

 IAA = IAA0+K1xss

1+K3yss   (5)

 α = α0+K2zss

1+K4wss   (6)

where IAA0 and α0 represents exogenous concentrations added to the mix, and K1, K2, K3, and K4 
are the initial concentrations of each cell type (where K = 1 is the standard value).

Substituting the above expressions (1)- (4) in (5) and (6) and re- labelling the parameters, one 
obtains:

 
IAA = a1IAA0+a2IAA0α

n1 +a3IAA0α
n2 +IAA0α

n1+n2 +K1
(

c1+c2α
n1 +c3α

n2 +c4α
n1+n2

)
b0+b1K3+αn1

(
c1+c2K3

)
+αn2

(
d1+d2K3

)
+αn1+n2

(
1+eK3

)
  

(7)

 
α = f1α0+f2α0IAAn3 +f3α0IAAn4 +α0IAAn3+n4 +K2

(
h1+h2IAAn3 +h3IAAn4 +h4IAAn3+n4

)
g0+g1K4+IAAn3

(
j1+j2K4

)
+IAAn4

(
l1+l2K4

)
+IAAn3+n4

(
1+mK4

)
  

(8)

If one simplifies the expression above considering only the highest and lowest terms, one obtains:

 
IAA = fIAA

(
α
)

= a1IAA0+IAA0α
n1+n2 +K1

(
c1+c4α

n1+n2
)

b0+b1K3+αn1+n2
(

1+eK3
)

  
(9)

 
α = fα

(
IAA

)
= f1α0+α0IAAn3+n4 +K2

(
h1+h4IAAn3+n4

)
g0+g1K4+IAAn3+n4

(
1+mK4

)
  

(10)

Finally, if one relabels the parameters using  
∼n1 = n1 + n2  and  

∼n2 = n3 + n4  , obtains the same 
expression as in Figure 3C, Model 3.

Expressions (7) and (8) have then been fitted to simulation data of the correspondent strain 
combinations for different α-factor and IAA concentration to estimate the values of the parameters. 
Accordingly, the new exponents are:  

∼n1 = 2.003  and  
∼n2 = 1.78 .

Equation  a1  
∼n1  c1  c4  b0  b1  e 

IAA 101.90 2.003 4.79e + 03 6.16e + 06 494.41 3.21e- 12 17.59

Equation  f1  
∼n2  h1  h4  g0  g1  m 

α 428.28 1.78 1.65e + 04 3.28 1.406e + 03 3.59e + 04 233.68

To study the existence of two stable solutions, we solved system (9) + (10) numerically with 
different values of the parameters  Ki  ( 0.1 ≤ Ki ≤ 50  and identified the area when multiple solutions 
arise. In general, bistability arise for:

1. low concentration of the IAA- repressing strain ( 0.1 ≤ K1 ≤ 1 ) and of the BAR1- synthesis strain 
( 0.1 ≤ K4 ≤ 1 )

2. high concentration of the α-factor- repressing strain ( 10 ≤ K2 ≤ 50 ) and the GH3- synthesis strain 
( 1 ≤ K3 ≤ 10 )

https://doi.org/10.7554/eLife.74540
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In the bistability region, higher  K1  values are paired with lower  K4  values in their admissible range 
(or vice- versa) and higher  K2  values are paired with lower  K3  values in their admissible range (or vice- 
versa). The simulation in Figure 3D in the main manuscript is generated by selecting  K1  =0.2 and 

 K2 = 25 , while varying the values of  K3  between 0.1 and 30, and  K4  in the range between 0.1 and 1.
To simulate the evolution of α-factor and IAA concentrations over time, we extended the steady 

state equations (9) and (10) above to an ODE description by fitting the following to a time series 
simulation of the four strains on a 1:1:1:1 ratio:

 ˙IAA = δIAAfIAA
(
α
)
− βIAAIAA  (11)

 α̇ = δαfα
(
IAA

)
− βαα  (12)

where  δIAA = βIAA = 0.01  and  δα = βα = 0.49 . These estimated models were used to simulate the 
α-factor and IAA concentrations that were then fed to the IAA repressing GFP sensor model in 
Figure 1B: the resulting simulation is shown in Figure 3F overlapping the experimental data.

As suggested by one of the reviewers, we considered the possibility that metabolic weight affects 
cell growth, which in turn could affect the stability of the equilibria. As in [3], the metabolic weight is 
proportional to the functions  fIAA

(
α
)
  and  fα

(
IAA

)
  and decreases the degradation rates  βIAA  and  βα  

(higher metabolic rate implies slower dilution rate) and the cell population ratios (in this context, the 
parameters  K1, K2, K3,  and  K4 ). Assuming equal exponential growth for all the strains (parameters 
estimated in Figure 3—figure supplement 3), we obtained:

 

∼
βIAA = βIAA

(
1 − ρ

∼
fIAA

(
α
))

  
(13)

 

∼
βα = βα

(
1 − ρ

∼
fα

(
IAA

))

  
(14)

where  
∼

fIAA
(
α
)
  and  

∼
fα

(
IAA

)
  are the same functions introduced before but normalized to 1, and 

 0 ≤ ρ ≤ 1  determines the impact of the metabolic load on the growth rates. Notice that for  ρ = 0 , we 
obtain back (11) and (12). The parameters  K1, K2, K3,  and  K4  are now a function of time as follows:

 
∼
Ki

(
t
)

= Ki e−ρ
∼

fIAA
(
α
)

t i = 1, 3  (15)

 
∼
Ki

(
t
)

= Ki e−ρ
∼
fα

(
IAA

)
t i = 2, 4  (16)

Simulations with varying values of  ρ  from 0 to 1 (Figure 3—figure supplement 2) shows that high 
metabolic load affects the stability of the equilibria, similarly to what is shown in [3].

https://doi.org/10.7554/eLife.74540
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Appendix 2
Normalization procedure for logic gate vectors
Each simulation ran 3 differential equations for each node, plus pooling parameters that represent 
the overall concentration of auxin and alpha- factor accounting for exogenous inputs, strain secretion, 
and BAR1 or GH3 synthesis, the two latter quantities being dependent on the strain selection. To 
automate the simulations, we represented each strain as a vector of parameters: the first 9 entries 
being the differential equation parameters, followed by one- hot encoding vector of size 3 to 
represent the sensed input ([beta- estr, alpha- factor, auxin]), and a one- hot encoding vector of size 
4 to represent the secreted output ([alpha- factor, auxin, BAR1, GH3]). The last entry of the vector is 
a 0 for repressing strains and 1 for activating strains. Along the selected strains, we simulated the 8 
sensor strains (Figure 1C, D and E) as system outputs.

We then grouped the simulations according to the input entries of the logic tables obtained 
from the 3 possible permutations of the inputs ([beta,alpha],[beta,auxin],[auxin,alpha]). These 
groups are shaped as a vector with 4 entries that correspond to the input states ([0 0], [1 0], [0 
1], [1 1]). Within each group, we normalized each vector by their minimum value and subtracted 
1 (the minimum becoming 0). This normalization scheme allowed comparison between different 
topologies accounting for differences in the sensor strains. At the end of this process, we had 120 
vectors resulting from the 2- node networks, 560 from the 3- node networks, and 1,820 from the 4- 
node networks.

https://doi.org/10.7554/eLife.74540
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Appendix 3
All model parameters

Parameter fit values Table describing parameter estimated for Models 1 in Figure 1. Parameters 
were estimated using Matlab fminsearch function to minimize the L2 norm of the difference 
between observation and simulation. Each parameter was estimated three times on three different 
experimental repeats. Parameter mean and standard deviation are reported in the table against 
strain number and function using the ->/activation and -|/repression formalism. The parameters used 
for all the simulation in this study were estimated by fitting the average measurement directly, and it 
is presented in brackets below the mean ± std values.

Parameter

K1 δ1 K2 ψ N δ2 K3 δ3 B

Strain #

1: IAA-|GFP 

1.32e + 06 
± 5.79e 
+ 05
(1.76e + 
06)

3.41e + 06 ± 
4.25e+05
(3.13e + 02)

7.08e + 05 ± 
2.75e + 05
(8.29e + 05)

60.52 ± 84.57
(256.87)

0.59 ± 0.24
(0.89)

2.46e + 05 
± 2.51e 
+ 04
(4.41e + 5)

2.50e05 ±3.52e 
+ 04
(2.12e + 05)

5.39 ± 1.81e 
+ 94
(7.46e + 04)

864.63 ± 
166.77
(867.98)

2: IAA-
|2xGFP

0.65 ± 0.27
(0.69)

326.27 ± 
101.52
(416.02)

201.66 ± 
59.58
(277.36)

2.07 ± 0.51
(1.79)

1.01 ± 0.30
(1.011)

10.99 ± 1.63
(11.40)

0.0019 ± 
7.45e- 04
(0.0011)

0.498 ± 0.019
(0.49)

0.0044 ± 
0.0023
(0.0049)

3: IAA-
>GFP

9.64e + 04 
± 2.39e 
+ 04
(8.95e + 
04)

0.092 ± 0.086
(0.082)

2.53e + 07 ± 
8.37e + 06
(1.73e + 07)

1.097e + 07 ± 
1.835e + 06
(1.24e + 07)

0.83 ± 0.0059
(0.836)

1.66e + 07 
± 2.50e 
+ 06
(1.88e + 07)

2.66e + 04 ± 
4.95e + 03
(3.15e + 04)

2.25e + 06 ± 
4.47e + 05
(1.66e + 06)

1.98e + 04 ± 
5.49e + 03
(1.46e + 04)

4: alpha-
|GFP

5.73 ± 2.35
(6.05)

51.20 ± 18.34
(59.54)

4.46 ± 4.15
(10.61)

0.72 ± 0.17
(0.67)

0.80 ± 0.0015
(0.80)

0.79 ± 0.23
(0.82)

0.0026 ± 
0.0028
(3.66e- 04)

1.89 ± 1.59
(1.10)

0.0054 ± 
0.0045
(0.0032)

5: alpha-
>Venus

7.49e + 05 
± 1.23e 
+ 06
(1.06e + 
03)

3.19e + 05 ± 
6.36e + 05
(0.245)

3.06e + 06 ± 
3.6e + 06
(3.47e + 05)

8.54e + 05 ± 
4.96e + 05
(7.08e + 05)

1.60 ± 0.88
(1.04)

1.77e + 06 
± 2.58e 
+ 06
(1.56e + 05)

8.036e + 04 ± 
1.23e + 05
(1.62e + 04)

8.20e + 06 ± 
1.19e + 07
(2.15e + 06)

2.36e + 04 ± 
3.46e + 04
(5.96e + 03)

6: beta-
>GFP

48.74 ± 
10.42
(50.66)

35.04 ± 10.09
(25.86)

8.77 ± 2.41
(11.00)

38.14 ± 12.70
(57.12)

1.26 ± 0.031
(1.26)

87.98 ± 
16.44
(110.43)

0.093 ± 0.02
(0.089)

0.16 ± 0.0035
(0.16)

2.13e- 04 ± 
3.68e- 05
(2.155e- 04)

7: beta-
|GFP

1.18 ± 0.6
(0.89)

0.18 ± 0.13
(0.17)

243.78 ± 
62.08
(174.32)

9.16 ± 1.93
(6.65)

2.12 ± 0.26
(2.18)

0.58 ± 0.097
(0.56)

1.82e- 04 ± 
7.53e- 05
(1.5e- 04)

0.63 ± 0.073
(0.55)

6.32e- 04 ± 
1.97e- 04
(3.77e- 04)

Units

Molecule 
NucVol–
1nM–1hour–1 hour–1

Molecule 
NucVol–1 
hour–1

Molecule 
NucVol–1 dimensionless

NucVol 
Molecule–1 
hour–1

Fluorescence 
Arbitrary Units 
(FAU) hour–1

NucVol 
Molecule–1 
hour–1

FAU 
Molecule 
NucVol–1 
hour–1

Description

Ligand 
binding 
affinity of 
membrane 
protein(α)/
co- factor 
(IAA)/ TF 
(β)

Dissociation/
degradation/
dilution rate 
of ligand- 
binder 
complex

Maximum/
minimum 
transcription 
rate of TF 
activator/
repressor

Ligand- 
binder 
complex 
concentration 
producing 
half 
occupation Hill- coefficient

Dissociation 
rate of 
DNA- TF

Fluorescence 
protein 
accumulation 
over time 
normalized to 
cell size

Fluorescence 
protein 
degradation/
dilution rate 
over time

Baseline 
fluorescence 
protein 
accumulation 
over time 
normalized 
to cell size

Table presenting the parameters estimated for Model 1 for Single- Input/Single- Output strains in 
Figures 2 and 3. In the first column, the strain number and function is reported; the second column 
reports the sensor strain architecture that was used as baseline but with different output pathway; 
the parameters here reported refers uniquely to the output pathway: the remaining parameters are 
identical to the ones estimated for the baseline strain. Each parameter was fitted to data representing 
the average of three experimental repeats.

Parameter

Baseline 
strain # K3 δ3 b
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Parameter

Strain #

10: alpha-
>IAA 5 566.24 0.575 55.83

11: beta-
>BAR1 6 26.038 1.92e- 06 0.35

12: beta-
>IAA 6 3.48e + 03 0.16 0.21

13: beta-
>alpha 6 121.60 0.062 0.14

14: IAA-
>alpha 3 2.285 0.28 0.74

15: beta-
>GH3 6 109.96 36.71 1.60e- 04

16: IAA-
>BAR1 3 1.89 1.83e- 13 0.365

17: alpha-
>GH3 5 582.32 368.67 1.17e- 14

18: alpha-
|IAA 4 4.09 8.74e- 11 47.78

19: beta-
|IAA 7 2.024e + 11 4.29e + 10 1.85e + 09

20: beta-
|alpha 7 0.077 1.77 0.18

21: IAA-
|alpha 

1 471.73 0.41 1.34

22: alpha-
>alpha 5 419.52 2.10e + 04 2.32e + 04

23: IAA-
>IAA 3 775.05 0.84 780.90

24: alpha-
|BAR1 4 0.0014 3.74e + 07 1.096e + 08

25: IAA-
|GH3 1 225.51 42.46 3.14e- 06

Units nM hour–1 NucVol Molecule–1 hour–1 nM Molecule NucVol–1 hour–1

Description
Output protein accumulation 
over time

Output protein degradation/
dilution rate

Baseline output protein 
accumulation over time

Table reporting parameter values for the two Multi- Input/Single- Output (MISO) strains in 
Figure 1E. The parameters were estimated by minimizing the L2 norm of the difference between 
the simulation of Model 2 (Figure 1) and the average of three experimental repeats.
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Strain #

8: IAA-
>GFP|-
alpha

9: alpha-
>GFP|-
IAA Units Description

Parameter

K1 0.0036 3.14E- 06 Molecule NucVol–1nM–1 hour–1 Ligand binding affinity of membrane protein(α)/co- factor (IAA)/ TF (β)

δ1 0.0021 6.74E- 04 hour–1 Dissociation/degradation/dilution rate of ligand- binder complex

K2 6.92E- 05 1.34E- 19 Molecule NucVol–1nM–1hour–1 Ligand binding affinity of membrane protein(α)/co- factor (IAA)/ TF (β)

δ2 0.0047 7.46E- 05 hour–1 Dissociation/degradation/dilution rate of ligand- binder complex

K3 0.059 298.86 Molecule NucVol–1nM–1hour–1 Maximum/minimum transcription rate of TF activator/repressor

ψ1 0.3 1.3 Molecule NucVol–1 Ligand- binder complex concentration producing half occupation

n1 0.31 0.003 dimensionless Hill coefficient

δ3 3.235 574.73 NucVol Molecule–1 hour–1 Dissociation rate of DNA- TF

K4 74 0.012 Molecule NucVol–1nM–1hour–1 Maximum/minimum transcription rate of TF activator/repressor

ψ2 1.93 0.13 Molecule NucVol–1 Ligand- binder complex concentration producing half occupation

n2 0.85 0.6 dimensionless Hill coefficient

δ4 58.34 0.13 NucVol Molecule–1 hour–1 Dissociation rate of DNA- TF

K5 0.015 0.015 FAU hour–1 NucVol Molecule–1
Background fluorescence protein accumulation over time normalized 
to cell size

φ1 0.32 0.043 FAU hour–1
Fluorescence protein synthesis by the activator over time normalized 
to cell size

φ2 0.87 2.09E + 03 dimensionless
Repressor molecule number needed to degrade one activating 
molecule

δ5 0.9 0.52 hour–1 Fluorescence protein degradation/dilution rate over time

https://doi.org/10.7554/eLife.74540
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