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Abstract
Triazine-2-14C metsulfuron–methyl is a selective, systemic sulfonylurea herbicide. Degra-

dation studies in soils are essential for the evaluation of the persistence of pesticides and

their breakdown products. The purpose of the present study was to investigate the degrada-

tion of triazine-2-14C metsulfuron–methyl in soil under laboratory conditions. A High Perfor-

mance Liquid Chromatograph (HPLC) equipped with an UV detector and an on-line radio-

chemical detector, plus a Supelco Discovery column (250 x 4.6 mm, 5 μm), and PRP–1 col-

umn (305 x 7.0 mm, 10 μm) was used for the HPLC analysis. The radioactivity was deter-

mined by a Liquid Scintillation Counter (LSC) in scintillation fluid. The soil used was both

sterilized and non-sterilized in order to observe the involvement of soil microbes. The esti-

mated DT50 and DT90 values of metsulfuron-methyl in a non-sterile system were observed

to be 13 and 44 days, whereas in sterilized soil, the DT50 and DT90 were 31 and 70 days,

respectively. The principal degradation product after 60 days was CO2. The higher cumula-

tive amount of 14CO2 in
14C- triazine in the non-sterilized soil compared to that in the sterile

system suggests that biological degradation by soil micro-organisms significantly contrib-

utes to the dissipation of the compound. The major routes of degradation were O-demethyl-

ation, sulfonylurea bridge cleavage and the triazine “ring-opened.”

Introduction
The environmental fate of pesticides in the soil is viewed with great concern today, due to the
potential effects on surface and ground water quality. The rate of mobility and degradation in
the soil are the most important processes that determine the fate of pesticides in soils. There-
fore, degradation studies in soils are essential for the evaluation of the persistence of pesticides
and their breakdown products. Data on the rate of degradation are extremely important as
they permit prediction of the levels likely to remain in soil and assessment of potential risk
associated with exposure. Under favourable conditions, microbial degradation of pesticides
should be studied under field conditions but this is often dogged by problems due to the inter-
play of several factors of spatial and temporal variability. Laboratory degradation studies have
the merit of being carried out under controlled conditions which allow for the measurement of
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one factor at a time. This approach may permit the detection of which factor is more responsi-
ble for the dissipation of a particular pesticide, within a given environment and soil. When
properly planned, laboratory studies have been found to produce good data that can be
employed in modelling pesticide degradation in the field. Sulfonylurea herbicides degrade in
soils primarily by chemical hydrolysis and microbial metabolism and there are several publica-
tions, which elucidate the significance of microbial degradation [1–4]. Chemical hydrolysis of
metsulfuron-methyl has been shown to be very rapid at low pH. This means it is less persistent
in soils with low pH [5]. Its persistency at 45°C increased from 2.1 days at pH 5 to 33 days at
pH 7 [6]. The degradation rate of metsulfuron-methyl is affected by soil temperature, moisture,
pH, and soil microbial viability [7]. The half-life of metsulfuron- methyl ranges from 2.5 days
[soil conditions: pH 3.1, 35°C, 80% field water holding capacity (FC)] to 36 days (soil condi-
tions: pH 5.7, 10°C, 60% FC) depending on the above-mentioned factors [1, 8, 9]. The degrada-
tion rate of metsulfuron-methyl has been positively correlated with microbial biomass [8, 10].
Although several researchers have reported the effects of environmental conditions on the deg-
radation rates of metsulfuron-methyl, there have been only a few attempts to identify the deg-
radation products. Some aqueous hydrolysis products, plant metabolites, and degradation
products of metsulfuron-methyl in soil minerals and humic acids have been identified [3, 11–
14]. The objective of the present study is to determine the degradation rate and pattern of 14C-
labelled metsulfuron-methyl in sterile and non-sterile Bernam Series soil under laboratory con-
ditions. The Bernam Series soil was selected for the study, and observations from the study will
be further verified in the field (with the same soil series). 14C-radiollabelled metsulfuron-
methyl labelled at the 2-carbon in the triazine ring [triazine-2-14C] and phenyl ring [phe-
nyl-14C] was used in the study to identify its metabolic pathway in the soil.

Materials and Methods

Chemicals
The herbicide selected for the study was metsulfuron-methyl. The purity of the technical sam-
ple used as the analytical standard and for various laboratory studies was approximately 99%.
14C-radiolabelled metsulfuron-methyl (methyl 2-[[[[(4-methoxy-6-methyl–1, 3, 5-triazin-2-yl)
amino] carbonyl] amino] sulfonyl] benzoate) was synthesised at DuPont, New England
Nuclear (NEN) Research products, Boston MA. It was labelled uniformly at the 2-carbon in
the triazine ring [triazine-2-14C] and phenyl ring [phenyl-14C] and has specific activity of 1.85
MBq mg–1 (49.87 μCimg−1) and 1.42 MBq mg–1 (38.28 μCimg−1), respectively. The 14C-
labelled compound used had radiochemical purity higher than 99%, as determined by high per-
formance liquid chromatography (HPLC). Unlabelled reference standards of the test substance
and expected degradation products were synthesised at the DuPont Agricultural Products, E.I.
Du Pont de Nemours and Company (Wilmington, DE). All organic solvents and water used in
the study were of HPLC grade. All other chemicals were of the deionized grade. The radioactiv-
ity in the samples was determined by LSC in scintillation fluid. The potassium hydroxide and
ethylene glycol trap solution was used to trap 14CO2 and organic volatiles released during
combustion.

Soil
Soil samples (Bernam Series) were collected from the top 15 cm of the soil at the field trial site
at Sungai Buloh Estate. Soil characteristics were determined at the Harris Laboratories, Inc.
(Lincoln, NE), and are provided in Table 1. The fresh soil was sieved through a 2 mm sieve
and used immediately for the study. Soil samples taken from biometer flasks identical to those
used in the degradation studies were evaluated for total bacterial counts so as to ascertain the
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effect of the closed system of the flask on the microbial population of the soils. The soil was
sampled at day 0 (immediately after treatment), and at 30 and 60 days. The plating process
commenced with the measurement of 23.0 g of nutrient agar (from Difco laboratories, Detroit
MI 48232–7058, USA) consisting of Bacto beef extract (3 g), Bacto peptone (5 g) and Bacto
agar (15 g) to which was added to 800 mL of sterilised water. The mixture was heated on a hot
plate magnetic stirrer until uniform solubility was achieved and the final solution was made
up to 1 litre with sterilised water. An autoclave (All American Electric Pressure Steam Steril-
izer Model No 25X) was used to sterilise the agar solution (at 15 kPa for 15 minutes, tempera-
ture 121°C). The agar solution was left to cool at room temperature soon after autoclaving,
and while still warm, plating was done. Agar plating was carried out using 25 mL of agar solu-
tion per plate, left overnight to solidify. Soil samples (10 g each) collected at specified intervals
of time, were added to conical flasks each containing 90 mL of sterilised water and shaken on
a rotary shaker (Stuart Flask Shaker; Stuart Scientific Co. Ltd. England) for 1 h. This was fol-
lowed by serial dilution of 10 fold steps and the appropriate dilutions poured out onto nutri-
ent agar plates and incubated for a duration of 24–48 h at 30°C, before counting of the
colonies was carried out. Results of microbial colonies counted were expressed in colony
forming units (CFU).

Table 1. Soil characterization.

Soil Property Unit Result

Texture NA2 Clay

Sand % 27.6

Silt % 27.2

Clay % 45.2

pH (Water) NA 4.5

pH (0.01 M CaCl2) NA 4

Organic Matter (Ashing) % 4.6

Organic Matter (Walkley-Black) % 4.3

Organic Carbon (Walkley-Black) % 2.4

Bulk Density g/cm3 0.92

Moisture Holding Capacity (0 Bar) 3 % 65.2

Moisture Holding Capacity (0.1 Bar) % 46.5

Moisture Holding Capacity (1/3 Bar) % 45.0

Moisture Holding Capacity (15 Bar) % 23.3

Cation Exchange Capacity meq/100 g 25.6

Nitrogen, Total mg/kg 2220.00

Phosphorus (Bray) mg/kg 96

Phosphorus (Olsen) mg/kg 39

Potassium mg/kg 313

Magnesium mg/kg 61

Calcium mg/kg 763

Sodium mg/kg 22

Soluble Salts mmhocm-1 0.23

1 USDA system (Sand: 2 mm–50 μm, Silt 50–2 μm, Clay: <2 μm)
2 NA = Not Applicable
3% of dry weight

doi:10.1371/journal.pone.0138170.t001
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Experimental Setup
Samples of the Bernam Series soil was collected from the field experimental site at Sungai
Buloh Estate. The soils samples were passed through a 2 mm sieve and used immediately. Each
soil sample (100 g) was placed in a sample bottle, connected to the trap bottle. The trap bottle
was connected to an ethylene glycol (25 mL) bottle to trap any organic volatiles. Lastly the eth-
ylene glycol bottle was connected to a 0.1 M KOH (25 mL) bottle to trap 14CO2 evolved as a
result of microbial activity (Fig 1). The flask was corked with a rubber stopper. The soil was
maintained at the water holding capacity of 50% throughout the experiment. This was achieved
by periodically weighing the flask and by the addition of water as required. The experiment
was conducted in a “controlled environment” chamber with the temperature maintained at
30°C (±1°C) and the humidity at 80% (±2%), in total darkness. The experiment was replicated
three times.

For the sterile system, the same number of flasks was prepared as described above except
that each flask that contained 100 g dry weight equivalent (of the moist soil) which was auto-
claved at 15 kPa and 120°C for 1 hour on four separate days to destroy the microorganisms.
The Market Forge Sterilmatic autoclave Model STM-EL was used to sterilise the soil. The sterile
test system was connected to a volatile trapping system as described above, with the addition of
a sterile Gelman ACRO 50 PTFE 0.2 μm filter inserted before the test system flask, to prevent
microbial contamination.

Treatments
Triazine Ring [triazine-2-14C] Metsulfuron-methyl. The primary stock solution of

1503 μg/mL (specific activity, 49.87 μCi/mg) was prepared by mixing 15.03 mg of the neat
material (99% purity) with 10 mL of sterilised water where the pH was adjusted to a pH of 7.
This primary stock solution was stored frozen when not in use. A 15.03 μg/mL secondary stock
solution (specific activity, 49.87 μCi/mg) was prepared by diluting a 1 mL aliquot of the pri-
mary stock solution (1503 ppm) to a final volume of 100 mL in sterile deionized water. A 93 μL
aliquot of this solution was mixed with 100 g of soil in each designated vessel to produce a con-
centration in the soil of approximately 1.4 ppm. This concentration allowed for adequate detec-
tion levels of the parent material and its metabolites.

Reference Standard Solutions. Solutions of metsulfuron-methyl and reference chemicals
were prepared by dissolving 5 mg of the mixture in 5 mL of water: acetonitrile (3:2, v: v). Dilu-
tions and mixtures of the standard solution were prepared in reagent water prior to the HPLC
analysis. Mixtures of the following standard solutions were prepared to evaluate the HPLC res-
olution of degradation from the triazine radiolabelled test substance and for the purpose of per-
forming chromatography: IN-B5528, IN-A4098, IN-D5803, IN-B5067, IN-F5438, IN-MU717,
and DPX-T6373.

Sample Collection and Handling. Sampling was conducted at various intervals by taking
the three replicate bio meter flasks at 0 (immediately after treatment), 1, 3, 7, 10, 14, 21, 30, 45,
and 60 days after treatment (DAT). One mL aliquots (in triplicates) of 0.1 M KOH and ethyl-
ene glycol solutions used to trap 14CO2 and organic volatiles were sampled at each of the speci-
fied intervals. The solutions were combined with the scintillation fluid and analysed for total
radioactivity by the Liquid Scintillation Counter (LSC).

Extraction of Soil Radioactivity. At each sampling time, two flasks (one from each of the
two 14C metsulfuron-methyl treatments) were taken for the extraction process. Step 1—The
soil in each test flask was mixed with 100 mL of acetonitrile: 2 M ammonium carbonate (9:1, v:
v) and shaken for 1 hour on a platform shaker at room temperature (23°C). The solution was
centrifuged at approximately 2500 rpm for 15 minutes. The supernatant was decanted to a
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graduated cylinder. The extraction process was conducted 3 times, and the extracts pooled; 1
mL aliquots were analysed in triplicate by LSC. The recovery study was conducted by spiking a
known amount of two 14C metsulfuron-methyl on the soil sample following the same proce-
dure. The sample was left for 1 hour before it was analysed by LSC.

After step 1 extractions were done, the bound residue (%) in the extracted soil was estimated
from the equation:

Estimated Bound Residue ð%Þ ¼ 100 � % Applied Radioactivity in Traps � %Applied Radioactivity in Extracts

If the estimated bound residue was>10% of the applied radioactive metsulfuron-methyl,
extraction step 2 was done. Step 2—After the first extraction, extraction of the remaining resi-
dues from the soil samples were done using 100 mL of CH2Cl2: methanol: 2 M ammonium car-
bonate (3:4:1, v: v: v), followed and by shaking for 1 hour at room temperature (23°C). The
extraction process was conducted 3 times, the extracts pooled, and 1 mL aliquots were analysed
in triplicate by LSC. The LSC aliquots must be withdraw in the homogenous phase. After step
2 was completed, the step 1 and step 2 extracts were pooled. The extracts were concentrated by
vacuum rotary evaporation and re-dissolved in water. Aliquots were analysed in triplicate by
LSC and an aliquot was removed and analysed by HPLC. The extracts were stored in a freezer
at—4°C.

Analysis of Soil Extracts. Soil extracts were analysed using a HPLC equipped with both a
UV—detector and an on-line radio-chemical detector (Ramona, Raytest Inc). The HPLC
method 1 used the Supelco Discovery column (250 x 4.6 mm, 5 μm) and a gradient with mobile
phase A, a phosphate buffer H2O (pH ± 7), and B, methanol (from 0 to 3.5 min, 100% B; at 19
min, 90% B; at 19.5 to 29.5 min, 80% B; at 30 to 37 min, 65% B; at 40 to 42 min; 0% B and 45
min, 100% B). The HPLC method 2 used a PRP–1 column (305 x 7.0 mm, 10 μm) with the
same mobile phase as the HPLC method 1 but with a different gradient (from 0 to 3 min, 10%
B; at 10 min, 20% B; at 20 min, 40% B; at 30 min, 90% B at 35 min, 100% B). The mobile phase
flow rate was 1.5 mL min−1 for both methods. The oven and injector temperature readings were
set at 35°C. The HPLCmethod 1 was used for all the sample analyses and HPLC method 2 was
used for confirmatory analyses. The standard mix (a mixture of available standards) was used to
verify that the above HPLC conditions adequately separated metsulfuron-methyl from its
expected metabolites, and also to confirm the retention times of the standards used during the

Fig 1. Experimental set-up for the study of metsulfuron-methyl degradation in soil.

doi:10.1371/journal.pone.0138170.g001
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course of the study. Aliquots of concentrated extracts of 250 μL were injected onto the column,
and the elution of radioactivity was monitored and quantitated by fraction collection and LSC.

Determination of Soil Un-extractable residues. Post-extracted soil samples were air-
dried in the laboratory hood. When dry, the samples were homogenized and weighed. Aliquots
in triplicate were combusted using the Harvey biological oxidizer (Harvey Instrument Inc.,
model OX 500). The 14CO2 released from the combustion process was trapped in 15 mL of
14C-cocktail scintillation fluid and radioactivity was measured from the LSC analysis.

Determination of DT50 and DT90. The first-order model was used to estimate the DT50

(the time required for 50% of the applied chemical to degrade) and DT90 (the time required for
90% of applied chemical to degrade) values. The First-order model equation used is as [15–16]:

C ¼ CO:eK�t

Where,
C0: Initial concentration (mg/kg)
C: Concentration at time t (mg/kg)
K: Degradation rate constant

Results and Discussion

Assay for Total Microbial Population
Microbial plate counts from the Bernam Series soil samples conducted at day 0, 30 and 60 are
presented in Table 2. The soil microorganisms remained viable throughout the study in the
non-sterile flasks. There was a slight increase of microbial mass at day 60. These observations
indicated that the non-sterile system under the degradation studies that were conducted, had
no adverse effect on the microbial population. An earlier study by Ismail et al. [17] demon-
strated that application of metsulfuron-methyl would not adversely affect soil microbial bio-
mass and population once the soil microbes adapted to the presence of metsulfuron-methyl.

Radiolabelled triazine treated soil samples. Data on the recovery and distribution of
radioactivity from the non-sterile and sterile soil samples treated with 14C-triazine metsul-
furon-methyl are presented in Figs 2 and 3 respectively. The recovery (mass balance) of applied
radioactivity for the 14C-triazine main test system soil samples ranged from 97.6% to 101.7%
with an average of 100.1 ±3.3%. The total recovery of applied radioactivity (mass balance) for
the 14C-triazine sterile test system soil samples ranged from 91.6% to 101.9% with an average
of 97.8 ±5.6%. The extracted radioactivity from the non-sterile system treated with 14C-triazine
metsulfuron-methyl steadily decreased with time from 100% to 48% at day 60. The formation
of 14CO2 corresponded to the decline of the parent material; 14CO2 increased to about 24% of
the applied radioactivity at day 60. Un-extractable residues that increased consistently through-
out the experiment accounted for about 30% of the applied radioactivity at day 60. Less than
0.1% of the applied radioactivity was classified as organic volatiles (Fig 2).

In the sterile system treated with 14C-triazine metsulfuron-methyl, the extracted radioactiv-
ity steadily decreased with time from 100% to 66% at day 60. Cumulative amounts of 14CO2

Table 2. Bacterial counts in the non-sterile soil samples.

Incubation Time (day) Bacterial Counts (CFU/ g soil X 10−5)

0 1.33 (± 0.25)

30 5.36 (± 0.07)

60 8.23 (± 0.13)

doi:10.1371/journal.pone.0138170.t002
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were only recorded at day 60 and accounted for 0.5% of the applied radioactivity. Un-extract-
able residues steadily increased to about 26% of the applied radioactivity at day 60. Organic vol-
atiles were not detected throughout the experiment (Fig 3). The same trend was seen in the
14C-triazine metsulfuron-methyl where in the non-sterile system, the amount extracted from
applied radioactivity showed faster degradation than that in the sterile system and the 14CO2

release was also faster in the non-sterile system compared to that in the sterile system. In the
non-sterile system, the rate of 14CO2 release was faster in the soil treated with 14C-phenyl met-
sulfuron-methyl (28.3% of the applied radioactivity at day 60) than that in soil treated with
14C-triazine metsulfuron-methyl (23.6% of the applied radioactivity at day 60). The different
rates of mineralization indicate that the phenyl moiety is more susceptible to microbial attack
than the triazine moiety on the molecule [18–19].

Rate of Degradation of Metsulfuron-methyl in the Bernam Series Soil. The first-order
model was used to determine the DT50 and DT90 values of

14C-triazine metsulfuron-methyl in

Fig 2. Distribution and recovery of radioactivity in the non-sterile soil system treated with 14C-triazine
metsulfuron-methyl.

doi:10.1371/journal.pone.0138170.g002

Fig 3. Distribution and recovery of radioactivity in the sterile soil system after treatment with14C-
triazinemetsulfuron-methyl.

doi:10.1371/journal.pone.0138170.g003
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both the non-sterile and sterile systems (Fig 4). The DT50 was estimated by using the equation:
DT50 = In (2)/K. The degradation rate constant (k) was determined using linear regression of
ln (C/CO) (C = concentration) over time and was the slope of the linear regression line. Based
on the first-order model, the 14C-triazine non-sterile system had DT50 and DT90 of 14 days
and 47 days respectively. The 14C-triazine sterile system had DT50 and DT90 of 23 and 76 days
(Table 3). These results are similar to the findings of Zhang and Yin [20] where it was reported
that half-lives of 8 to 36 days (based on the first-order model) were obtained in an acidic soil
(pH 5.7 and 7.3% Organic Carbon) at various soil moisture and temperature levels.

The DT50 values of metsulfuron-methyl in the non-sterile system were lower than those in
the sterile system, suggesting that biological degradation (by soil microorganisms) significantly
contributed to the dissipation of this compound. The dissipation of metsulfuron-methyl in the
soil involves both chemical and microbial processes, and this has been observed in the behav-
iour of other sulfonylurea herbicides as well [21–23]. The degradation of metsulfuron-methyl
in an acidic soil environment is relatively rapid because of sulfonylurea bridge hydrolysis
which diminishes in alkaline soils.

Soil Degradation of Metsulfuron-methyl. The composition of the radioactivity in the soil
samples treated with 14C-triazine metsulfuron-methyl, are presented in Tables 4 and 5 for the
non-sterile and sterile systems. In the 14C-triazine metsulfuron-methyl non-sterile system,
seven metabolites were detected. Five metabolites were identified as B5528, A4098, NC 148,
B5067 and F5438. The other two metabolites, T3 and T7 could not be identified. The chemical
name and structure of the identified metabolites are shown in Appendix B4. Six metabolites
were detected in the sterile system, four metabolites, B5528, A4098, NC148 and B5067 were
detected in the non-sterile system. Re the other two metabolites, MU717 and ST4, MU717 was
the only metabolite different from the metabolites in the non-sterile system whereas ST4 could
not be identified.

Radiolabelled triazine treated soil samples. The analysis on day 0 soil extracts from the
fraction collector indicated that 93.3% and 96.1% of the applied radioactivity was recovered as
14C-triazine metsulfuron-methyl from the non-sterile and sterile systems respectively (Figs 5
and 6). These results demonstrated that the test substance was stable in the systems used for
extraction.

In the non-sterile system, throughout the duration of the study seven metabolites were
observed, of which one was< 5% (T5). The day -0 chromatogram from the fraction collection
of the HPLC analysis is presented in Fig 7.

The peak of the metabolites T1, T2, T4, T6 and T7 corresponded to IN-B5528, IN-A4098,
IN-B5685, IN-NC148, IN-B5067 and IN-F5438 by relative retention time (RRI) comparison.
T3 was not identified in the present study as it was< 10%. The metabolite IN-B5528 reached a
maximum of 12.8% on day 10. At subsequent time points it was not detected. The metabolites
IN-A4098 was not detected until day 14. It reached a maximum of 26.6% on day 30 and
declined to 23.8% on day 60. T3 was consistently present from day 7 until day 60 within the
range of 3.3% and 6.9%. No specific trend was observed for the metabolite IN-NC148, which
was detected from day 14 onwards until day 60 within the range of 1.5% and 6.5%. The metab-
olite IN-B5067 reached a maximum of 16.5% on day 10 and declined to< 5% on day 60. The
metabolite IN-F5438 reached a maximum of 5.3% on day 30 and declined to< 5% on day 60.
In the sterile system, six metabolites were observed over the duration of the study, two of
which were at levels< 5% (SP3 and SP4). The day 30 chromatogram from fraction collection
on HPLC analysis is presented in Fig 8.

The peaks of the metabolites ST1, ST2, ST5 and ST6 corresponded to IN-B5528, IN-A4098,
IN-B5067 and IN-MU717 by relative retention time (RRI) comparison. The metabolite
IN-B5528 reached a maximum of 8.3% on day 7 and declined to< 5% on day 60. The
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metabolite IN-A4098 was not detected until day 14, after which it increased and reached a
maximum of 24.3% on day 60. Metabolite IN-B5067 reached a maximum of 17.3% on day 21
but declined to 10.1% on day 60. Metabolite IN-MU717 reached a maximum of 15.2% on day
30 and declined to 11.3% on day 60. The metabolite IN-B5528, IN-A4098, IN-NC148 and
IN-B5067 were observed in both the non-sterile and sterile systems.

Metabolic Pathway of Radiolabelled Metsulfuron-methyl in Aerobic Soil. The proposed
degradation pathway of metsulfuron-methyl in soil under aerobic conditions is summarised in
Fig 9. The major metabolites in the non-sterile system that include triazine moieties are
IN-B5067, IN-F5438 and IN-NC148. Metabolite IN-B5528 was contained only in the triazine
moiety. The 14C-triazine metsulfuron-methyl was mineralised to 14CO2 extensively in the non-
sterile soils. In the sterile system, the major metabolites included both the phenyl and triazine
moieties together and were IN-B5067 and IN-MU717. Metabolites IN-A4098 and IN-B5528
were contained only in the triazine moiety.

Cleavage of the sulfonylurea linkage, commonly found in other sulfonylurea herbicides [14,
24, 25], results in the formation of metabolites, IN-B5528 and IN-D5803. The urea bridge
cleavage occurs rapidly in acidic aqueous solutions in the absence of micro-organisms, but is
slow at neutral pH. In the non-sterile soil, this cleavage proceeds through both the abiotic
bridge hydrolysis as well as the microbial mediated hydrolysis [26]. O- Demethylation of the
triazine moiety of metsulfuron-methyl may be a chemical or microbial process (or both) since
metabolite IN-B5067 was found in both the sterile and non-sterile soils. Metabolite IN-MU717
was unique to the sterile soil conditions suggesting that it is an abiotic hydrolysis product. The
triazine “ring-opened” degradation products analogous to IN-MU717 have been reported for
other sulfonylurea herbicides such as prosulfuron [27], thifensulfuron-methyl [28] and chlor-
sulfuron [29] in hydrolysis studies. A triazine “ring-opened” degradation product of

Fig 4. Dissipation of 14C triazine metsulfuron-methyl in soil over time.

doi:10.1371/journal.pone.0138170.g004

Table 3. Degradation of 14C-triazine metsulfuron-methyl in Bernam Series Soil—First-order Model.

System First-order Model DT50 (day) DT90 (day)
K (slope) r2

Non-sterile 0.0493 0.97 14 47

Sterile 0.0320 0.99 23 76

doi:10.1371/journal.pone.0138170.t003
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Table 4. Degradation of 14C-phenyl metsulfuron-methyl in the Bernam Series soil samples in the non-sterile system.

Times Applied Radioactivity (%)

(Day) T6373 1.00 T1 0.10 T2 0.40 T3 0.63 T4 0.68 T5 0.73 T6 0.83 T7 0.86
IN-B5528 IN-A4098 UN IN-NC148 UN IN-B5067 IN-F5438

0 93.3 ± 9.16 2.5 ±
0.16

3.4 ±
0.26

ND ND ND ND ND ND ND ND ND ND

1 86.8 ± 7.93 4.3 ±
0.35

ND ND ND ND ND ND ND ND 6.2 ±
0.72

ND ND

3 79.2 ± 6.18 5.3 ±
0.41

ND ND ND ND ND ND ND ND 13.6 ±
1.10

ND ND

7 58.1 ± 3.89 12.2 ±
1.13

ND ND 6.3 ±
0.46

ND ND ND ND 12.8 ±
1.32

2.1 ±
0.11

10 46.8 ± 3.21 12.8 ±
1.18

ND ND 6.9 ±
0.49

1.5 ±
0.05

ND ND 16.5 ±
1.43

1.2 ±
0.04

14 33.7 ± 3.05 ND ND 14.7 ±
1.36

3.6 ±
0.32

6.5 ±
0.73

2.4 ±
0.20

14.3 ±
1.22

3.1 ±
0.28

21 23.3 ± 2.27 ND ND 22.2 ±
2.42

5.3 ±
0.43

5.8 ±
0.51

4.5 ±
0.33

10.4 ±
1.03

2.3 ±
0.20

30 14.1 ± 1.25 ND ND 26.6 ±
2.75

4.3 ±
0.38

3.5 ±
0.23

3.5 ±
0.27

6.5 ±
0.83

5.3 ±
0.43

45 10.1 ± 0.83 ND ND 24.2 ±
0.68

4.8 ±
0.41

5.6 ±
0.47

3.4 ±
0.22

5.3 ±
0.51

2.6 ±
0.19

60 4.8 ± 0.32 ND ND 23.8 ±
0.52

3.3 ±
0.28

6.3 ±
0.66

4.2 ±
0.31

3.7 ±
0.23

1.8 ±
0.03

UN = Unknown. ND = Not detected. T6373 = 2-[3-(4-methoxy-6-methyl–1, 3, 5-triazin-2-yl-ureidosulfanoyl)-benzoate acid methyl ester (metsulfuron-

methyl). B5528 = 4-amino-6-methyl–1, 3, 5-triazine-2-ol. A4098 = 4-methoxy-6-methyl1-1, 3, 5-triazine-2-amine. NC148 = Not available. B5067 = Methyl 2

[[[[(4-hydroxy-6-methyl–1, 3, 5-triazine-2y 1) amino] carbonyl] amino] sulfonyl] benzoate. F5438 = Methyl 2 [[[[(4-methoxy-6-methyl–1, 3, 5-triazine-2y 1)

amino] carbonyl] amino] sulfonyl] benzoate acid.

doi:10.1371/journal.pone.0138170.t004

Table 5. Degradation of 14C-phenyl metsulfuron-methyl in the Bernam Series soil samples in the sterile system.

Times Applied Radioactivity (%)

(Day) T6373 1.00 ST1 0.10 ST2 0.40 ST3 0.68 ST4 0.73 ST5I 0.83 ST6I 0.96
IN-B5528 IN-A4098 IN-NC148 UN N-B5067 N-MU717

0 96.1 ± 8.65 1.3 ± 0.02 ND ND ND ND ND ND 2.1 ± 0.15 ND ND

1 94.3 ± 8.23 1.5 ± 0.03 ND ND ND ND ND ND 3.6 ± 0.23 ND ND

3 88.9 ± 8.11 3.8 ± 0.28 ND ND ND ND ND ND 6.5 ± 0.43 ND ND

7 80.2 ± 7.36 8.3 ± 0.73 ND ND ND ND ND ND 7.3 ± 0.57 2.1 ± 0.12

10 77.9 ± 6.28 6.3 ± 0.58 ND ND ND ND ND ND 12.2 ± 1.33 1.2 ± 0.02

14 63.0 ± 5.22 5.0 ± 0.46 8.3 ± 0.72 1.5 ± 0.08 ND ND 13.8 ± 1.40 3.1 ± 0.22

21 52.7 ± 4.58 3.8 ± 0.22 11.9 ± 1.23 2.3 ± 0.12 1.5 ± 0.03 17.3 ± 1.54 2.3 ± 0.26

30 37.8 ± 3.48 1.8 ± 0.08 20.5 ± 1.78 3.1 ± 0.23 ND ND 13.3 ± 1.22 15.2 ± 1.32

45 27.0 ± 2.18 2.3 ± 0.13 21.9 ± 1.93 2.1 ± 0.10 ND ND 12.8 ± 1.18 9.4 ± 85

60 15.5 ± 1.66 3.1 ± 0.26 24.3 ± 2.15 1.5 ± 0.05 ND ND 10.1 ± 1.06 11.3 ± 1.02

UN = Unknown. ND = Not detected. T6373 = 2-[3-(4-methoxy-6-methyl–1, 3, 5-triazin-2-yl-ureidosulfanoyl)-benzoate acid methyl ester (metsulfuron-

methyl). B5528 = 4-amino-6-methyl–1, 3, 5-triazine-2-ol. A4098 = 4-methoxy-6-methyl1-1, 3, 5-triazine-2-amine. NC148 = Not available. B5067 = Methyl 2

[[[[(4-hydroxy-6-methyl–1, 3, 5-triazine-2y 1) amino] carbonyl] amino] sulfonyl] benzoate. MU717 = Not available.

doi:10.1371/journal.pone.0138170.t005

Degradation of Triazine-2-14C Metsulfuron-Methyl in Soil

PLOS ONE | DOI:10.1371/journal.pone.0138170 October 5, 2015 10 / 15



metsulfuron-methyl was reported in an aqueous hydrolysis study at pH 5 and under sterile soil
condition in a soil degradation study [4, 30]. Both hydrolysis and soil studies reported the same
triazine “ring-opened” degradation products with an elemental composition of C13H14N4O8S
which is equivalent to the metabolite IN-MU717, as noted in the present study. Metabolite
IN-MU717 was not observed in the non-sterile soil samples. A study by Cessna [28] suggested
two possible explanations: Firstly, the metabolite IN-B5067 may be further degraded preferen-
tially into metabolite IN-NC148 by microbial transformation instead of being degraded to
metabolite IN-MU717 by chemical hydrolysis. The microbial enzymatic reaction from metabo-
lite IN-B5067 to IN-NC148 may be faster than the hydrolysis reaction to IN-MU717. Secondly,
metabolite IN-MU717 may have been formed but got degraded microbially to undetectable
levels by the time the samples were taken. Metabolite IN-NC148 appears to be a biotransfor-
mation product since it was not detected in the sterile soil. The same finding was reported by
[31, 32]. An analogous metabolite was observed in a chlorsulfuron soil dissipation study [33,
34]. A possible mechanism for the formation of IN-NC148 can be proposed as follow: The first

Fig 5. 14C-radiochromatogram of 14C-triazine metsulfuron-methyl in the non-sterile system (on day 0).

doi:10.1371/journal.pone.0138170.g005

Fig 6. 14C-radiochromatogram of 14C-triazine metsulfuron-methyl on day 0 samples in the sterile
system.

doi:10.1371/journal.pone.0138170.g006
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step appears to be O-demethylation of the triazine ring to form the metabolite IN-B5067, as
this metabolite was observed initially, then it declined when the presence of IN-NC148 gradu-
ally increased (Fig 9). Enzyme-mediated hydrolytic bond cleavage of two of the triazine ring
C-N bonds will then have to take place to arrive at the carbamoyl guanidine structure of
IN-NC148.

Conclusion
Metsulfuron-methyl degraded faster in acidic soil in the dark at 30°C under the non-sterile sys-
tem, compared to degradation in the sterile system. The estimated DT50 and DT90 values of
metsulfuron-methyl in the non-sterile system using the first-order model were approximately
13 days and 44 days, respectively. In the sterile system, the estimated DT50 and DT90 values of
metsulfuron-methyl were approximately 31 days and 70 days, respectively. This result is con-
sistent with previous reports. The fact that the DT50 values of metsulfuron-methyl in the non-

Fig 7. 14C-radiochromatogram of 14C-triazine metsulfuron-methyl in the non-sterile system (in day
30).

doi:10.1371/journal.pone.0138170.g007

Fig 8. 14C-radiochromatogram of 14C-triazine metsulfuron-methyl samples in the sterile test system
(day 30).

doi:10.1371/journal.pone.0138170.g008
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sterile system were lower than the values in sterile system suggest that biological degradation
(by soil micro-organisms) significantly contributed to the dissipation of the compound. The
dissipation of metsulfuron-methyl in the soil involves both chemical and microbial processes,
and this is true for other sulfonylurea herbicides as well. Degradation of metsulfuron-methyl in
an acidic soil environment is relatively rapid because of the sulfonylurea bridge hydrolysis
which diminishes in alkaline conditions. The principal degradation product after 60 days was
carbon dioxide. The cumulative 14CO2 in

14C-phenyl and 14C-triazine labelled metsulfuron-
methyl levels in the non-sterile system were approximately 28% and 24% of the applied radio-
activity respectively. Lower cumulative levels of 14CO2 were recorded in the sterile system,
which accounted for approximately 14% of the applied radioactivity and 0.5% of the applied
radioactivity in the 14C-phenyl treatment. The different rates of mineralization indicate that

Fig 9. Proposedmetabolic pathways of metsulfuron-methyl in Bernam Series.

doi:10.1371/journal.pone.0138170.g009
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the phenyl moiety is more susceptible to microbial attack than the triazine moiety on the mole-
cule. The major routes of degradation are O-demethylation, sulfonylurea bridge cleavage and
triazine “ring opened”. Two triazine “ring-opened” products, namely metabolite IN-MU717 in
the sterile system, and metabolite IN-NC148 in the non-sterile system, were identified in the
study. Acetyl triuret IN-MU717 and analogous compounds have been observed in the hydroly-
sis of metsulfuron-methyl and related sulfonylurea herbicides, as discussed previously, while
the carbamoyl guanidine IN-NC148 has been reported in a study by Li et al. [33]. Microbial
metabolism best explains the formation of IN-NC148 while chemical hydrolysis leads to the
formation of IN-MU717. The potential for soil persistence of the sulfonylurea herbicides con-
taining the triazine moiety breakdown products has been previously the subject of speculation;
however, using sensitive LC/MS technology, the structures of the major triazine ring break-
down products have been definitively elucidated. The results indicate that the triazine ring
opening did occur and that hydrolytic and microbial mechanisms were operable.
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