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Abstract: Surface wrinkling is closely linked to a significant number of surface functionalities such
as wetting, structural colour, tribology, frictions, biological growth and more. Given its ubiquity
in nature’s surfaces and that most material formation processes are driven by self-assembly and
self-organization and many are formed by fibrous composites or analogues of liquid crystals, in this
work, we extend our previous theory and modeling work on in silico biomimicking nanowrinkling
using chiral liquid crystal surface physics by including higher-order anisotropic surface tension non-
linearities. The modeling is based on a compact liquid crystal shape equation containing anisotropic
capillary pressures, whose solution predicts a superposition of uniaxial, equibiaxial and biaxial egg
carton surfaces with amplitudes dictated by material anchoring energy parameters and by the symme-
try of the liquid crystal orientation field. The numerical solutions are validated by analytical solutions.
The blending and interaction of egg carton surfaces create surface reliefs whose amplitudes depend on
the highest nonlinearity and whose morphology depends on the anchoring coefficient ratio. Targeting
specific wrinkling patterns is realized by selecting trajectories on an appropriate parametric space.
Finally, given its importance in surface functionalities and applications, the geometric statistics of the
patterns up to the fourth order are characterized and connected to the parametric anchoring energy
space. We show how to minimize and/or maximize skewness and kurtosis by specific changes in the
surface energy anisotropy. Taken together, this paper presents a theory and simulation platform for
the design of nano-wrinkled surfaces with targeted surface roughness metrics generated by internal
capillary pressures, of interest in the development of biomimetic multifunctional surfaces.

Keywords: cholesteric liquid crystal; anchoring; surface wrinkling; surface roughness

1. Introduction

Biological cholesteric liquid crystals are organic materials [1] found in human compact
bone (collagen) [2,3], beetles’ shells (chitin fibre) [4–6], plywood (cellulose) [7,8], virus
RNA [9,10] and others [11]. Biological cholesteric liquid crystals have been found as a
promising material in optics [12], tribology [13,14] and wetting applications [15,16]. The
manifestation of molecular or colloidal orientation, chirality, self-assembly in nature’s
liquid crystals [17–22] has served as a biomimetic model, and reciprocally, liquid crystal
material physics has been used to shed light on biological structures [18,23–29]. Liquid
crystals are orientationally ordered materials that flow like viscous liquids but display
anisotropy like crystals [23] and usually form from high geometric aspect ratio molecular,
supramolecular, and colloidal units, such as fibre, fibrils, and rods. The energetic interaction
between the surface geometry and the anisotropy liquid crystal direction generates surface
forces [20,30–32] and novel modes of intrinsic surface pattern formation explored in this paper.

The alignment of rod-like molecules determines the symmetry of liquid crystal phases.
The two most common phases are the nematic liquid crystal (NLC) and cholesteric liquid
crystal (CLC). In the NLC phase (Figure 1a), all the molecules tend to align toward a certain
symmetry breaking direction, known as the director field or anisotropy axis. However,
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in the chiral CLC phase, the molecules have a layered structure. The preferred orientation
within each layer in Figure 1b has a twisting angle with respect to its adjacent layer.
The helix pitch P0 corresponds to the length required to perform a full 360-degree rotation.
Therefore, the director field in NCL can be regarded as a constant, while the director field
in CLC is a periodic function with respect to its position.

Figure 1. Nematic and cholesteric liquid crystal phases show different symmetry. (a) The nematic
liquid crystal phase with an anisotropy axis n known as the director. (b) The chiral cholesteric liquid
crystal phase with a spatial periodicity P0.

The cholesteric phase is a preferred hierarchical structure adopted in many biological
materials since it integrates mechanical, optical, tribological, and wetting functionalities.
The blue colour observed on Morpho butterfly wings is the consequence of the presence of a
chiral structure in the chitin fibres [33]. The beetles’ shells, on the other hand, generate a
unique structural colour that changes with different polarizer orientation [34]. The chitin
fibres are stacked in a chiral structure, therefore showing selectivity to light [5]. Cholesteric
chitin fibres can enhance the mechanical properties of some animals’ organs as well. For
example, the dactyl clubs of Odontodactylus scyllarus mantis shrimp can accelerate the
dactyl heel of 65 to 104 km/s2 and can reach a peak speed of 23 m s−1 from a stationary
position [35,36]. A double-spiral defect pattern is observed in the chitin fibres since it creates
a larger surface area that can easily dissipate the total energy when the fracture propagates.
The multifunctional cholesteric liquid crystal is therefore a promising biomimetic material
that can be applied in many fields.

The self-assembly and self-organization of cholesteric liquid crystal with free surfaces
or interfaces usually generates complex multi-directional and multi-wavelength periodic
wrinkling patterns [37–41]. The origin of these wrinkles is the presence of anisotropic
surface/interfacial tension due to the anisotropic axis, its spatial gradients, and its chirality.
These multiscale wrinkling surface reliefs with distinct morphology generate material
functionalities in diffraction gratings [42–45] and elastomers [46]. However, a lack of a
fundamental understanding of wrinkling mechanisms and geometry and the challenges in
experimental characterization creates barriers to the biomimetic development of liquid crys-
talline wrinkled surfaces with controllable and targeted geometries. Thus, the opportunity
of using liquid crystal material science and self-assembly coupled with computational ge-
ometry and high-performance computing offers a new tool in this functional surfaces’ area.
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In our previous work [47] on 2D surface wrinkling, using the lowest possible order
anisotropic surface energy, we captured the emergence of single and doubly periodic egg
carton surfaces of the type:

huniaxial ∝ cos
(

2πx
P0

)
or cos

(
2πy
P0

)
hequibiaxial ∝ cos

(
2πx
P0

)
cos
(

2πy
P0

)
(1)

hbiaxial ∝ cos
(

2πnx
P0

)
cos
(

2πmy
P0

)
, n 6= m = 1, 2, . . .

Furthermore, we showed [47] that in the linear small-amplitude regime, the super-
position of these egg carton modes predicted by this simple model leads to surface reliefs
rich in geometric diversities, such as minimal surface patches, umbilic points, zero Gaus-
sian curvature patches and more. Encouraged by this previous work, here we extend
this previous work on egg carton surfaces considering higher-order anisotropic surface
energy models. Two important novel features of surface pattern formation in liquid crystal
surfaces, exploited in this paper, are:

1. The dimensionless anisotropic-to-isotropic interfacial tension anchoring coefficient
ratio (r) transforms orientation features into geometric surface features [48]. If r is
relatively small, material orientation scales of the order microns generate surface
nanowrinkling, otherwise submicron or micron features will arise;

2. The spatial orientation of the director field n(x) usually depends on current or prior
self-assembly [49] or self-organization conditions [50] and hence this key input to the
surface shape equation can generate surface wrinkling complexity not obtained by
external stress loading of elastic surfaces.

Complex wrinkling patterns can be formed by various mechanisms and predicted by
various models. For example, the nonlinear membrane elastic model [51], the dynamic
approach by using the Landau–Ginzburg dynamics equations [52], the anisotropic spon-
taneous curvature model [53], and surface wrinkling due to temperature changes [46] or
plasma treatment [54]. However, all the approaches mentioned above require an external
effect that is independent of the material itself, such as the presence of an external load.
In the present paper, we present an intrinsic self-assembly approach where surface wrin-
kling is only developed by the anisotropic interfacial tension (anchoring effect) and no
other surface force fields or external loads are necessary. In other words, the coupling of
surface geometry and surface orientation is the geometric morphing agent. In particular,
this research focuses on the lyotropic cholesteric liquid crystals inspired by biological
systems where the temperature is the ambient temperature. The concentration of the liquid.
The typical concentration for this type of material is of the order of 50 mg ml−1 [55–57],
and the environment (such as humidity) could affect the surface profile [58]. The other
type of liquid crystal is the thermotropic liquid crystal, whose properties are affected by
temperature, including, for example, the wetting properties [59], anchoring and optics [60],
as well as coatings and surface roughness [61].

Surface roughness plays a critical role in various biological and biomimetic systems.
For example, a biomimetic approach inspired by shark skin improves aerodynamic per-
formance [62]. Multiscale roughness-induced hydrophobicity can be found in lotus and
butterfly wings [63], as well as osteogenic biomimetic surfaces [64]. The colours of butterfly
wings are due to their multiscale surface patterns [65], and the surface roughness is later
shown to determine the imaging quality in an AR/VR display system [66]. The usual
characterization of surface roughness geometry is based on the distribution function of the
surface relief height and its moments. The statistical properties of the surface geometry are
described by its roughness (second-order moment), the skewness (third-order moment)
and the kurtosis (fourth-order moment). The average roughness and root-mean-square
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roughness contains the mean value and its overall deviation from the mean, while the
higher order skewness and kurtosis moments capture surface symmetry breaking features
that can generate surface functionalities such as static friction [67] and biological surface
topography [68]. For example, a surface with positive skewness has a much higher shear
strength than a negative skewness given the same average roughness (first-order moment)
and root-mean-square roughness (second-order moment) [69]. The surface kurtosis quanti-
fies features such as isolated peaks and valleys. In this research (Section 3.3), we propose
an integrated analytical approach to obtain wrinkled surface profiles with rich skewness
and kurtosis features.

Based on the previous discussion, Figure 2 summarizes the key issues addressed in
this paper: (a) the surface wrinkling pattern formation process is due to an instability of a
flat surface above the orientation director field n(x) which is unstable and tends to relax
to a wrinkled surface. In this paper, we address the mechanism using an efficient shape
equation, a complex director orientation and a high order interfacial energy formulation
by keeping the quartic term in the surface free energy in Equation (2). (b) The three
primary liquid crystal orientation gradients are known as splay, twist and bend; the surface
wrinkling process is generated by bend and splay modes whose presence, absence, and
relative mixing impact the wrinkling geometry. In this paper, we address how the different
modes impact final shapes explicitly, which is crucial in optimizing and controlling surface
reliefs. (c) The wrinkled surface can be decomposed into various fundamental wrinkling
modes (egg cartons, corrugated, etc.), whose contribution to the final wrinkling surface is
captured by a revealing shape C-matrix (Equation (15)); the figure shows a 5× 5 matrix
with each element corresponding to wrinkling patterns. In this paper, we found optimal
ways to synthesize information for the wrinkling patterns using a shape classification
based on the superposition of primary modes. (d) Finally (not shown in Figure 2), an in-
depth characterization of shape statistic and scaling is provided, aiming at future potential
applications in tribology, friction, structural colour and more.

Figure 2. Schematic of this research. (a) A cholesteric liquid crystal tends to have a wrinkled surface
rather than a flat surface driven by the director field (short lines) and the gradient of the director
field. (b) The gradient of the director field shows three primary elastic modes: splay, bend and twist.
(c) The wrinkling surface is the summation of various simple wrinkling modes, whose contributions
are integrated into the C-matrix of fundamental wrinkling modes (shown in Equation (15)). (d) The
higher-order moment of the wrinkling surface characterizes the surface roughness.

The scope of this paper is restricted to equilibrium patterns, and all time-dependent
phenomena are not considered. The liquid crystalline phase is described by a director ori-
entation field, and issues arising from molecular ordering are not considered. The director
field is a known input to the overall model, and hence, there is no effect of geometry on
material structure. The chosen defect-free director field is selected as it manifests a rich
potential for wrinkling. The nonlinear (quartic) anisotropic interfacial energy is a well-
known [70,71], widely used function of (n · k), where k is the surface unit normal. Tangen-
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tial Marangoni forces of any origin are not considered. The essential nature of the model
is the liquid crystal shape equation, and the sole focus is on intrinsic capillary pressures;
hence, bulk elastic corrections and bulk stress jumps are not considered. Future work
can include all these effects as required by experimental data, biological observations and
material innovation. An effort is made to highlight mechanisms, novelty and significance,
while mathematical details are found in the appendices. Without ambiguity, in this paper,
we refer to the anisotropic interfacial tension coefficient as the anchoring coefficient and
anisotropic interfacial energy as the anchoring energy.

The organization of this paper is as follows. In Section 2.1, we present a summary of
the surface energy expression and the liquid crystal director elastic deformation. The gov-
erning equation of surface wrinkling and the mechanism are explained in Section 2.2, with a
linear approximation proposed in Section 2.3. The results are presented in Section 3, where
we compute the morphology of a wrinkling surface (Section 3.2) and the skewness-kurtosis
profiles (Section 3.3). In Section 4, we characterize surface roughness parameters in the sur-
face anchoring (anisotropic interfacial energy) parametric space. Section 5 summarizes key
results and concludes with future work. Appendix A presents the fundamental equations
that are used to describe the intrinsic geometry, and Appendix B provides details on the
wrinkling scaling laws (Equation (19)).

2. Theory and Model Formulation
2.1. Surface Energy and Elastic Deformation

The anisotropic surface free energy of liquid crystal is described by the generalized
Rapini–Papoular equation [20,70,71]

γ = γ0 +
m

∑
j=1

µ2j(n · k)2j (2)

where γ0 is the isotropic surface tension, and µ2j(j = 1, 2, . . . ) are the temperature- and/or
chemical composition-dependent anchoring coefficients. The anisotropy is presented in the
product of the material director field n and geometric surface unit normal k . In this paper,
we focus on the quartic model such that µ4 6= 0 and µ6 = µ8 = · · · = 0. The dimensionless
quartic model used in this paper reduces to γ∗ = 1 + ε2(n · k)2 + ε4(n · k)4. The signs of
the material parameters εj(j = 1, 2) are restricted as follows. The thermodynamic stability
criterion γ∗ > 0 within the region 0 ≤ (n · k)2 ≤ 1 requires γ∗ > 0. This criterion implies
that not every combination of ε2 and ε4 has physical meaning. The purple region in Figure 3
represents the possible choices in the anchoring parametric space (ε2, ε4) by assuming that
γ∗ > 0 for every 0 ≤ (n · k)2 ≤ 1. If ε4 = 0, Equation (2) degenerates to the quadratic
model, which is discussed in [58,72–75], and it is not included or discussed here.

The stable regions in Figure 3 are separated into 8 different sub-regions based on the
location of the local maximum and minimum of the surface energy density γ. The critical
straight lines in Figure 3 are L1 : ε4 = −ε2, L2 : ε4 = −ε2 − 1 and L3 : ε4 = −ε2/2.
The critical parabolic curve L4 is ε4 = ε2

2/4. Any region that is outside the purple part
in Figure 1 does not ensure that γ∗ > 0 holds for every independent director n and unit
normal k. Therefore, those regions are thermodynamically unstable. For nanowrinkling
where both ε2 and ε4 are on the order of�100, surface tension is always positive, and the
stable condition is always satisfied.

Once an anchoring coefficient pair (ε2, ε4) is chosen, the surface energy density profile
γ∗ is uniquely determined and is a function of (n · k)2, where n and −n is equivalent to
the system in the framework of the non-polar liquid crystal model. The local minimum
or maximum of γ∗ is only determined by the anchoring coefficient ratio r = ε2/(2ε4).
The position (in terms of (n · k)) of the local minimum and maximum of all 8 stable regions
separated by 4 critical curves L1 to L4 in Figure 3, A, B1, B2, C, D, E1, E2 and F, are
summarized in Table 1.
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Figure 3. (a) Stability diagram of the Rapini–Papoular Equation (2) presented in the parametric
anchoring energy space (ε2, ε4). (b) A zoom-in plot of the pink square (−4 < ε2 < 0, 0 < ε4 < 4)
in (a). L1 to L4 are critical curves separating different stable zones, where the local surface energy
density shows various landscapes summarized and characterized in Table 1.

Table 1. A summary of local energy density extrema in the sub-regions presented in Figure 3.

Regions in Figure 3 Local Minimum Local Maximum

A n ⊥ k n ‖ k
B1 (n · k)2 = |r| n ‖ k
B2 (n · k)2 = |r| n ⊥ k
C n ‖ k n ⊥ k
D n ‖ k n ⊥ k
E1 n ⊥ k (n · k)2 = |r|
E2 n ‖ k (n · k)2 = |r|
F n ⊥ k n ‖ k

Table 1 demonstrates that the local minimum or maximum of the surface energy
density γ∗ only occurs either at n ‖ k, n ⊥ k, or (n · k)2 = |r|, corresponding to planar
(tangential director to the surface) anchoring, homeotropic (perpendicular director to the
surface) anchoring and oblique (tilted director to the surface) anchoring, respectively.
The local energy density γ∗ under these three conditions are 1 + ε2 + ε4, 1 and 1 + ε2|r|+
ε4r2, respectively. The significance of Table 1 is that it shows the parametric bubble where
a spatially variable director field samples the energy extrema and the types of extrema.
For example, in region B1, one can see that if n ‖ k in one region adjacent to (n · k)2 = |r|,
the energy landscape will drive a geometric change through surface tilting, as shown below.

For an isotropic surface tension, the only capillary pressure is the Laplace pressure
generated by the mean curvature or divergence of k. For a liquid crystal, we have other
sources of capillary pressures [20] generated by the director n gradients, captured by the
splay S, twist T and bend B deformation given by [76,77]

S = ∇ · n, T = n · ∇ × n, B = n×∇× n (3)

In partial summary, the parametric anchoring coefficient space (Figure 3a), together
with the surface energy (Equation (2)) and the director field and its deformation modes
(Equation (3)), are the primary information model needed to analyze nanowrinkling.
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2.2. Cahn–Hoffman Capillary Vector Method

The surface shape equation is the interfacial normal stress balance equation. This
balance equation is given by the sum of all the capillary forces and the bulk normal
stress jump (the difference between normal stresses in the two bulk phases) [20]; see [20]
for details.

The Cahn–Hoffman capillary vector ξ is defined by [78–80]

ξ = ξ‖ + ξ⊥, ξ‖ = I(σ) ·
∂γ

∂k
, ξ⊥ = γk (4)

where I(σ) = I − kk is the surface projection tensor. The physical interpretation of
Equation (4) is demonstrated with Figure 4; for simplicity, we only consider a quadratic
anchoring model. In Figure 4a,b, the tangential component of the Cahn–Hoffman capillary
vector −ξ‖ gives the direction where the rotation of the surface unit normal k around b0
results in the fastest rate of decreasing anchoring energy.

Figure 4. Schematic of the main vectors in the nematic Cahn-Hoffman vector thermodynamics for a
(a) planar easy axis (−d γ/ d θ > 0) and (b) homeotropic easy axis (−d γ/ d θ < 0). The principal
surface frame (t0, b0) is selected by the director orientation [80]. Reprinted (figure) with permission
from Ae-Gyeong Cheong and Alejandro D. Rey, Physical Review E, 66, 021704 (2002). Copyright
(2002) by the American Physical Society.

In the absence of external loads and zero bulk stress jumps, the governing shape
implies a surface divergence free ξ, which reveals three fundamental capillary pressures by
applying the chain rule in Equation (4): (1) the change in the local surface area (variation
of k along normal direction) causes dilation pressure; (2) the change in the local surface
orientation (variation of k along tangent direction) causes rotation pressure, unique to
anisotropic media; (3) the director pressure induced by surface gradients in the average
molecular orientation [80].

−∇(σ) · ξ = −∂ξ⊥
∂k

: (∇(σ)k)
T︸ ︷︷ ︸

Dilation Pressue

−
∂ξ‖
∂k

: (∇(σ)k)
T︸ ︷︷ ︸

Rotation Pressure

−
∂ξ‖
∂n

: (∇(σ)n)
T︸ ︷︷ ︸

Director Pressure

= 0 (5)

Replacing γ from Equation (2) to Equation (4) yields the three dimensionless funda-
mental pressures (scaled by γ0) in Equation (5)
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Dilation Pressure∗ = − 2H

(
1 +

m

∑
j=1

ε2j(n · k)2j

)
(6)

Rotation Pressure∗ =
m

∑
j=1

2jε2j(n · k)2j−2
(
(2j− 1)nn : ∇(σ)k + 2(n · k)2H

)
(7)

Director Pressure∗ =
m

∑
j=1

2jε2j(n · k)2j−2
(
(2j− 1)kn : ∇(σ)n + (n · k) tr

(
∇(σ)n

))
(8)

where H = −∇(σ) · k is the mean curvature. The cancellation of the final net pressure
(Equation (5)) indicates that the wrinkling phenomenon arises due to the balance of the
three capillary pressures. Equations (6) to (8) show the additional capillary pressures from
geometry-orientation couplings such as: n · k, nn : ∇(σ)k, kn : ∇(σ)n.

2.3. Linear Approximation

It turns out that given the complexity of the shape in Equation (5), the linear regime is
an indispensable tool to characterize, analyze, and shed light on the underlying principles
of pattern formation. In the linear region (|ε2| � 1 and |ε4| � 1), the rotation pressure is
relatively small compared to the dilation pressure and director pressure. The following
identities hold:

kn : ∇(σ)n ≈ −
(

1
2
∇|n|2 − (n · ∇)n

)
· δ̂z = −B · δ̂z (9)

(n · k) tr
(
∇(σ)n

)
≈ (n · δ̂z)∇ · n = S(n · δ̂z) (10)

Equations (9) and (10) demonstrate that in the director pressure (Equation (8)), the de-
formation is only presented by the bending elastic mode and splay elastic mode (see
Equation (3)). A further approximation yields the Laplacian ∇∗2h∗ for the surface relief:

∇∗2h∗ =
m

∑
j

2jε2j

(
∂

∂x∗
((nz∗)

2j−1nx∗) +
∂

∂y∗
((nz∗)

2j−1ny∗)

)
(11)

where n =
[
nx∗ ny∗ nz∗

]T is expanded in the orthonormal basis {δx∗ , δy∗ , δz∗}, and the
dimensionless variables are

∇∗ = P0∇, x∗ =
x
P0

, y∗ =
y
P0

, z∗ =
z
P0

, h∗ =
h
P0

(12)

This generic result shows the direct connections between the surface geometry and
director splay/bend deformations. It can be seen that increasing the surface energy nonlin-
earity “m” with a fixed director field increases the number of shaping modes. In addition,
the symmetry properties of the terms in Equation (11) shows that the normal director
orientation (nz∗ ) plays a unique role in generating curvature.

The shape Equation (11) provides the groundwork for a new way to classify and extract
surface wrinkling information which would not be possible with numerical simulations
alone. In the linear region, the surface profile h∗(x∗, y∗) can be analytically solved using
Equation (11). The resulting h∗ is a linear combination of fundamental wrinkling modes
h∗ = wT

x∗ ·Q ·wy∗ where a director field n with a doubly helical structure and an m-th
order surface energy (Equation (2)) generates the following geometric m×m matrix Q and
basis shape vectors wi(i = x∗, y∗):
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Qm =


. . . ← ωy∗ →

↑ . . .
...

...

ωx∗ . . .
. . .

...

↓ . . . . . .
. . .

, wx∗ =


cos 0

cos 2πx∗

. . .
cos 2π(2m− 1)x∗

cos 2π2mx∗

, wy∗ =


cos 0

cos 2πy∗

. . .
cos 2π(2m− 1)y∗

cos 2π2my∗

 (13)

The entries of the generic Q-matrix are εi-dependent (i = 1, . . . , m) constants whose
values reflect the symmetry and periodicities of the director field and the anchoring model
adopted (Equation (2)), as expected from our discussions above on geometry-orientation
couplings. For a quartic anchoring model (m = 2), the Q-matrix is 5 × 5, indicating
24 fundamental modes, excluding the trivial flat mode. If a director n0 of the following
form is given, we can solve for the Q-matrix, resulting in a shape C-matrix for the given
director field n0

n =

sin 2πx∗ cos 2πy∗

sin 2πy∗

cos 2πx∗ cos 2πy∗

, Q(ε2, ε4)
n0−→ C(ε2, ε4) (14)

The Q-matrix contains 24 fundamental wrinkling modes, and the C-matrix reduces
the entries to 10 nonzero modes due to the symmetry present in the director n0.

Next, we present a specific application based on Equations (11) and (13). The wrinkling
mode cos 2πωx∗x∗ cos 2πωy∗y∗ is denoted as [ωx∗ , ωy∗ ] for clarity. As mentioned above,
we use a quartic model m = 2 (Equation (2)) with two-dimensional parametric space
(ε2, ε4) (Figure 3). For the egg carton-type surfaces of interest in this work, we introduce
the following compact nomenclature (briefly mentioned in the introduction):

(1) uniaxial egg carton modes: [0, ωy∗ ] or [ωx∗ , 0];
(2) equibiaxial egg carton modes: [ωx∗ , ωy∗ ] and ωx∗ = ωy∗ ;
(3) biaxial egg carton modes: [ωx∗ , ωy∗ ] and ωx∗ 6= ωy∗ .

Hence, (1) denotes a 1D surface corrugation, (2) denotes the ideal equi-doubly periodic
egg carton, and (3) denotes an egg carton with different x- and y-wavelengths, as follows.
Assuming ε4 6= 0 (for ε4 = 0 please consult [47]), the analytic solution h∗ (h∗ = wT

x∗ ·
C(ε2, ε4) ·wy∗ ) to Equation (11) can be rearranged such that

h∗ = −2ε4

π
wT

x∗ · C(r) ·wy∗ , C(r) =


0 0 0 0 0
0 0 (3 + 8r)/40 0 3/136

(3 + 8r)/64 0 (1 + 2r)/32 0 1/320
0 0 1/104 0 1/200

3/256 0 1/80 0 1/512

 (15)

Here, the shape matrix C is the specific realization of the generic Q-matrix
(Equation (13)). The relationship between C(r) and C(ε2, ε4) is C(ε2, ε4) = −(2ε4/π)C(r).
It is important to note that we have expressed the coefficient matrix C(ε2, ε4) in terms of
an r-dependent coefficient matrix C(r) multiplied with the coefficient ε4. Equation (15)
reveals that r only controls 3 modes: [1,2] (biaxial), [2,0] (uniaxial) and [2,2] (equibiaxial).
The [1,2] and [2,0] modes vanish at the same time when r = −3/8, and the [2,2] mode does
not contribute when r = −1/2. We can conclude that ε4 directly controls the surface profile
magnitude, while r determines the surface morphology through the coefficient matrix C.
The nullification of fundamental modes at specific negative r-values indicates the impact of
the plus or minus effect and the importance of the II and IV quadrants in the parametric
space (Figure 3) to generate shape transitions and extrema.

Figure 5 shows the representation of the wrinkling modes by the generic Q-matrix
(a) and (b) the corresponding specific C-matrix. The Q-matrix is all of the theoretically pos-
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sible 24 wrinkling modes, and the C-matrix, as mentioned above, is the specific coefficient
matrix in this paper (determined by the director field n in Equation (13) and a quartic an-
choring model (ε4, r)). In our adopted model (C-matrix), Figure 5b shows that there are only
10 fundamental wrinkling modes: 2 uniaxial modes (cylindrical wrinkling), 2 equibiaxial
modes (symmetric wrinkling) and 6 biaxial modes (asymmetric wrinkling). The rest of the
wrinkling modes in the Q-matrix (indicated by black zones in (b)) do not contribute to the
surface profile. Importantly, the anchoring coefficient ratio modulates the amplitude of the
three modes (see Equation (15)).

Figure 5. Visualization of the general shape Q- and C-matrix in Equations (13) and (15). The position
of the wrinkling mode in Figure 5 exactly corresponds to the entry in the Q- and C-matrix. The red
zone, blue zone, and yellow zone demonstrate uniaxial wrinkling, equibiaxial wrinkling and biaxial
wrinkling, respectively. (a) The Q-matrix presents all possible wrinkling modes in a quartic model;
(b) the C-matrix indicates that only 10 wrinkling modes are presented in this model due to the
symmetry of the adopted director field.

In partial summary, symmetry analysis combined with basic liquid crystal surface
physics can be systematically represented by an m × m shape matrix Q containing the
fundamental wrinkling modes for an m-th anchoring model. The symmetry of the adopted
director field then reduces the number of fundamental modes in the Q-matrix, and the
reduced actual shape C-matrix eliminates forbidden modes. For the adopted n0-vector,
rich and complex wrinkling modes remain active. The systematic approach formulated
here can efficiently be applied to any director field and any anchoring model, as required
by future experimental observations and/or computational discovery.

3. Results and Discussion
3.1. Parametric Space and Numerical Methods

The governing Equation (5) is a second-order nonlinear partial differential equation
of h∗(x∗, y∗) with respect to two variables x∗, y∗. We replace 0 with d h∗/ d t∗ in the
governing equation, and the numerical solution converges when t∗ → ∞. We use the EPS
method [81–83] along the time dimension (hnew − hlast + ∆h until ‖∆h‖ < δ) and the finite
difference method on the two spatial directions with periodic boundary conditions (matrix
index satisfies h1a = hNa and ha1 = hNa, where a = 1, . . . , N). In this research, N = 200,
δ = d t = 10−6.

h shows a translational invariance in Equation (5) such that if h→ h + constant, k and
∇(σ) does not change from Equation (6) to (8), which meets our expectation since lifting
or lowering the surface should not affect the morphology. To obtain a consistent result in
numerical simulation, the final surface profile is h = hconverged −mean(hconverged), which
ensures mean(h) = 0. The numerical results were compared with analytical results for the
linear regime (see Section 2.3), and in all cases, we find an essentially perfect agreement.
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3.2. Surface Profile

Equation (15) implies that ε4 only controls the absolute magnitude of the wrinkling
profile, while the anchoring coefficient ratio r determines the morphology. Once ε4 is fixed,
r can be chosen arbitrarily. Here, we focus mainly on |r| ≤ 2 (see Figure 3). The numerical
solution, analytic linear approximation (via solving Equation (11)) and their cross-sectional
plots for r = −2, r = −0.258, r = −0.454, r = −0.416 and r = +2 are presented in
Figure 6. These specific anchoring coefficient ratio values are chosen because each of them
corresponding to a special case in the surface skewness and kurtosis analysis discussed later
in Section 3.3. In the parametric space (Figure 3), the specific r-values correspond to: r = −2,
zone F (slope = −0.25); r = −0.454, −0.416 and −0.258 are in zone E1 (slope < −1); and
r = +2 is in zone D (slope = +0.25). The average difference ratio Ar is defined as

Ar =

√
tr(d · dT)

N2 × 100%, d =
hnumerical − hanalytic

(max(hnumerical)−min(hnumerical))/2
(16)

where h is the solution matrix with N × N entries, and the division represents element-
wise division.

Figure 6. The numerical solution (first row, (a1)–(e1)), analytic solution (second row, (a2)–(e2))
and cross-section plots along a diagonal line y∗ = x∗ ((a3)–(e3)) as well as two boundaries x∗ = 0
((a4)–(e4)) and y∗ = 0 ((a5)–(e5)) with r = −2 (column (a), min skewness), r = −0.454 (column (b),
min kurtosis), r = −0.416 (column (c), zero skewness), r = −0.258 (column (d), max skewness) and
r = +2 (column (e), max kurtosis) by fixing ε4 = −0.01. The percentage values shown in the second
row are the average difference ratio Ar defined in Equation (16). The full and dashed-line curves for
the cross-sectional plots represent numerical solution and analytic solutions, respectively.

Figure 6 presents the dimensionless surface wrinkling profile h∗ as a function of two
spatial variables (x∗, y∗). The first row demonstrates the numerical solution, and the
second row shows the analytic solution. The cross-section plots along the diagonal curve
y∗ = x∗ and the two boundaries x∗ = 0 and y∗ = 0 are shown in the third row of
Figure 6. The full and dashed curves represent the numerical cross-section plot and
analytic cross-section plot, respectively. The average difference ratio Ar in Figure 6 varies
from 0.0114% to 0.0613%, validating the fact that the linear model fits the numerical
solution accurately. The dimensionless surface profile h∗ has an order of magnitude of
10−3, implying a nanowrinkling profile. The results shown in Figure 6 demonstrates
the complex wrinkling patterns that result from the superposition of fundamental egg
carton shape modes given in Equations (13) and (15). Comparing Figure 6(a1,e1), we find
that h∗(r) 6= −h∗(−r). This relationship verifies that the C-matrix does not contain any
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symmetry with respect to r = 0, unlike the relationship h∗(r) = −h∗(−r) found in the 2D
surface wrinkling phenomenon [84].

In partial summary, the model and simulation are able to capture non-ideal complex
wrinkling patterns whose symmetries and periodicities can be modulated by the anchoring
coefficients. In practical terms, these coefficients are functions of the chemistry, concentra-
tion, and temperature, offering a number of routes to fix the value of r and hence target
different egg cartons in a more predictable way.

3.3. Skewness and Kurtosis

The statistics of the surface geometry given by moments of the surface relief are re-
quired to establish potential applications that depend on roughness. Here the superposition
of various egg carton will be shown to generate a rich response to the anchoring coeffi-
cient ratio “r”. In what follows, we only consider the morphology factor r in the scaled
dimensionless surface profile h̄ = −πh∗/(2ε4) to eliminate the effect of ε4 on h∗, since it
only linearly increases the magnitude of h∗.

The surface roughness parameters root mean square (Sq2), skewness (Ssk) and kurtosis
(Sku) are defined by (with a mean value of h̄ = wT

x∗ · C ·wy∗ equal to 0)

A =
∫∫

A

√
ḡ d x∗ d y∗, Sq2 =

1
A

∫∫
A

h̄2 d x∗ d y∗, (17)

Ssk =
1

ASq3

∫∫
A

h̄3 d x∗ d y∗, Sku =
1

ASq4

∫∫
A

h̄4 d x∗ d y∗ (18)

where ḡ = 1 + (∂h̄/∂x∗)2 + (∂h̄/∂y∗)2 is the metric. If |r| � 1, the following scaling laws
hold (see Appendix B)

A ∝ r, Sq ∝
√

r, Ssk ∝
√

r, Sku ∝ r, and Sku ∝ Ssk2 (19)

If |r| ≤ 1, the relationship between the roughness parameter and r is given by Figure 7,
and the root mean square increases when |r| increases. If |r| < 1, the skewness profile
presents two local minima and two local maxima due to the competition of the [1, 2],
[2, 0] and [2, 2]-modes (Equation (15)), shown in Figure 7(b,b1). The kurtosis profile only
presents one local maximum and two local minima for the same reason. The skewness
and kurtosis profiles present rich complexity for r < 0 compared with r > 0. The opposite
signs between the quadratic term and the quartic term result in a more complicated surface
energy profile (the second and fourth quadrants in Figure 3), further creating various
behaviours in the surface roughness parameters. Figure 7d presents the skewness-kurtosis
plot, which is a prevalent tool in the application of lubrication [85,86], flows [87,88] and
boundary layer analysis [89]. Figure 7d demonstrates a global binary plot with a single loop
within −0.5 < r < 1, showing the complex coupling phenomenon of the two roughness
parameters due to the lack of a dominant term for ε2 and ε4 in Equation (6) to Equation (8).

The maximum and minimum values of the skewness and kurtosis plots presented
in Figure 8 within |r| ≤ 2 are analyzed along with the computation of the kernel density
(KD) of the surface profile at the corresponding r-value, which is defined by
KD = (h̄max − h̄min)PDF(h̄)/n. Here, PDF is the probability distribution function, n
denotes the number of bins for histogram, and n = 1000 in this research for a smooth
figure. The distribution KD of surface relief h̄ is illustrated by the KD− h̄ profile in Figure 8.
Figure 8a shows a right-leaning curve with a long-left tail (mean < median), which
validates the fact that the surface profile under r = −2 has a negative skewness. Simi-
larly, Figure 8b has a maximum, positive skewness, where the KD is a left-leaning curve.
The skewness measures the distribution asymmetry, while kurtosis captures the sharpness
of the distribution profile. Figure 8c suggests a more even KD profile than Figure 8d,
which verifies that the surface under r = −0.454 has a smaller kurtosis than under r = +2.
Figure 8 concludes again that the surface roughness features can be regulated by controlling
the anchoring ratio r with a minimum kurtosis of Sku = 2.13 (Figure 7). These results
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on roughness parameters can be further applied to tribology [67], topography [68] and
analyzing shear mechanics [69].

Figure 7. Surface roughness parameters of h̄ are dependent on the anchoring coefficient ratio r.
(a) Root mean square (Sq2), (b) skewness (Ssk) and (c) kurtosis (Sku) are functions of r. (d) Sku as a
function of Ssk parametrized by r. The red and blue curves demonstrate r < 0 and r > 0, respectively.
A square marker represents a local minimum, and a filled circle represents a local maximum. A star
marker indicates a global extremum. (b1,c1,d1) are the zoom-in details of the region with squares in
(b–d), respectively.

Figure 8. The kernel density (KD) when (a) r = −2 (minimum skewness), (b) r = −0.258 (maximum
skewness), (c) r = −0.454 (minimum kurtosis) and (d) r = +2 (maximum kurtosis).
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4. Applications: Pathways to Targeted Surface Roughness Metrics

In practical applications, one would like to know the specific correlations between the
most important surfaces roughness metrics and the anchoring coefficient ratio r. Figure 9
summarizes these key results in the parametric anchoring space (ε2, ε4).

Figure 9. Summary of the parametric sensitivity of the key surface roughness metrics: root mean
square, skewness, and kurtosis (Equations (17) and (18)). A straight line with slope 1/(2r) passing
through the origin in the parametric space (ε2, ε4) corresponds to a morphology (evaluated by
C(r)-matrix), and its y-axis coordinate (purple line ε4 = constant) determines the amplitude of the
wrinkling profile. The location of these r-points in parametric space (Figure 3) are: r = −2, zone F;
r = −0.564, zone E2; r = −0.491 to −0.258 are in zone E1; and r = +0.155 to +2 are in zone D. The
density of the special surface roughness metrics in the negative r-value interval indicates that zone
E1 in Figure 3 is a highly sensitive area.

Figure 9 summarizes the parametric sensitivity of the surface roughness metrics
(root mean square, skewness, kurtosis) as a function of the anchoring coefficient ratio r,
shown as straight lines (top) in the (ε2, ε4) plane. The r-ratio interval is from +2 to −2
(from the blue positive slope line to the red negative slope line). The constant r-lines
intersect the horinzontal purple line ε4 = constant) at an ordered set of decreasing r-values,
corresponding to the local extrema of the surface roughness metrics within the−2 < r < +2
interval. As r decreases, the root mean square keeps declining until it reaches a minimum;
then, it climbs up with increasing r. The skewness and kurtosis show a completely different
profile. Within the range −2 < r < +2, the skewness demonstrates two maximum and two
minimum values, while the kurtosis presents one maximum and two minimum values.
This phenomenon verifies that r plays a complex role in 2D surface wrinkling. Importantly,
the local extrema in the surface roughness metrics occur at different values of r, and the
presence of several extrema in the negative r-value interval shows that sector E1 of Figure 3
is a highly sensitive parametric area that can be exploited in future applications.

Figure 9 provides a road map to design egg carton surfaces with specific surface
roughness metrics. For example, a self-assembled biocompatible cholesteric liquid crystal
scaffold with the lowest root mean square can be produced while maintaining the anchoring
coefficient ratio r ≈ −0.382. If we want to increase the surface shear strength, we need
a surface with high positive skewness [69]. If r is negative, we can choose r ≈ −0.258,
and if r is positive, the higher r, the better. The surface skewness and kurtosis are also
shown to determine the contact angle and further influence the wettability of materials [90].
As mentioned above, the desired anchoring coefficients can be tuned by controlling the
chemical composition and temperature [91].



Nanomaterials 2022, 12, 1555 15 of 20

5. Conclusions

Generating multifunctional wrinkled surfaces usually requires external stress loads,
erosion and removal processes, or high-energy beams. In this paper, we present a platform
to create nanowrinkling using an intrinsic surface pattern formation mechanism that exists
in anisotropic chiral soft matter materials such as cholesteric liquid crystals. Here, shape
is determined by internal capillary pressures generated by couplings and interactions
between the geometry and the material structure. Specifically, the anisotropic interfacial
energy depends on the coupling between the surface unit normal and the average molecular
orientation of liquid crystals. Including chirality, spatial periodicity, and basic deformation
modes generates additional capillary pressures not found in isotropic materials. The higher
the coupling order between the geometry and the orientation, the more complex the surface
energy landscape is and the greater the potential for complex surface wrinkling, such as
egg carton surfaces, as demonstrated in this paper.

Specifically, in this paper, we studied the complex nanowrinkling patterns of cholesteric
liquid crystals in a quartic anchoring model parameterized by two anchoring coefficients
(ε2, ε4). For a given director field, the surface has 10 fundamental wrinkling modes. In a lin-
ear analysis of the quartic model (such that ε4 is never nonzero), the wrinkling morphology
(the contribution of each fundamental wrinkling mode) is determined by the anchoring
coefficient ratio r = ε2/(2ε4), while the wrinkling magnitude is determined by the higher-
order anchoring ε4 only. The surface wrinkling information is captured by a shape matrix,
which reflects the specific role of the director-filed symmetry as well as the anchoring model.
This efficient approach can easily be generalized to higher-order wrinkling by increasing
the the dimensionality of the shape matrix as well as other director fields.

For functional surfaces that depend on specific surface roughness metrics, we can
condense this information by performing a parametric study in terms of the anchoring
coefficient ratio r and the parametric anchoring plane. Specifically, the higher-order moment
information of surface geometry such as root mean square, skewness and kurtosis are
evaluated, presenting complex nonlinear effects when the anchoring coefficient ratio is
between −1 and +1. The linear analysis validates the analytic wrinkling profile as well as
the scaling laws.

Taken together, this paper presents a theory and simulation platform for the design
of nanowrinkled surfaces with targeted surface roughness metrics, generated by internal
capillary pressures, of interest in the development of biomimetic multifunctional surfaces.
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Appendix A. Instrinsic Differential Geometry and Cahn-Hoffman Capillary Vector

We adapt tensor notations

A : B = AijBji, A :: B = Aijkl Bikjl (A1)

We use Latin letters for physical coordinate (i = 1, 2, 3) and Greek letters for surface
coordinate (α = 1, 2). The local tangential vectors rα and surface gradient operator ∇(σ) are

rα =
∂xi

∂yα
δ̂i, ∇(σ) = rβ∇(σ)β = rαgαβ∇(σ)β = rα∇α

(σ) = rαrα · ∇ (A2)

where ∇α
(σ)

is dual to ∇(σ)α. The surface curvature tensor B, mean curvature H and
Gaussian curvature K are

B = −∇(σ)k, H =
1
2

tr B, K = det B (A3)

The Cahn–Hoffman capillary vector

ξ(n, k) = ξ⊥ + ξ‖ = γk + I(σ) ·
∂γ

∂k
(A4)

And the surface divergence becomes

−∇(σ) · ξ = − tr
(

rαgαβ ∂ξ

∂ni∇(σ)βni + rαgαβ ∂ξ

∂kj∇(σ)βkj
)

(A5)

= −∂ξ⊥
∂k

: (∇(σ)k)
T︸ ︷︷ ︸

Dilation Pressue

−
∂ξ‖
∂n

: (∇(σ)n)
T︸ ︷︷ ︸

Director Pressure

−
∂ξ‖
∂k

: (∇(σ)k)
T︸ ︷︷ ︸

Rotation Pressure

(A6)

Appendix B. Surface Roughness Parameters

The dimensionless surface morphology function

h̄(x∗, y∗) = wT
x∗(x∗)C(r)wy∗(y∗) (A7)

The surface area A is determined by

A =
∫∫

A

√
ḡ d x∗ d y∗, ḡ = 1 + h̄2

x∗ + h̄2
y∗ (A8)

If r is a large number, then the dominating modes are [1,2], [2,0] and [2,2] such that

h̄ ≈ rλ(x∗, y∗), λ(x∗, y∗) =
1
5
[1, 2] +

1
8
[2, 0] +

1
16

[2, 2] (A9)

and
√

ḡ =
√

1 + r2(λ2
x∗ + λ2

y∗) with 0 ≤ λ2
x∗ + λ2

y∗ ≤ 441/1600. We notice that (assume
r > 0) √

1 + r2(λ2
x∗ + λ2

y∗) = r
√

1 + Ω, Ω = λ2
x∗ + λ2

y∗ − 1 +
1
r2 (A10)

Since −1 < Ω < 0,
√

ḡ/r can be expanded in Taylor series

√
ḡ

r
= 1 +

Ω
2
− Ω2

8
+

Ω3

16
− 5Ω4

128
+ · · · =

∞

∑
l=0

(
1/2

l

)
Ωl (A11)
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The approximation to surface area A reduces to

A =
∫∫

A

√
ḡ d x∗ d y∗ = r

∞

∑
l=0

(
1/2

l

) ∫∫
A

Ωl d x∗ d y∗ = cAr (A12)

with O(cA) = 100 > 0 a positive constant.
The second-order moment of h̄ can be computed directly by using orthogonality∫∫

A
h̄2 d x∗ d y∗ =

∫∫
A

wT
x∗Cwy∗wT

x∗Cwy∗ d x∗ d y∗ (A13)

= CC ::
∫ 1

0
wx∗wx∗ d x∗ ⊗

∫ 1

0
wy∗wy∗ d y∗ (A14)

= tr
(

E · C · E · CT
)
= c1r2 + c2r + c3 (A15)

where O(c1) = O(c2) = O(c3) = 10−2 > 0 and E = ET = (1/2)Diag(2, 1, 1, 1, 1). For
r � 1, Sq is by definition

Sq =

√
c1r2 + c2r + c3

cAr
=
√

a1r + a2, O(a1) = O(a2) = 10−2 > 0 (A16)

ASq3 ∝ r5/2, h̄ ≈ rλ(x∗, y∗); hence

Ssk =
1

kr(c1r + c2)3/2

∫∫
(rλ)3 d x∗ d y∗ ∝

√
r (A17)

ASq4 ∝ r3, h̄ ≈ rλ(x∗, y∗); hence

Sku =
1

kr(c1r + c2)2

∫∫
A
(rλ)4 d x∗ d y∗ ∝ r (A18)

In summary, we have shown that for |r| � 1:

A ∝ r, Sq ∝
√

r, Ssk ∝
√

r, Sku ∝ r ⇒ Sku ∝ Ssk2 (A19)
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