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Abstract: The sequencing of ancient DNA samples provides a novel way to find, characterize, and
distinguish exogenous genomes of endogenous targets. After sequencing, computational composition
analysis enables filtering of undesired sources in the focal organism, with the purpose of improving
the quality of assemblies and subsequent data analysis. More importantly, such analysis allows extinct
and extant species to be identified without requiring a specific or new sequencing run. However,
the identification of exogenous organisms is a complex task, given the nature and degradation
of the samples, and the evident necessity of using efficient computational tools, which rely on
algorithms that are both fast and highly sensitive. In this work, we relied on a fast and highly
sensitive tool, FALCON-meta, which measures similarity against whole-genome reference databases,
to analyse the metagenomic composition of an ancient polar bear (Ursus maritimus) jawbone fossil.
The fossil was collected in Svalbard, Norway, and has an estimated age of 110,000 to 130,000 years.
The FASTQ samples contained 349 GB of nonamplified shotgun sequencing data. We identified
and localized, relative to the FASTQ samples, the genomes with significant similarities to reference
microbial genomes, including those of viruses, bacteria, and archaea, and to fungal, mitochondrial,
and plastidial sequences. Among other striking features, we found significant similarities between
modern-human, some bacterial and viral sequences (contamination) and the organelle sequences
of wild carrot and tomato relative to the whole samples. For each exogenous candidate, we ran
a damage pattern analysis, which in addition to revealing shallow levels of damage in the plant
candidates, identified the source as contamination.

Keywords: ancient DNA; composition analysis; polar bear; metagenomics; relative compression

1. Introduction

Due to constant low temperatures, glacial ice and permafrost environments provide potential
conditions for long-term survival of DNA molecules, increasing the likelihood of ancient DNA (aDNA)
authentication [1–4]. The jawbone fossil of an ancient polar bear (Ursus maritimus) is one of the
best-preserved fossils discovered so far given its age [5]. This fossil was collected in the Poolepynten
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region of Svalbard, Norway, and estimated to be 110,000 to 130,000 years old. The sequencing of the
ancient polar bear (PB) genome [6,7] and its comparison against the genomes of other bears revealed
an evolutionary history characterized by gene flow across species [8], allowed the identification of an
endogenous bear retrovirus [9], and provided evidence of past climate change [7].

The sequencing of ancient species allows DNA of endogenous and exogenous origins to be
identified. When target enrichment sequencing is not applied [4], the machine generates a large
volume of exogenous DNA, most of which is microorganic [10]. In addition to rare examples of
addition of exogenous ancient microorganisms [11,12], contamination is known to be a primary cause
of inclusion of exogenous microorganisms [1,13].

Employing affordable computational resources to efficiently split the exogenous from endogenous
DNA, including the classification of exogenous content, is a complex challenge. Filtering undesired
sources from the primary target enables improvement of the quality of assemblies and, thus,
data analysis. More importantly, such filtering allows extinct and extant species to be detected
without the need to resort to a specific or new sequencing run. The identification of exogenous
organisms is not trivial given the nature and degradation of the samples and the evident need to
use efficient computational tools. There are many computational tools for metagenomic composition
analysis [14–35], based on both alignment and alignment-free techniques [36,37]. For a relevant
comparison, see [38].

In aDNA metagenomics, every algorithm aims to be both highly sensitive and fast. However,
algorithms that are highly sensitive are usually slower and introduce a new kind of concern:
overestimation of similarity [39]. High sensitivity occurs when classifiers have high capabilities
and diversity, for example, when they are capable of dealing with genomic rearrangements (inversions,
translocations, duplications, fusions, and fissions), high stochastic variation (especially high levels
of substitution), high heterogeneity (high alternation between high- and low-complexity regions),
and short fragments (reads) displayed in an arbitrary order [40]. For this purpose, a simple high-order
k-mer model is generally not enough to accomplish high sensitivity. When using multiple models
of different depths, the question becomes how to decide which model better represents a particular
region. Should we also measure the information needed to describe the model selection? Recently,
we answered these questions [39] using the Normalized Relative Compression (NRC) [41,42]. In fact,
we showed that, if the models are not qualified to handle a specific region, then the information
required to measure similarity is transferred to the selection of the used model. In other words, if we
ignore side information in multiple stochastic models and choose only the correct model, then there is
a high probability that the prediction will remain accurate, while the decision becomes highly complex.
This reflects the high importance of working with measures that do not overestimate similarity while
using multiple predictors in the search to increase sensitivity.

We created a highly sensitive tool, FALCON-meta [39], where the number of models (predictors)
and parameters sets the precision required, in balance with the available RAM. Moreover, the tool
exhibits competitive speed relative to most of the existing tools. FALCON-meta is a tool that can,
efficiently, operate in general metagenomics studies. However, given the ability to increase the model’s
sensitivity to values that, as far as we know, have not been attained by any other method without
similarity overestimation, it is the natural candidate for efficient application in ancient metagenomic
studies, especially when the reads have very short lengths, duplications, and inversions.

In this paper, we study the metagenomic composition of a sequenced polar bear tooth sample,
using the FALCON-meta tool. A preliminary metagenomic analysis of 454 sequence reads was
previously reported, although it only included the sequencing of the mitogenome [6]. Here, we consider
the whole-genome. We follow the underlying protocols of validation of high throughput sequencing
and microbial forensics applications [43], with custom additions for the supported framework. First,
we present the pipeline used, along with the preparation of the sample, database creation, and models
and parameters chosen to run FALCON-meta. Then, we run the analysis and split the results into
the mitochondrial, plastidial, archaeal, bacterial and viral genomes. We identify several potential
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inclusions of organisms in the samples. We classify each candidate according to ancient or present
contamination, supported by a consistent damage pattern analysis [44,45].

2. Methods

We downloaded the genome sequence data of an ancient Poolepynten Ursus maritimus (PUM)
sample using the following accession codes: SRR518649, SRR518651, SRR518654, SRR518656,
SRR518657, SRR518659, SRR518704, SRR518705 and SRR518706. Given the different dates relative to
the majority of runs, we chose not to include the SRR518655 and SRR525046 runs. The PUM sample
contains 349 GB of WGS nonamplified shotgun data, which includes a 110,000- to 130,000-year-old
polar bear specimen from Svalbard, Norway. The sample was sequenced with an Illumina HiSeq
2000 [7]. The PUM sample contains 1,342,773,480 paired-end (PE) reads with 101 base pairs and a
quality-score range of 39.

Figure 1 shows the pipeline used in the analysis. The FASTQ reads were trimmed and filtered
using AdapterRemoval v2 [46] (see Section 2.1). The database was built using the reference genomes
from viruses, bacteria, archaea, fungi, mitochondria and plastids (see Section 2.2). FALCON-meta
performs the compression, filtering, and visualization operations (see Section 2.3).

Figure 1. Pipeline for the analysis of metagenomic composition using the ancient sample (PUM) and
a database containing several reference organisms as input, where MITO stands for mitochondrial
genomes. The BUILD phase was conducted according to Section 2.2. The COMPRESS phase is
conducted using the computation of FALCON-meta. The FILTER phase was a control to detect
self-redundancy and distribution.

Note that all results presented in this paper can be fully replicated, with a Linux machine using
the scripts provided in the repository https://github.com/pratas/bear. These scripts include the
automatic installation of the tools, download of the files, computation, and visualization of the
results. For further damage pattern analysis, we used BWA [25], Bowtie [24], SAMtools [47] and
mapDamage2 [45], according to [48,49]. The Bioconda tool [50] was used to install BWA, Bowtie,
SAMtools and mapDamage2.

2.1. Filtering and Trimming Reads

Filtering and trimming reads are essential to guarantee high quality and accurate analysis.
The PUM reads were filtered and trimmed using AdapterRemoval v2 [46]. For each file pair, we ran
AdapterRemoval, which trimmed N symbols, removed entries with qualities below a particular score,
and excluded reads with a DNA sequence size of less than 25 bases. Then, we merged the files into the
PUM.fq file. With this procedure, we have discarded 43% of the reads. The final PUM file contained
773,794,456 reads and had a total size of approximately 160 GB.

https://github.com/pratas/bear
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2.2. Building the Database

To build the database (DB), we downloaded several domains/kingdoms/types of data sets
from the NCBI database (27 April 2018) using specific scripts. Table 1 includes the datasets, their
characteristics, and the names of the scripts for download.

Table 1. Characteristics of the database before filtering and the corresponding downloaded scripts.

Domain/Kingdom/Type Number of Sequences Length Script

Viruses 9626 338 MB DownloadViruses.pl
Archaea 40,322 3.4 GB DownloadArchaea.pl
Bacteria 2,245,000 130 GB DownloadBacteria.pl
Fungi 2,205,000 11 GB DownloadFungi.pl
Mitochondrion v2 8670 212 MB DownloadMTV2.sh
Plastid v2 2938 308 MB DownloadPlastidV2.sh

Total (DB) 4,511,556 145.2 GB

Then, we removed the hypothetical and partial sequences; specifically, we selected only complete
genomes for the final database.

2.3. Running FALCON-Meta

We used the following parameters to run FALCON-meta: -n 8 -l 45 -t 500 -F -Z -c 250. This mode
includes the automatic parameterization of a relative compressor [51] that applies soft-blending [52],
with a decaying forgetting factor [53], between four context models (CMs) [52,54] and one tolerant
CM [55]. The decaying factor used was 0.95, and the cache hash was 250 [56]. The models have the
following parameters:

1. Tolerant CM: depth: 20, alpha: 0.1, tolerance: 5;
2. CM: depth: 20, alpha: 0.005, inverted repeats: yes;
3. CM: depth: 14, alpha: 0.01, inverted repeats: yes;
4. CM: depth: 11, alpha: 0.1, inverted repeats: no; and
5. CM: depth: 6, alpha: 1, inverted repeats: no.

The cooperation between these models acts as a very powerful data mining system. For detailed
information on the parameters and their meanings, see [39,51].

Generally, the FALCON-meta tool uses the designated models to learn the internal features of
the data from the total FASTQ reads. Then, the tool freezes the accumulated knowledge, allowing the
system to exclusively estimate further probabilities using read-only access. Finally, it estimates the
amount of new information seen when compressing each reference sequence independently. For each
measure, the length of the sequence (in the appropriate logarithmic scale) is used to normalize the value.
The resulting value represents the NRC, which given the respective complement, with renormalization,
provides the Normalized Relative Similarity (NRS). The NRS is an estimate of how similar (exclusively)
a string is to another, according to the respective scale. For an extensive formal definition (see [39,57]).

The FALCON-meta package, as shown in Figure 1, includes programs to map (compress),
filter (enabling localization of similar regions), and visualize the results. The commands used for all
the package programs were the following:

./FALCON -v -n 1 -t 800 -l 45 -F -Z -c 250 -y complexity.com PUM.fq DB.fa

./FALCON-FILTER -v -F -sl 0.001 -du 20000000 -t 0.5 -o positions.csv complexity.com

./FALCON-EYE -v -e 500 -s 4 -o top.svg positions.csv

For visualization enhancement purposes, we have split the content of the images according to the
different domains and natures of the databases.
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3. Results

All computations were run on an Ubuntu Linux computer with a 2.13 GHz core and a maximum
RAM of 34.3 GB. Utilizing this machine, without parallelization, the computation of the metagenomic
composition analysis of the PUM dataset required almost 1953 min (32.55 h).

To permit easier visualization, we have split the analysis of the PUM sample based on the
characteristics of the reference sequences, specifically by dividing the images into mitochondrial,
plastidial, archaeal, bacterial, and viral types.

Figure 2 depicts the results of the highest NRS values for mitochondrial genomes. As expected,
Ursus maritimus has the highest similarity, since the PUM sample contains an ancient version of the
bear. Several bear genomes appear to have high NRS values, although these NRS values are below that
of U. maritimus, namely, U. arctos, U. spelaeus, H. malayanos, U. thibetanus, M. ursinus and U. americanus.
Based on the database intra-similarity (Figure 2c), these are naturally very similar mitochondrial
genomes; therefore, given the high values, we can discard their presence in the samples. In fact,
this analysis is comparable to a phylogenomic analysis [58].

Figure 2. Metagenomic composition analysis of the PUM (Poolepynten Ursus maritimus) sample,
specifically for mitochondrial genomes: (b) the percentage of the highest NRS entries in descending
order (from left to right), according to the order of the names on the left (from bottom to top);
(a) locations where the mitochondrial genomes are similar relative to the reads, as well as their
respective redundancies, mapped with four colours; and (c) intra-similarities of the mitochondrial
genomes based on the NRS. The matrix appears to be symmetric because the sizes of the samples
are approximately the same. Length is presented in 103. Letters (in red) identify potential genomes
contained in the samples.
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Additionally, outside the bear lineage, there is an unusually high NRS value for Homo sapiens.
Other high NRS values within Homo are also present, although based on the database intra-similarity,
they appear to be similar to the modern human. This result seems to be a case of human contamination.
In fact, human contamination was previously reported in an ancient mitochondrial sample of
U. maritimus [6]. In this sample, the same occurs but at the whole genome level.

Regarding the NRS values of the other organisms, for example, pig, seal, and cow, as shown in
Figure 2c, there is a high degree of intra-similarity with top organisms such as the modern human
and the bear. To understand the impact of these similarities on the analysis, we filtered the PUM
reads with a similarity relative to the Ursus maritimus reference sequence of over 0.95. Since we
wanted to guarantee the presence of flanking regions and possible evolutionary regions, we accepted a
0.05 read similarity.

Accordingly, Figure 3 depicts the results of the highest NRS values for mitochondrial genomes
relative to the filtered samples. The results show the presence of the modern human and respective
similar genomes, increasing the likelihood that contamination occurred. Several plant mitogenomes
(marked with B and C) from Solanum lycopersicum (tomato) and Daucus carota (wild carrot) were also
present, with similarities among them.

Figure 3. Metagenomic (mitochondrial) composition analysis of the reads, from the PUM sample,
that did not exceed a similarity threshold relative to the Ursus maritimus reference sequence of 0.95:
(a) the percentage of the highest NRS entries in descending order (from left to right), according to the
order of the names at the top; and (b) the intra-similarities of the mitochondrial genomes based on the
NRS. Letters (in red) identify potential genomes contained in the samples.
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Figure 4 depicts the results of the highest NRS values for plastid genomes. The sequence with the
highest NRS (≈32%) stands for the chloroplast of D. carota (marked with A), also known as wild carrot.
In fact, the mitochondrial sequence of a D. carota subspecies (NC_017855.1) was previously used in a
mitochondrial metagenomic analysis, and an NRS of 9% was obtained. Additionally, the chloroplast of
S. lycopersicum (marked with B) had an NRS near 27%. The database intra-similarity values revealed
high similarity between these plastid sequences.

Figure 4. Metagenomic composition analysis of the PUM sample, particularly for plastid genomes:
(b) The percentage of the highest NRS entries in descending order (from left to right), according to
the order of the names on the right (from bottom to top). (a) Locations where the plastid genomes
are similar relative to the reads, as well as their respective redundancies, mapped with four colours.
(c) The intra-similarities of the plastid genomes based on the NRS. The matrix appears to be symmetric
because the sizes of the samples are approximately the same. Length is presented in 105. The sequence
identifiers represent the names of the plastids. (e) The circular maps indicate where similarities are
located among parts of the Daucus carota sequence. (d) The complexity profile of the sequence relative
to that of the PUM sample [59]. Letters (in red) identify potential genomes contained in the samples.

Given the NRS of D. carota and the relative difference of this species from others, we focused on
this species. To remove the noise from the samples, we filtered only the reads with similarity to several
carrot chloroplast sequences (using script runCarrots.sh for replication). Then, we ran FALCON-meta,
but instead of the whole PUM sequence, we used only the filtered reads. We found an NRS of 63% in
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the complete D. carota chloroplast genome (155,911 bases). Since the NRS is an approximation of the
similarity value without overestimation, the real value may be higher.

The D. carota relative complexity profile, as shown in Figure 4d, has high representability given
the PUM sample. There are two sub-regions in the plastid sequence that are similar due to inverted
repeats (Figure 4e). For a study on inverted repeats in multiple genomes, see [60]. Except for the
inversion, the plastid of D. carota is generally highly complex, which means that the inclusion of this
sequence in the sample, although unlikely, may be due to its similarity to another organism or to it
being contained in the sample. However, S. lycopersicum was also contained in the sample, although in
this case, the sample was from the mitochondria (Figure 3a).

The highest NRS values for archaeal genomes (Figure 5) matched members of halophilic Archaea
that typically live in saline environments. Halorubrum trapanicum (denoted with A) and Halobacterium
salinarum shared some similarity. Hence, we discarded H. salinarum from the sample. In Figure 5c,
we present a complexity profile that shows the H. trapanicum similarity (the complement of complexity)
relative to the PUM reads. Although the pattern seems uniformly distributed, the low similarity does
not permit the inference of any consistent source. The archaeon my be unknown, somewhat mutated
or similar to another organism in the database.

Figure 5. Metagenomic composition analysis of the PUM sample, specifically for archaeal genomes:
(a) The percentage of the highest NRS entries in descending order (from left to right), according to the
order of the names at the top (from bottom to top). (b) The Top 6 archaeal genome intra-similarities
based on the NRS. The names of the archaeal genomes and their respective sequence identifiers are both
represented. Letters (in red) identify potential genomes contained in the samples. (c) The complexity
profile of Halorubrum trapanicum relative to the sample.

Figure 6 depicts the highest NRS values for bacterial genomes. There was high similarity between
the references of Cutibacterium acnes and Propionibacterium acnes. Although these bacteria have different
names, they were recently taxonomically classified as the same species [61]. Generally, these bacteria
are detected in ancient and post-mortem samples. Additionally, the similarity map (Figure 6a) shows a
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uniform distribution pattern, reinforcing the potentiality for these references to be contained within
the PUM sample, with a high probability of being contaminants.

Figure 6. Metagenomic composition analysis of the PUM sample, specifically for bacterial genomes:
(a) the local similarity (redundancy) of the highest NRS entries in descending order (from left to right),
according to the order of the names at the top (from bottom to top). The scale is in megabases; (b) the
percentage of the highest NRS entries in descending order (from left to right); and (c) the bacterial
genome intra-similarities based on the NRS. The names of the bacteria and the sequence identifiers are
both represented. Letters (in red) identify potential genomes contained in the samples.

Figure 7 depicts the highest NRS values for viral genomes. There was a very high degree of
similarity with the reference of Parvovirus NIH-CQV (marked with the letter A). We filtered the reads
corresponding to the virus and then assembled it using SPAdes [62]. Finally, we used BLASTn [63]
to align the assembled sequence with the reference of Parvovirus NIH-CQV (NCBI). We found 99%
similarity (99% identity) in the aligned genome. This analysis gives strong evidence that the virus
is included in the PUM sample due to contamination. In fact, Parvovirus NIH-CQV has been widely
associated with laboratory contamination [64,65].

The results also revealed a high similarity to the human endogenous retrovirus K113 (marked
with the letter B). This finding is not surprising since we know from Figure 2 that the sample has
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modern human DNA contamination. Remarkably, a BLASTn [63] analysis showed 70% similarity and
4% identity between the human sequence and a bear retroviral sequence, using a search conducted
with only data from the NCBI.

Figure 7. Metagenomic composition analysis of the PUM sample, specifically for viral genomes: (a) the
percentage of the highest NRS entries in descending order (from left to right), according to the order of
the names at the top; abd (b) the viral genome intra-similarities are based on the NRS. The names of the
viruses and the sequence identifiers are both represented. Letters (in red) identify potential genomes
contained in the samples.

In contrast, we found a 20% similarity to the flavobacterium phage Fpv3 [66] (marked with tge
letter C), a phage with 88,421 bases. Several distinct organisms had some degree of similarity without
having significant similarity to the other organisms, namely, Geobacillus and Saccharopolyspora erythraea,
which makes them potential targets for future analysis.

Given all the candidates, the problem now becomes how to classify organismal DNA as ancient
or arising from contamination. Fortunately, for this specific case, ancient DNA reveals damage
patterns [67,68]. These patterns have characteristics that distinguish ancient from contaminant species,
such as a specific increase in substitutional alterations in the tips of the reads (relative to a modern
reference) [69]. The most effective programs to split or classify ancient DNA from contaminants are
PMDtools [44] and mapDamage [45].

As a control, we ran a pattern analysis of the ancient bear genome. Naturally, it revealed
ancient characteristics, given the high levels of C-T and G-A substitutions in the tips of the reads
(Supplementary Figures S1–S9). Unlike the bear, and excluding the plants, all the candidates
exhibited an absence of damage (Supplementary Figures S1–S9). These properties are consistent
with contamination. Regarding the plants, there were shallow (very low) levels of damage with high
noise, which prevented further conclusions.
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4. Discussions

Consider the analogy where a polar bear genome, made of small pieces of iron, is distributed
randomly inside a haystack. The haystack is full of straw. How can we find and assemble all the
parts of the iron polar bear? Currently, to address this subject, most paleogenomics researchers opt
to use a single magnet. Although the magnet attracts the majority of the pieces, some are dropped,
for example, because the magnet’s volume is small, the magnet contains a different geometry, or there
are external fields.

To overcome this limitation, we need to enhance the identification process, specifically by
increasing its sensitivity. Sensitivity is related to the development of models with the capability
for more accuracy. For this purpose, we use multiple magnets of different sizes (k-mers) and geometry
(types, such as tolerant models or regular models and the use or absence of inverted repeats).

If a model uses a lower k-mer, does it not become more sensitive? In some way, it does, but it
will introduce more noise. Generally, a short k-mer model has a lower modelling capability than a
higher one (for example, a shorter memory or shorter precision), while, although a higher k-mer model
can discriminate the data better than a shorter one, it is not able to work with small characteristics.
Therefore, the competition or cooperation between different models better suits the analysis.

Now, the question becomes how to select the model that best represents a specific region.
If we give the same weight to each magnet, then they will try to attract the majority of the
pieces. The competition approach will consume the energy of a substantial part of the system.
This consumption happens because, if the magnets are in opposing places, they will disrupt the
attraction of others, roughly sustaining the pieces of iron in the same area or increasing the attraction
time. This process represents the analogy of overestimation. Here, we need to define which magnet is
more suitable for attracting specific pieces. FALCON-meta uses all the magnets, although the magnets
assume different degrees of importance. The magnets are supervised by an automatic mechanism that
attributes importance according to the performance of the latest attraction records. Notice that the use
of multiple models without equilibrium is related to higher uncertainty.

Consider now that the haystack has other types of objects with ferrite, representing other
organisms (contamination). In this case, we will probably attract other genomes. If the genomes have
common properties, then we will attribute the source of specific parts of the polar bear, especially when
we have multiple copies (coverage) with high stochastic variation. There are two main ways of
addressing this problem, namely, by competitive matching [17,70] and by database intra-similarity
analysis [39]. We prefer to deal with the database intra-similarity analysis because sometimes samples
(parts of the genomes) do not represent the whole genomes. For example, although a horizontal gene
can be part of a sample and, in a competitive approach, mapped onto a specific genome, the whole
genome may be different, especially when we are dealing with very similar organisms. Other known
problems are segmental duplications and inversions [71,72].

In this work, we have also shown the importance of addressing the metagenomic analysis before
the analysis of the target genome. For example, what is the consistency of an investigation of an ancient
hominin when there is human contamination in the samples? Here, even enrichment and damage
pattern analysis cannot solve the problem entirely. Although there have been many advances in quality
control [13], the challenge remains unsolved and is, perhaps in some parts, undecidable. Therefore,
the awareness and discrimination of contaminant organisms in samples are proof of analysis integrity
and quality.

Using the PUM sample, we identified multiple organisms of different domains and kingdoms
with a high probability of being contained in the sample. We analysed the damages patterns of the
reads relative to each respective candidate reference. Neglecting the shallow (very low) levels of
damage in the plants, the absence of damage permitted us to classify the candidates as contaminants.

The high similarity of the mitochondria and chloroplasts of the plants produced the results that
need further exploration, namely, there is a higher similarity of the reads to the tomato mitochondria
than to the wild carrot and a higher similarity of the reads to the wild carrot plastid than to the tomato.
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We may have identified insights into an unreported genome plant with properties similar to those of
the identified plants. Although not reported here, we also found a high similarity of the whole genome
of a maize reference to the reads. We are not able to proceed to a final analysis based on damage
pattern because the references may not be the most representative.

The human and Parvovirus contaminations are some of the examples with the highest probability.
Although the Parvovirus is small and can be removed from the samples, the human retrovirus is more
challenging since it may have some short regions similar to bear retrovirus. Usually, these organisms
are undesirable for target analysis purposes. The awareness of their presence in the samples provides
a way to filter them, improving the quality of the analysis. Note that the mentioned application is
not limited to ancient DNA but can also be used in studies with broader analysis since it allows the
filtering of exogenous sources that may have been incorporated into reference assemblies from whole
genome sequence data.

The abundance of publicly available digital samples is a considerable repository of novel and
variant genomic systems collected from distinct environments. These organisms accompany target
sequenced organisms without having this purpose and are considered contamination. However,
contaminant organisms can also be a source of inexpensive sequencing, which is conditioned on
efficient and fast computational methods to reveal them.

5. Conclusions

The number of studies on aDNA is steadily increasing, supporting the capability of combining
aDNA with archaeological findings to increase knowledge of our ancestors’ history. The Poolepynten
polar bear jawbone is one of the best-preserved fossils from the Pleistocene. With the publicly available
Poolepynten polar bear sequence reads, we sought to analyse metagenomic composition.

FALCON-meta was used to infer metagenomic composition automatically. We used the
intra-similarity of the database to find the organisms most likely to be contained in the samples.
We identified multiple potential genomes, showing that these samples contain significant amounts of
exogenous genomes of different species. Some examples are genomes from a modern human (and the
respective endogenous retrovirus), Parvovirus, Cutibacterium, Geobacillus, Flavobacterium, and a plant
similar to D. carota (wild carrot) and S. lycopersicum (tomato). Curiously, the results revealed a lower
similarity to the tomato plastid sequence than to that of the wild carrot and a higher similarity to the
tomato mitochondrial sequence than to that of the wild carrot, leading us to think that we sampled a
plant with an unsequenced genome.

For each potential organism, we ran a damage pattern analysis, identifying the genomes as
sources of contamination based on their absence of deamination characteristics. The only exceptions
were the plant organelles, which exhibited shallow levels of damage. Generally, the ancient polar
bear sample contained multiple sequences from other sources classified as present-day contaminants.
An awareness of these sequences in the sample provides a way to attain integrity and improve the
quality and consistency of the analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/9/445/s1.
Figure S1. Damage patterns for the reference U. maritimus computed with mapDamage. The four upper
mini-plots (left panel) show the base frequency outside and in the read (the open grey box corresponds
to the read). The bottom plots are the positions’ specific substitutions from the 5′′ (left) and the 3′′ end
(right). The empirical misincorporation frequencies and simulated posterior predictive intervals from the fitted
model are depicted at the right panel. For more information, see https://ginolhac.github.io/mapDamage/.
Figure S2. Damage patterns for the reference H. sapiens computed with mapDamage. The four upper mini-plots
(left panel) show the base frequency outside and in the read (the open grey box corresponds to the read).
The bottom plots are the positions’ specific substitutions from the 5′′ (left) and the 3′′ end (right). The empirical
misincorporation frequencies and simulated posterior predictive intervals from the fitted model are depicted
at the right panel. For more information, see https://ginolhac.github.io/mapDamage/. Figure S3. Damage
patterns for the reference C. acnes computed with mapDamage. The four upper mini-plots (left panel) show
the base frequency outside and in the read (the open grey box corresponds to the read). The bottom plots are
the positions’ specific substitutions from the 5′′ (left) and the 3′′ end (right). The empirical misincorporation
frequencies and simulated posterior predictive intervals from the fitted model are depicted at the right panel.

http://www.mdpi.com/2073-4425/9/9/445/s1
https://ginolhac.github.io/mapDamage/
https://ginolhac.github.io/mapDamage/
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For more information, see https://ginolhac.github.io/mapDamage/. Figure S4. Damage patterns for the reference
H. trpanicum computed with mapDamage. The four upper mini-plots (left panel) show the base frequency
outside and in the read (the open grey box corresponds to the read). The bottom plots are the positions’
specific substitutions from the 5′′ (left) and the 3′′ end (right). The empirical misincorporation frequencies
and simulated posterior predictive intervals from the fitted model are depicted at the right panel. For more
information, see https://ginolhac.github.io/mapDamage/. Figure S5. Damage patterns for the reference D. carota
computed with mapDamage. The four upper mini-plots (left panel) show the base frequency outside and in
the read (the open grey box corresponds to the read). The bottom plots are the positions’ specific substitutions
from the 5′′ (left) and the 3′′ end (right). The empirical misincorporation frequencies and simulated posterior
predictive intervals from the fitted model are depicted at the right panel. For more information, see https:
//ginolhac.github.io/mapDamage/. Figure S6. Damage patterns for the reference S. lycopersicum computed with
mapDamage. The four upper mini-plots (left panel) show the base frequency outside and in the read (the open grey
box corresponds to the read). The bottom plots are the positions’ specific substitutions from the 5′′ (left) and the
3′′ end (right). The empirical misincorporation frequencies and simulated posterior predictive intervals from the
fitted model are depicted at the right panel. For more information, see https://ginolhac.github.io/mapDamage/.
Figure S7. Damage patterns for the reference CHIV14 computed with mapDamage. The four upper mini-plots
(left panel) show the base frequency outside and in the read (the open grey box corresponds to the read).
The bottom plots are the positions’ specific substitutions from the 5′′ (left) and the 3′′ end (right). The empirical
misincorporation frequencies and simulated posterior predictive intervals from the fitted model are depicted at
the right panel. For more information, see https://ginolhac.github.io/mapDamage/. Figure S8. Damage patterns
for the reference Flavobacterium phage computed with mapDamage. The four upper mini-plots (left panel) show
the base frequency outside and in the read (the open grey box corresponds to the read). The bottom plots are
the positions’ specific substitutions from the 5′′ (left) and the 3′′ end (right). The empirical misincorporation
frequencies and simulated posterior predictive intervals from the fitted model are depicted at the right panel.
For more information, see https://ginolhac.github.io/mapDamage/. Figure S9. Damage patterns for the reference
Geobacillus computed with mapDamage. The four upper mini-plots (left panel) show the base frequency outside
and in the read (the open grey box corresponds to the read). The bottom plots are the positions’ specific
substitutions from the 5′′ (left) and the 3′′ end (right). The empirical misincorporation frequencies and simulated
posterior predictive intervals from the fitted model are depicted at the right panel. For more information,
see https://ginolhac.github.io/mapDamage/.
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The following abbreviations are used in this manuscript:

aDNA ancient DNA
CM Context Model
DB Database
DNA Deoxyribonucleic acid
NRC Normalized Relative Compression
NRS Normalized Relative Similarity
PB Polar Bear
PE Paired Ends
PUM Poolepynten Ursus maritimus (ancient Polar Bear)
RAM Random Access Memory
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