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THE BIGGER PICTURE Current cardiovascular risk stratification tools are based on a relatively small num-
ber of risk factors modeled with Cox proportional hazards models and are known to imperfectly estimate
risk. The increasing prevalence of ‘‘multimodal’’ data sources—such as survey data, biomarker concentra-
tions, anthropometric measures, and clinical diagnoses—offers a potential route for improvement, but sim-
ple Cox models are not well suited to these complex and often highly correlated inputs.
Here, we develop a framework to select a subset of candidate predictors for a coronary artery disease (CAD)
risk prediction tool from a multimodal space of 13,782 features using elastic net regularized Cox regression.
Our approach selected 51 of 13,782 candidate predictors, and the resulting model demonstrated improved
prediction of incident CAD compared with clinically used algorithms among a held out set of participants.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Current cardiovascular risk assessment tools use a small number of predictors. Here, we study howmachine
learning might: (1) enable principled selection from a large multimodal set of candidate variables and (2)
improve prediction of incident coronary artery disease (CAD) events. An elastic net-based Cox model
(ML4HEN-COX) trained and evaluated in 173,274 UK Biobank participants selected 51 predictors from
13,782 candidates. Beyond most traditional risk factors, ML4HEN-COX selected a polygenic score, waist
circumference, socioeconomic deprivation, and several hematologic indices. A more than 30-fold gradient
in 10-year risk estimates was noted across ML4HEN-COX quintiles, ranging from 0.25% to 7.8%. ML4HEN-

COX improved discrimination of incident CAD (C-statistic = 0.796) compared with the Framingham risk score,
pooled cohort equations, and QRISK3 (range 0.754–0.761). This approach to variable selection and model
assessment is readily generalizable to a broad range of complex datasets and disease endpoints.
INTRODUCTION

Machine learning—a discipline at the interface of statistics and

computer science—is useful for identifying patterns in large,

complex sets of candidate predictors.1,2 While machine learning
This is an open access article under the CC BY-N
is now ubiquitous in applications such as advertising and finance

modeling, its implementation within clinical medicine—particu-

larly risk modeling—has been considerably slower, in part due

to (1) the unique importance of model transparency when sup-

porting clinical decisions and (2) the scarcity of large clinical
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Figure 1. Flow diagram illustrating exclusion

criteria and 5-fold cross-validation proced-

ure

Prevalent cardiovascular disease included coronary

artery disease, myocardial infarction, stroke, heart

failure, and peripheral vascular disease. Five-fold

cross-validation was used to select a range of

models for subsequent clinician-review (Figure 2).
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cohorts that are well phenotyped enough to maximize and

validate the utility of machine learning-based methods.1,3 Accel-

erating the clinical adoption of machine learning will require iden-

tifying methods and clinical cohorts that address these caveats

and applying them to clinically familiar problems, such as coro-

nary artery disease (CAD) risk prediction.

The current paradigm for prevention of CAD is centered

around risk factor modification targeting higher-risk groups as

determined by the Framingham risk score (FRS) for CAD or the

pooled cohort equations (PCE) and QRISK3 for cardiovascular

disease (CVD).4–6 These risk calculators were developed using

Cox proportional hazardsmodels with tens of candidate risk fac-

tors, such as age, cholesterol, and smoking status and—while

relatively easy to calculate—are known to imperfectly estimate

risk.7 Prior studies have indicated that cardiovascular risk pre-

diction may be improved by inclusion of additional risk factors

across the domains of lifestyle, biomarkers, and genetics in a

data-driven manner.8–14

As the number of candidate predictors of CAD increases from

tens to thousands, the traditional approach using standard Cox

regression models is prone to several limitations. First, such

models do not adequately account for correlation between pre-

dictors—as the number of predictors becomes large, the corre-

lation structure becomes increasingly complex and can lead to

instability in estimates. Overfitting is also more likely in this

setting, a statistical phenomenon in which a model becomes

overly confident in the data used to train the model, reducing

external validity. Finally, when presented with an excess of unre-
2 Patterns 2, 100364, December 10, 2021
lated predictors, a simple Cox model may

fail to converge entirely. In the setting of

thousands of candidate predictors, a

method is needed to prioritize a subset

for subsequent integration into a risk pre-

diction tool—machine learning methods

are well-suited for this task.

The UK Biobank is a powerful cohort for

the assessment of new risk prediction ap-

proaches enabled by machine learning

owing to its combination of (1) genetic

and phenotypic detail at the individual

level, (2) detailed outcome definitions,

and (3) large cohort size. In this study, we

examined 13,782 candidate predictors

across 173,274 individuals in the UK Bio-

bank to predict risk of incident CAD. We

developed the Machine Learning for

Health—Elastic Net regularized Coxmodel

(ML4HEN-COX) and tested the hypothesis

that ML4HEN-COX would (1) be useful for
selecting the most important predictors of CAD and (2) would

outperform FRS, PCE, and QRISK3 in predicting incident CAD.

RESULTS

Characteristics of the analyzed cohort
After excluding individuals with prevalent cardiovascular disease

or missing data for candidate predictor variables, our study pop-

ulation included 173,274 UK Biobank participants (Tables S1–

S4). Mean age was 56 years, 51% were male, and 95% were

white. The analyzed cohort was randomly divided into 80%

development cohort (n = 138,619) and 20% holdout cohort

(n = 34,655) (Figure 1) with similar baseline characteristics (Table

1). Over a median follow-up of 11 years, 4,103 individuals devel-

oped incident CAD (3.0%) in the development cohort and 1,037

individuals developed incident CAD (3.0%) in the holdout cohort

(Table S5). Individuals in the analyzed cohort were described by

13,782 candidate predictors spanning demographics, lifestyle,

medical history, surgical history, family history, physical exam,

genetics, and laboratory values (Tables 2 and S6).

Building ML4HEN-COX in the development cohort
A two-step machine-learning approach with clinician review,

ML4HEN-COX, was implemented to develop amodel that selected

a subset of 13,782 candidate predictors (Table 2) to predict inci-

dent CAD. First, an elastic net regularized Cox proportional haz-

ards model was fit in the development cohort with the goal of

optimizing the hyperparameter l, which determines how many



Table 1. Baseline characteristics and predicted 10-year risk of

cardiovascular events in UK Biobank

Development

(N = 138,619)

Holdout

(N = 34,655)

Age (years) 56.2 (8.1) 56.1 (8.1)

Males 70,896 (51.1%) 17,606 (50.9%)

Ethnicity

White 132,610 (95.7%) 33,092 (95.5%)

Black 1,945 (1.4%) 499 (1.4%)

East Asian 1,095 (0.8%) 290 (0.8%)

South Asian 1,614 (1.2%) 402 (1.2%)

Other 1,355 (1.0%) 372 (1.1%)

Current smoker 14,501 (10.5%) 3,604 (10.4%)

Diabetes 6,568 (4.7%) 1,635 (4.7%)

Cholesterol (mg/dL) 217.5 (37.8) 217.4 (37.6)

HDL-C (mg/dL) 55.4 (13.9) 55.3 (13.9)

LDL-C (mg/dL) 136.3 (29.2) 136.2 (29.0)

SBP (mm Hg) 137.5 (18.4) 137.3 (18.3)

Antihypertensive 26,100 (18.8%) 6,501 (18.8%)

Genome-wide polygenic

score for CAD(GPSCAD)

�0.03 (0.99) �0.03 (0.99)

Incident CAD events over

median 11-year follow-up

4,103 (3.0%) 1,037 (3.0%)

Predicted 10-year risk (%)

FRS 6.9 (6.4) 6.9 (6.4)

PCE 8.3 (7.7) 8.2 (7.7)

QRISK3-2017 (QRISK3) 10.0 (8.4) 9.9 (8.4)

The development cohort was used for a 5-fold cross-validation proced-

ure to build ML4HEN-COX, while the holdout cohort was used to test per-

formance in unseen data (Figure 1). GPSCADwas adjusted for the first four

PCs of genetic ancestry and scaled to mean 0 and standard deviation 1.

None of the above variables were significantly different between groups

at the p < 0.05 level. HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol; SBP, systolic blood pressure.
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predictors are selected in the final model. This optimization was

done with 5-fold cross-validation (Figure 1). The output of this

step was a range of models set by hyperparameter l and

described by (1) number of predictors selected with that hyper-

parameter, (2) performance in the training data, and (3) perfor-

mance in the testing data (Figure 2).

A small range of models was identified wherein the perfor-

mance improvedmarginally while the number of selected predic-

tors significantly increased (Figure 2). An expert panel of clinicians

reviewed the predictor sets in this range and ultimately selected

one with 51 predictors resulting in ML4HEN-COX (Table 2).

ML4HEN-COX includes 51 predictors for CAD
ML4HEN-COX included 51 predictors (Table 2) in the final model.

Laboratory values made the greatest proportional contribution

to the selected predictors (48.3%) followed by a relatively equal

distribution across demographics (5.9%), lifestyle (11.8%), med-

ical history (9.8%), family history (3.9%), physical exam (5.9%),

and genetics (7.8%) (Table 2).

To understand the importance of each predictor in ML4HEN-

COX, we performed a ‘‘leave-one-out’’ analysis, systematically
removing each variable and quantifying the decrease in model

discrimination as assessed by the C-statistic (Table S7). The

top 20 predictors ranked by leave-one-out analysis included

several traditional cardiovascular risk factors, such as age,

sex, HDL cholesterol, LDL cholesterol, systolic blood pressure,

self-reported history of hypertension, and hemoglobin A1C (Fig-

ure 3A). In addition, the selection of cystatin C, paternal history of

heart disease, and sibling history of heart disease mirrored

chronic kidney disease and family history of heart disease

considered in QRISK3.6

Several emerging risk factors of CAD not considered in clini-

cally used algorithms were selected by ML4HEN-COX. For

example, a genome-wide polygenic score for CAD (GPSCAD)

was the second most important predictor overall.14 The hazard

ratio (HR) of this polygenic score (HR = 1.38 per standard devia-

tion [SD] increment, Figure 3B) was comparable with previously

reported effect sizes in the UK Biobank.15 This is consistent with

the finding that the Pearson correlation coefficient between

GPSCAD and each of the other 50 predictors in this model never

exceeds 0.25 in magnitude (Figure S1), suggesting that GPSCAD

is largely independent of most other proposed risk factors.

ML4HEN-COX also nominated waist and hip circumference as

important predictors of CAD. HRs within ML4HEN-COX demon-

strated an elevated risk of CAD with increasing waist circumfer-

ence (HR = 1.12 per SD) and decreasing hip circumference (HR =

0.93 per SD), consistent with previous reports (Figures 3C and

3D).16 Apolipoprotein B, lipoprotein(a), and apolipoprotein A1

are elements of the lipid profile that are not directly considered

in FRS, PCE, or QRISK3, but were selected by ML4HEN-COX

and have previously been shown to improve risk stratification

in several studies.17,18

Several hematologic parameters were also prioritized by

ML4HEN-COX, including neutrophil count, monocyte count, white

blood cell count, red blood cell distribution width, mean corpus-

cular volume, and platelet crit. Each of these elements of the

complete blood count has previously been associated with inci-

dent CVD.19 Along with the selection of C-reactive protein, these

data point to the potential value of the inflammatory milieu in pre-

dicting future risk of CAD.

Principal components 3 and 4 of genetic ancestry (PC3, PC4)

were selected by ML4HEN-COX. In the UK Biobank, increasing

PC3 and PC4 track with South Asian ethnicity (Figure S2), which

is increasingly being identified as a high-risk group for cardiome-

tabolic disease.20 Interestingly, a marker of socioeconomic

deprivation, the Townsend index, was also included in the final

model. This index is computed based on geographical location

and incorporates information about unemployment, household

overcrowding, vehicle ownership, and home ownership, with a

larger score reflecting greater material deprivation. ML4HEN-

COX assigned HR of 1.02 per SD to this predictor, meaning that

increased material deprivation increased risk of incident CAD.

ML4HEN-COX outperforms FRS, PCE, and QRISK3
We began by investigating the change in 10-year CAD risk

across predicted risk quintiles of ML4HEN-COX in the holdout

cohort. Individuals in the bottom quintile of predicted risk had

17 events (0.25%), those in the middle quintile had 95 events

(1.4%), and those in the top quintile had 539 events (7.8%) (Fig-

ure 4). The increased risk for the top versus middle quintile was
Patterns 2, 100364, December 10, 2021 3



Table 2. Predictor space stratified by category

Category Initial predictor space Selected by ML4HEN-COX

Demographics 12 (0.09%) 3 (5.9%) age

sex

Townsend deprivation index at recruitment

Lifestyle 11 (0.08%) 6 (11.8%) overall health rating—fair

smoking status—current

smoking status—never

overall health rating—excellent

weight change compared with 1 year

ago—none

alcohol intake

Medical history 7,917 (57.4%) 5 (9.8%) hypertension (self-reported)

lipid-lowering medication

diabetes

hypertension (EHR)

BP-lowering medication

Surgical history 5,740 (41.6%) 0

Family history 32 (0.23%) 2 (3.9%) illnesses of father—heart disease

illnesses of siblings—heart disease

Physical exam 7 (0.05%) 3 (5.9%) systolic blood pressure

hip circumference

waist circumference

Genetics 5 (0.04%) 4 (7.8%) genome-wide polygenic score for CAD

(GPSCAD)

principal component 3 of genetic

ancestry (PC3)

PC2

PC4

(Continued on next page)
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Table 2. Continued

Category Initial predictor space Selected by ML4HEN-COX

Laboratory values 58 (0.42%) 28 (48.3%) HDL cholesterol

glycated hemoglobin

LDL cholesterol

testosterone

apolipoprotein B

cystatin C

lipoprotein(a)

neutrophil count

apolipoprotein A

alkaline phosphatase

C-reactive protein

monocyte count

triglycerides

red blood cell distribution width

reticulocyte percentage

alanine aminotransferase

basophil count

total protein

calcium

total bilirubin

mean sphered cell volume

white blood cell count

mean corpuscular volume

monocyte percentage

hemoglobin concentration

albumin

urate

platelet crit

13,782 51

Predictor variables selected by ML4HEN-COX are ranked by leave-one-out C-statistic change within each category (Table S4). ll
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Figure 2. C-statistics in training and testing

data as a function of the regularization hyper-

parameter

The right white region represents an area of steepC-

statistic growth on both the training and testing

data, where adding predictors substantially im-

proves prediction. In the left white region, the testing

(green) and training (red) curves are diverging, rep-

resenting a model that performs well in the training

data but generalizes poorly to unseen test data. The

blue region is an area of slow C-statistic growth, but

continued rapid growth of the feature set. Using a

single fold, models within this blue region were re-

viewed by an expert clinician panel and the model

represented by the blue dot, corresponding to 51

features, was selected for further analyses. 95%

confidence intervals are shaded around green

testing and red training curves. Performance of the

pooled cohort equations is drawn as a black line for

reference.
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more pronounced for the ML4HEN-COX model (5.7-fold)

compared with FRS (3.6-fold), PCE (3.4-fold), and QRISK3

(3.7-fold). Individuals in the top quintile of predicted risk by

ML4HEN-COX were more likely to be older men with traditional

cardiovascular risk factors (Table S8). Next, we investigated

the extent to which ML4HEN-COX was correlated with three clin-

ical algorithms. Correlation coefficients between ML4HEN-COX

and the three clinical algorithms (FRS, 0.75; PCE, 0.76; QRISK3,

0.77) were lower than those for each pair of clinical algorithms

(FRS-QRISK3, 0.86; PCE-QRISK3, 0.92; FRS-PCE, 0.93), sug-

gesting that ML4HEN-COX was contributing different information

compared with FRS, PCE, and QRISK3 (Figure 4).

To benchmark the performance of each model, we calculated

C-statistics, a measure of discrimination. The discrimination of a

model measures the probability that, for a given incident CAD/no

incident CAD pair, the model will correctly predict a higher risk

for the individual who developed CAD. In the holdout cohort,

ML4HEN-COX demonstrated better discrimination (C-statistic =

0.796, 95% CI: 0.784–0.809) versus FRS (C-statistic = 0.756,

95% CI: 0.742–0.769), PCE (C-statistic = 0.754, 95% CI:

0.739–0.768), and QRISK3 (C-statistic = 0.761, 95% CI: 0.747–

0.774) (Table 3). Discrimination was also assessed in subgroups

stratified by sex and age (Table 3). Performance of ML4HEN-COX

was better in women (C-statistic = 0.780, 95% CI: 0.747–0.811)

compared with men (C-statistic = 0.751, 95% CI: 0.735–0.767),

although the performance gain compared with clinical risk algo-

rithms was greater in men (0.06 improvement in men, 0.02 in
6 Patterns 2, 100364, December 10, 2021
women). These data are consistent with

previous work showing that traditional car-

diovascular risk factors had higher HRs for

incident myocardial infarction in women

compared with men in the UK Biobank21

and suggest that the value of added

predictors included in ML4HEN-COX is

greater in men. In accordance with

FRS, PCE, and QRISK3, performance of

ML4HEN-COX was better in younger partici-

pants (C-statistic = 0.825, 95% CI: 0.799–

0.850) compared with older participants

(C-statistic 0.755, 95% CI: 0.737–
0.771).6,7 Similar C-statistics were calculated in the development

cohort, suggesting that no overfitting occurred (Table S9).

Performance of the ML4HEN-COX model was further bench-

marked by computing categorical net reclassification indices

(NRIs). Reclassification indices compare the predicted risk as-

signed by twomodels at the individual level. For a given compar-

ator model and cutoff risk, an updated model that moves cases

that were predicted to be below the cutoff risk by the comparator

model to above the cutoff risk and moves non-cases from above

thecutoff risk tobelowwill haveapositivecategoricalNRI.Cutoffs

of 2.5% and 5.0% were selected to investigate model behavior

around the 10-year CAD event rate in the analyzed cohort and

two times this rate, respectively.Withacutoff of 2.5%, categorical

NRIs were favorable for ML4HEN-COX when compared with FRS

(6.0%, 95% CI: 3.5%–8.6%), PCE (6.6%, 95% CI: 4.1%–9.1%),

and QRISK3 (5.8%, 95% CI: 3.3%–8.3%). Similar trends were

observed with a cutoff of 5.0% (Table 4).

Finally, ML4HEN-COX was well calibrated in the development

(calibration slope = 1.09, Hosmer-Lemeshow: p = 0.76) and

holdout cohorts (calibration slope = 1.13, Hosmer-Lemeshow:

p = 1) (Figure S3).

XGBoost and SimpleCox51 perform comparably with
ML4HEN-COX

We next benchmarked the performance of ML4HEN-COX

against (1) an alternate machine-learning method and (2) a

simple Cox proportional hazards model. First, a survival model



A

B C D

Figure 3. Top 20 predictors selected by

ML4HEN-COX and predicted 10-year risk of

CAD as a function of GPSCAD, hip circumfer-

ence, and waist circumference

(A) Predictors are ranked by leave-one-out

decrease in C-statistic and colored by category

(Table 2).

(B–D) Ten-year risk of CAD predicted by ML4HEN-

COX plotted at ages 45, 55, and 65 years as a func-

tion of GPSCAD, hip circumference, and waist

circumference, respectively. GPSCAD, genome-

wide polygenic score for CAD; HDL-c, HDL

cholesterol; SBP, systolic blood pressure; HbA1c,

hemoglobin A1C; LDL-c, LDL cholesterol; Hip circ.,

hip circumference; ApoB, apolipoprotein B; Waist

circ., waist circumference; Father heart dz, paternal

history of heart disease; Lp(A), lipoprotein a; Sibling

heart dz, sibling history of heart disease; PC3, ge-

netic principal component 3; Lipid-lowering, history

of taking lipid-lowering medication.
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was developed based on XGBoost, an ensemble-based ma-

chine-learning method.22,23 One advantage of this method

compared with the elastic net regularization used in ML4HEN-

COX is that it naturally accounts for nonlinear relationships in

the predictor space, although this comes at the cost of

increased computational time. Despite the fact that XGBoost

selected 115 predictors, including 46 of the 51 selected by

ML4HEN-COX (Table S10), its discriminatory performance in

the holdout cohort (C-statistic = 0.797, 95% CI: 0.784–0.810)

was almost identical to ML4HEN-COX (Table S11). With a cutoff

risk of 2.5%, categorical NRIs for XGBoost against FRS (5.9%,

95% CI: 3.3%–8.5%), PCE (6.4%, 95% CI: 3.8%–9.0%), and

QRISK3 (5.6%, 95% CI: 3.1%–8.2%) were comparable with

ML4HEN-COX (Table S12). These results show that ML4HEN-

COX performed similarly well as a more complex machine-

learning method, XGBoost, which included twice as many

predictors.

We next investigated whether a simple Cox proportional

hazards model containing the 51 predictors selected by

ML4HEN-COX, SimpleCox51, could be used to achieve similar

performance. Discriminatory performance of SimpleCox51

was comparable with ML4HEN-COX in the holdout cohort (C-sta-

tistic = 0.797, 95% CI: 0.784–0.811) (Table S11). With a cutoff

risk of 2.5%, categorical NRIs for SimpleCox51 against FRS

(6.6%, 95% CI: 4.0%–9.2%), PCE (7.1%, 95% CI: 4.6%–

9.7%), and QRISK3 (6.3, 95% CI: 3.8%–8.9%) were compara-

ble with ML4HEN-COX (Table S12). Finally, we investigated the
performance of SimpleCox20, a simple

Cox proportional hazards containing only

the top 20 predictors selected by

ML4HEN-COX (Figure 3A). In the holdout

cohort, discriminatory performance (C-

statistic = 0.794, 95% CI: 0.781–0.807)

and reclassification indices were compa-

rable with ML4HEN-COX and SimpleCox51

(Tables S11 and S12). These results

are consistent with the hypothesis that

ML4HEN-COX is most useful for prioritizing
the most important predictors for an outcome, and that simple

Cox proportional hazards models with all or a subset of

selected predictors can be used for clinical implementation

without a significant change in performance.

DISCUSSION

In this study, we applied a machine-learning method,

ML4HEN-COX, to select 51 predictors of CAD from 13,782 in a

data-driven manner. As large, deeply phenotyped cohorts

become increasingly available, this approach offers a scalable,

generalizable route for prioritizing salient predictors of a disease

outcome. In this study, a relatively simple model containing only

51 predictors of CAD, ML4HEN-COX, highlighted traditional car-

diovascular risk factors along with emerging risk factors, such

as GPSCAD, waist and hip circumference, a measure of socio-

economic deprivation, and several hematologic parameters.

The resulting model outperformed FRS, PCE, and QRISK3 in

predicting 10-year risk of incident CAD.

The primary strength of this study is the magnitude of data-

driven predictor reduction achieved while starting with a

13,782-dimensional predictor space spread across eight cate-

gories and with a mix of continuous and categorical predictors.

Among studies with similar goals, the largest starting predictor

space prior to this study contained 735 predictors.24–30 Indeed,

because the initial predictor space is relatively small in most pre-

vious studies, they often utilize random survival forests to
Patterns 2, 100364, December 10, 2021 7
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Figure 4. Comparisons of risk predictions

from ML4HEN-COX, FRS, PCE, and QRISK3

(A) Observed 10-year risk of CAD plotted by quin-

tiles of predicted risk for ML4HEN-COX, FRS, PCE,

and QRISK3—a steeper gradient is observed with

ML4HEN-COX.

(B) Correlation plot between 10-year risks of CAD

predicted by ML4HEN-COX, SimpleCox51, XGBoost,

FRS, PCE, and QRISK3.

ll
OPEN ACCESS Article
prioritize predictors. A random survival forest model did not

converge with our data, reflecting the increased size and

complexity of our predictor space. On the other hand, elastic

net regression is likely to be robust to datasets even with an or-

der of magnitude fewer candidate features and participants.

Finally, both machine-learning methods developed in this study

appropriately considered censoring compared with several con-

tributions in this area that do not appropriately consider

censoring, which may lead to substantial, systematic risk

underestimation.31

Several risk factors forCADnot currently considered in clinically

used risk algorithms were identified by ML4HEN-COX. Our finding

that GPSCAD is the second most important predictor in our pro-

posedmodel suggests that there is utility in integrated risk predic-

tion tools that combine clinically established risk calculators with

genetics. Several recent efforts exploring this have shown mixed

results, most often demonstrating modest improvements

in discrimination and reclassification with the addition of

GPSCAD.
32–35 Our work adds to this literature by demonstrating

that GPSCAD remains a continuous, independent predictor of

CAD in an integrated risk calculator containing 50 other CAD

risk factors. Waist and hip circumference were also selected as

predictors of CADand are anthropometric proxies for visceral ad-

ipose tissueandgluteofemoral adipose tissue, respectively. There

is mounting evidence that these measures of fat distribution are

causal determinants of cardiometabolic risk profiles.16,36

ML4HEN-COX also identified key hematologic indices describing

whitebloodcell count anddifferential (neutrophil count,monocyte

count), red blood cell characteristics (red blood cell distribution

width, mean corpuscular volume), and platelet quantity (platelet

crit), consistentwithaprevioussurvivalanalysis forCVD.19Hence,

there may be hidden predictive value for CAD in the complete

blood count, even in the healthy patient.

Our model identified increasing PC3 and PC4 of genetic

ancestry as risk factors for incident CAD. In the UK Biobank ge-

netic ancestry principal component space, increasing PC3 and

PC4 track with individuals of South Asian ethnicity (Figure S2).

This ethnic group is increasingly being recognized as carrying

an especially high cardiometabolic burden and recent efforts

have focused on developing South Asian-specific risk-prediction

tools.20 Interestingly, none of the binary variables for ethnicity

that were among the candidate predictors, including South Asian

ethnicity, were selected byML4HEN-COX. This is a departure from
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how risk differences across ethnic groups

have been handled in PCE and QRISK3,

which have two and nine discretized

ethnicity categories, respectively.5,6 In

addition, ML4HEN-COX identified increasing
material deprivation, measured by the Townsend index, as a risk

factor for CAD. Given the mounting concerns surrounding the in-

clusion of race—a social construct without intrinsic biological

meaning—in clinical calculators, our model proposes an alter-

nate solution for capturing sociodemographic differences in

risk by considering the PCs of genetic ancestry and socioeco-

nomic indices.37

Some previous studies similarly set out to predict CAD and

related outcomes, noting value for inclusion of additional fea-

tures, such as metabolites or imaging-based assessments of

the coronary vasculature. Although such features were not avail-

able for our study, additional efforts that include multimodal

forms of data input are likely to be of considerable interest.38–40

The performance increase of ML4HEN-COX over FRS, PCE, and

QRISK3 can be conceptualized as consisting of ‘‘predictor gain’’

and ‘‘modeling gain.’’ Predictor gain refers to added predictive

value associated with adding more predictors to a model, while

modeling gain refers to added predictive value associated with

modeling thosepredictors inmorecomplexways, suchasconsid-

ering nonlinear relationships between predictors. Our finding that

a simpleCoxproportional hazardsmodel, including the 51predic-

tors selected by ML4HEN-COX, performs as well as ML4HEN-COX

suggests that themajority of the performance increase is attribut-

able to predictor gain. The pattern of a simpleCoxmodel perform-

ing as well as the machine-learning method that selected its

predictors has previously been demonstrated in a medical

context.24 Our finding that XGBoost, an ensemble method that

inherently considers nonlinear interactions, does not outperform

ML4HEN-COX provides further evidence for this conclusion.

A key barrier to the clinical implementation of machine-

learning-derived tools for disease prediction ismodel complexity.

While we report most performance metrics in this study in the

context of a 51-predictor model, we note that the vast majority

of performance improvement over clinically used algorithms

could be achieved with a simple Cox proportional hazards model

including only the top 20 predictors selected by ML4HEN-COX.

These results suggest a general paradigm for developing new,

relatively simple disease prediction models from large, complex

cohorts. First, elastic net regularization offers a computationally

inexpensive approach for prioritizing a small fraction of predictors

from tens of thousands. Our addition of a clinician-review step, a

departure fromsomeprevious implementations of elastic net reg-

ularization, enables further model simplification with a trivial



Table 3. C-statistics for ML4HEN-COX and comparator models in holdout cohort

Model Entire holdout (n = 34,655) Men (n = 17,606) Women (n = 17,049) Age < 55 (n = 15,134) Age R 55 (n = 19,521)

ML4HEN-COX 0.796

(0.784, 0.809)

ref

0.751

(0.735, 0.767)

ref

0.780

(0.747, 0.811)

ref

0.825

(0.799, 0.850)

ref

0.755

(0.737, 0.771)

ref

FRS 0.756

(0.742, 0.769)

p < 0.001

0.690

(0.670, 0.709)

p < 0.001

0.758

(0.728, 0.790)

p = 0.07

0.766

(0.736, 0.794)

p < 0.001

0.712

(0.695, 0.730)

p < 0.001

PCE 0.754

(0.739, 0.768)

p < 0.001

0.689

(0.671, 0.707)

p < 0.001

0.749

(0.719, 0.781)

p = 0.01

0.770

(0.740, 0.796)

p < 0.001

0.707

(0.688, 0.725)

p < 0.001

QRISK3 0.761

(0.747, 0.774)

p < 0.001

0.695

(0.676, 0.714)

p < 0.001

0.763

(0.734, 0.793)

p = 0.13

0.790

(0.763, 0.816)

p = 0.001

0.709

(0.691, 0.727)

p < 0.001

Bootstrapped 95% confidence intervals indicated in parentheses. p values listed below each C-statistic correspond to DeLong’s test comparing each

C-statistic with reference (ML4HEN-COX). C-statistics in the development cohort are displayed in Table S7.
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reduction in performance.25,41 Finally, selected predictors—or

even a subset of the most important predictors—can be com-

bined in a simple Cox proportional hazardsmodel. This paradigm

mayaccelerate the incorporationofnew insights fromdeeplyphe-

notyped cohorts into clinical prediction tools.

Our results should be interpreted within the context of several

limitations. First, ML4HEN-COX does not inherently consider

nonlinear relationships in the predictor space. This was ad-

dressed by verifying that the performance of an ensemble

method that does consider nonlinear relationships, XGBoost,

does not outperform ML4HEN-COX. Second, the UK Biobank

has a low incidence of CAD compared with the general popula-

tion and consists predominantly of a white European popula-

tion.42 It could be the case that the predictors identified by

ML4HEN-COX have predictive value specific to cohorts with these

attributes. To minimize the risk of this, we used a rigorous cross-

validation and holdout procedure and demonstrated that the

vast majority of predictors selected by ML4HEN-COX—particu-

larly those among the top 20 in predictive value—have previously

been associated with cardiovascular disease. Nonetheless,

external validation of these results would be a crucial next step

prior to any proposed clinical implementation. Third, the greater

number of predictors included in ML4HEN-COX compared with

FRS, PCE, and QRISK3 inherently makes transportability more

challenging. Automated input and calculation at the level of the

health system or payer level using data in the electronic health

records is possible in principle, but in practice has proven chal-

lenging to implement to date. Future work may implement an

additional machine-learning step—possibly weighted by the

clinical transportability of each feature—to further prioritize the

51 selected predictors in this study.
Table 4. Categorical reclassification indices in holdout cohort whe

algorithms

Comparator model

Categorical NRI cutoff FRS

2.5% 6.0% (3.5%–8.6%)

5.0% 6.1% (3.1%–9.1%)

All reclassification indices were significant at the p < 0.001 level.
In conclusion, we proposed a machine-learning model,

ML4HEN-COX, that selected 51 predictors of CAD from 13,782

starting features in the UK Biobank. ML4HEN-COX outperformed

FRS, PCE, and QRISK3 for predicting 10-year risk of CAD on

the basis of discrimination and reclassification indices. The

methodology outlined heremay be useful in developing relatively

simple, population-specific risk prediction calculators.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Amit V. Khera (avkhera@mgh.harvard.edu).

Materials availability

There were no physical materials associated with this study.

Data and code availability

The raw UK Biobank data are made available to researchers from universities

and other research institutions with genuine research inquiries, following IRB

andUKBiobank approval. Representative code used in this work can be found

at the following Github repository: https://github.com/broadinstitute/ml4h/

tree/master/model_zoo/mi_feature_selection.

Study population and outcome definition

The UK Biobank is an observational study that enrolled over 500,000 individ-

uals between the ages of 40 and 69 years between 2006 and 2010.43 Detailed

genetic and health information ascertained from nurse interviews, electronic

health records, and blood tests are available for each individual. In this study,

we excluded individuals with prevalent cardiovascular disease (defined as

CAD,myocardial infarction, stroke, heart failure, or peripheral vascular disease

ascertained by ICD-10 codes, ICD-9 codes, OPCS-4 surgical procedure co-

des, and national death registries) and individuals with missing data in the cat-

egories of demographics, lifestyle, family history, physical exam, genetics, and

laboratory values (Tables S1–S4).
n ML4HEN-COX is compared with each of the three clinical risk

PCE QRISK3

6.6% (4.1%–9.1%) 5.8% (3.3%–8.3%)

8.2% (5.1%–11.2%) 7.5% (4.6%–10.5%)
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The 173,274 individuals included in this study were randomly assigned to

either a development cohort (80%, n = 138,619) or a holdout cohort (20%,

n = 34,655). The authors were blinded to the holdout cohort until model devel-

opment was completed. For both machine-learning models developed in this

study (ML4HEN-COX and XGBoost), a 5-fold cross-validation procedure was

performed in the development cohort to minimize risk of overfitting.

The primary outcome was incident CAD, defined as myocardial infarction,

unstable angina, revascularization (PCI/CABG), or death from CAD as deter-

mined on the basis of ICD-10 codes, ICD-9 codes, OPCS-4 surgical procedure

codes, and national death registries (Table S5).

Recalibrating clinical risk algorithms

The FRS for CAD, PCE for cardiovascular disease, and QRISK3 for cardiovas-

cular disease were computed as described previously.4–6 QRISK3was unavai-

lable for 1.4% of the analyzed cohort. Mean 10-year predicted risk of the

outcome from each of these calculators (FRS, 6.9%; PCE, 8.3%; QRISK3,

10.0%) was significantly greater than the observed 10-year event rate of

CAD (2.6%) in the development cohort (Figures S4–S6). This discrepancy is

likely due to a combination of (1) healthy volunteer selection bias in UK Bio-

bank, (2) secular trends in lower rates of CAD in contemporary practice as

compared with the data used to train these calculators, particularly FRS and

PCE, and (3) the latter two calculators predicting a broader cardiovascular dis-

ease outcome (including stroke) rather than just CAD.42

To account for this discrepancy, all three risk calculators were recalibrated

to the incidence of CAD in the development cohort using methodology

described previously.44,45 Calibration plots plotted by predicted risk deciles

supported successful recalibration for all three clinical algorithms (Figures

S4–S6). Recalibrated models were used for all subsequent analyses.

Preparing candidate predictors

We curated 13,782 candidate predictors assessed at time of study enrollment

across the domains of demographics, lifestyle, medical history, surgical his-

tory, family history, physical exam, genetics, and laboratory values (Table

S6). Medical history and surgical history variables included both self-reported

history collected during a verbal interview with a trained nurse at time of enroll-

ment and ICD-10 andOPCS-4 surgical procedure codes from the participant’s

electronic health record.

Candidate genetic variables included ancestral background as quantified by

the first four PCs of genetic ancestry returned to the UK Biobank and a previ-

ously validated genome-wide polygenic score for CAD (GPSCAD).
14 This score

has previously been associated with risk of prevalent disease among UK Bio-

bank and other study participants.15,46 In brief, raw GPSCAD values were

generated by multiplying the genotype dosage for each allele by its respective

effect size followed by summing across all variants included in the score. To

adjust for differences in variant frequencies according to genetic ancestry—

needed to standardize the score distribution—an ancestry-adjusted GPSCAD

was generated by taking the residual of a linear regression model predicting

raw GPSCAD with the first four PCs of genetic ancestry.46

Continuous variables were scaled to amean of 0 and variance of 1. Categor-

ical variables with n categories were split into n binary variables.

Development of machine-learning models for variable selection and

prediction

We developed the ML4HEN-COX using a two-step process.

First, an elastic net regularized Cox proportional hazards model was fit in the

development cohort. Elastic net regularization was first developed in the

context of linear regression and later extended to Cox survival analysis.47,48

This approach is conceptually similar to a traditional Cox model, but adds

an elastic net penalty term to the regression, which controls the fraction of

candidate predictors that remain in the final model (Equation 1)

Pl;aðbÞ =
Xp
j = 1

l

�
a
��bj

�� + 1

2
ð1�aÞb2

j

�
; (Equation 1)

where
��bj�� corresponds to a lasso penalty (L1) and b2j corresponds to a ridge

regression penalty (L2). The hyperparameter aweights the relative contribution

of the L1 and L2 terms, while the hyperparameter l controls the overall magni-

tude of the penalty term. In this study, a was set to 0.5, allowing for an equal
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contribution of the L1 and L2 penalties. The overall magnitude lwas optimized

through a 5-fold cross-validation procedure (Figure 1). Increasing l corre-

sponds to a more aggressive penalty, leading to fewer predictors selected in

the final model (left side of Figure 2). Reciprocally, decreasing l results in

more predictors in the final model (right side of Figure 2). The output of this

step for each of the five folds was a matrix consisting of l, a list of predictors

selected at the given l, the C-statistic in the training data at the given l, and the

C-statistic in the test data at the given l.

Second, we implemented a clinician review step to investigate the models in

a narrowwindow of l immediately prior to the largest C-statistic in the test data

(peak of the test curve in Figure 2). We found that there was a range of l (green

region in Figure 2) where the complexity of the model increased substantially

(from 40 to 150 predictors) concomitant to a moderate increase in C-statistic

(ranging from �0.005 to �0.01 increase). An expert panel of clinicians re-

viewedmodels in this range and ultimately chose the model containing 51 pre-

dictor variables as the most reasonable, balancing model performance with

interpretability of included variables. The relative importance of the 51 predic-

tors selected by ML4HEN-COX was investigated by measuring the C-statistic

decrease when a given predictor was removed from the model.

To benchmark ML4HEN-COX against a more sophisticated machine-learning

approach, we additionally developed a model using XGBoost, an ensemble

machine-learning method that allows for nonlinear interactions between

candidate variables.22,23 Hyperparameter optimization of this model was per-

formed with respect to the Cox partial log likelihood. The best-performing

model resulted in 115 predictors (Table S10). Finally, we studied a simple, un-

regularized Cox proportional hazard model, SimpleCox51, using the 51 pre-

dictor variables selected by ML4HEN-COX and SimpleCox20, using the top 20

predictors selected by ML4HEN-COX.

Elastic net regression (ML4HEN-COX) and XGBoost were the selected ma-

chine-learning approaches in this study because they had readily available im-

plementations for survival analysis, penalized unimportant candidate variables

to zero, and were computationally efficient enough to scale to tens of thou-

sands of features across hundreds of thousands of participants.

ML4HEN-COX and XGBoost models were developed with the scikit-survival

0.13.1, and xgboost 1.2.0 packages in Python. SimpleCox51 and Simple-

Cox20 were assessed with the survival package in R.

Statistical methods for benchmarking model performance

Calibration of developedmodelswas assessed in the development and holdout

cohorts by examining plots comparing predicted and observed 10-year risk of

CAD and the Hosmer-Lemeshow test. To investigate the gradient in risk of

CAD across a range of model predictions, the observed 10-year risk of CAD

was determined for quintiles of risk predicted by ML4HEN-COX, FRS, PCE, and

QRISK3. Theconcordanceof predicted risk betweenML4HEN-COX and the three

clinical algorithms (FRS, PCE, and QRISK3) was investigated by computing the

Pearson correlation coefficients between themodels’ absolute risk predictions.

The evaluate model discrimination, C-statistics were computed for

ML4HEN-COX, FRS, PCE, QRISK3, XGBoost, SimpleCox51, and Simple-

Cox20; 95% confidence intervals were constructed with bootstrapping

with 1,000 iterations. The DeLong test was used to evaluate statistical signif-

icance of differences between C-statistics. Categorical NRI comparing

ML4HEN-COX with FRS, PCE, and QRISK3 were calculated in the holdout

cohort with cutoff risks of 2.5% and 5.0%. A cutoff of 2.5% was selected

because it was close to the observed 10-year CAD event rate in the analyzed

cohort, while 5.0%was selected to investigate model behavior at higher risk.

Categorical NRI with identical cutoff risks were additionally computed

comparing XGBoost, SimpleCox51, and SimpleCox20 with each of the three

clinical algorithms. Statistical analyses were done in R 3.6.0.
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