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Abstract

The V-antigen, a virulence-associated protein, was first identified in Yersinia pestis more

than half a century ago. Since then, other V-antigen homologs and orthologs have been dis-

covered and are now considered as critical molecules for the toxic effects mediated by the

type III secretion system during infections caused by various pathogenic Gram-negative

bacteria. After purifying recombinant V-antigen proteins, including PcrV from Pseudomonas

aeruginosa, LcrV from Yersinia, LssV from Photorhabdus luminescens, AcrV from Aeromo-

nas salmonicida, and VcrV from Vibrio parahaemolyticus, we developed an enzyme-linked

immunoabsorbent assay to measure titers against each V-antigen in sera collected from

186 adult volunteers. Different titer-specific correlation levels were determined for the five V-

antigens. The anti-LcrV and anti-AcrV titers shared the highest correlation with each other

with a correlation coefficient of 0.84. The next highest correlation coefficient was between

anti-AcrV and anti-VcrV titers at 0.79, while the lowest correlation was found between anti-

LcrV and anti-VcrV titers, which were still higher than 0.7. Sera from mice immunized with

one of the five recombinant V-antigens displayed cross-antigenicity with some of the other

four V-antigens, supporting the results from the human sera. Thus, the serum anti-V-antigen

titer measurement system may be used for epidemiological investigations of various patho-

genic Gram-negative bacteria.

Introduction

The type III secretion system (TTSS) plays a major role in the virulence of many Gram-nega-

tive bacteria [1–3]. Through the TTSS, Gram-negative bacteria inject their effector molecules

to target eukaryotic cells and induce a favorable environment for their infections. Transloca-

tion is a mechanism through which effector molecules of the TTSS pass through the targeted

eukaryotic cell membrane. During translocation, three bacterial proteins form a transloca-

tional pore structure called the ‘translocon’ [1–3]. A cap protein in the secretion apparatus of

the type III secretion needle is one type of translocon protein, which is called the V-antigen in

Yersinia spp. for historical reasons [4–8]. Briefly, the V-antigen, a virulence-associated protein,
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was identified as an antigenic component recognized by the immune system in Yersinia pestis
plague-infected hosts more than half a century ago [4–8]. In the 1980s, the V-antigen of Y. pes-
tis was identified as a low calcium response (lcr)-associated protein (named LcrV) encoded in

the plasmid associated with its virulence [9]. A homologous gene called PcrV was identified in

the Pseudomonas aeruginosa genome [10]. It has been reported that the virulence-associated

with the TTSS can be inhibited by a specific antibody against LcrV in Yersinia and PcrV in P.

aeruginosa [11, 12]. Because vaccinating mice with LcrV or PcrV has protective effects against

lethal infections by Yersinia or P. aeruginosa, respectively, anti-PcrV immunotherapies were

developed to target human infections with P. aeruginosa using immunoglobulins [13–24] and

vaccines [25–27], from which several projects have progressed to human clinical trials [28–31].

We recently published an epidemiological study on serum titers against PcrV in human vol-

unteers [32], and another showing how prophylactic administration of human serum-derived

immunoglobulin with a high anti-PcrV titer significantly improves the survival rate, pulmo-

nary edema, and inflammatory cytokine production of a P. aeruginosa pneumonia model [18].

The results of both studies imply that immunity against the V-antigen and its homologs might

be necessary to prevent infections caused by pathogenic bacterial species employing the TTSS-

virulence mechanism [18, 32]. V-antigen homologs have been recently reported in several

Gram-negative bacteria, including Aeromonas spp., Vibrio spp., and Photorhabdus luminescens
(hereafter referred to as Ph. luminescens) [33]. Although specific immunity against the V-anti-

gen or its homologs appears to be important for host immunity against such bacterial infec-

tions, insufficient information is available on human immunity against V-antigens. Therefore,

here, we conducted an epidemiological study on serum titers against the V antigen and its

homologs in Y. pestis, Aeromonas salmonicida, Vibrio parahaemolyticus, and Ph. luminescens.
Potential associations in terms of age, titer levels, and cross-reactivity were evaluated among

the recombinant V-antigen homologs. Moreover, for some species, the titer levels against these

antigens were highly correlated, and some V-antigen homologs showed cross-reactivity.

Materials and methods

Construction of five recombinant Gram-negative bacterial V-antigens

(PcrV, LcrV, AcrV, VcrV, and LssV) and P. aeruginosa porin F from the

outer membrane (OprF)

Five recombinant V-antigens and recombinant P. aeruginosa OprF were constructed. Details

on the PCR primers and cloning sites are listed in Table 1. The coding regions of the V-anti-

gens were amplified by polymerase chain reaction (PCR) with specific primers containing

restriction enzyme sites for insertion into a protein expression vector. PCR-amplified genes

were cloned into the pCR2.1 cloning vector and E. coli TOP10F cells via TOPO cloning

(Thermo Fisher Scientific, Waltham, MA, USA). After digesting the purified plasmids contain-

ing each individual cloned gene with restriction enzymes, the inserted coding regions of each

gene were transferred to the multiple cloning site of the expression vector pQE30 (Qiagen, Hil-

den, Germany) for expression of a hexahistidine-tagged protein in E. coli M15. The various

endotoxin-free Gram-negative bacteria V-antigens were prepared as reported previously

(Fig 1) [17, 20].

Survey participants and study background

This study was approved by the Ethics Committee of Kyoto Prefectural University of Medicine

(Approval number: RBMR-E-326-1; Kyoto, Japan). As a non-interventional and non-invasive

retrospective observational study, the need for consent was waived by the ethics committee.
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Table 1. Gene sources, primer sets for V-antigen and OprF gene cloning, and characteristics of the recombinant V-antigens and OprF used in this study.

Gene Gene source Restriction

enzyme site for

expression vector

Cloning PCR primers� Coding

region size

(bp)

Protein Amino

-acids

MW

(kDa)

Ref

pcrV Pseudomonas aeruginosa
PA103

BamHI

HindIII

5'-CGGGATCCATGGAAGTCAGAAACTTTAA-3'
5'-AAGCTTCTAGATCGCGCTGAGAATGT-3'

927 PcrV 306 33.8 [34–

36]

lcrV Yersinia pestis pCD1

plasmid

BamHI

HindIII

5'-
CGGGATCCATGATTAGAGCCTACGAACAAAACCCACAA-
3'
5'-
AAGCTTTCATTTACCAGACGTGTCATCTAGCAGACG-3'

1,023 LcrV 338 38.6 [9]

acrV Plasmid JF2267 of

Aeromonas salmonicida
subsp. Salmonicida,

SphI

SalI
5’-GCATGCATGAGCACAATCCCTGACTAC-3’
5’-GTCGACTCAAATTGCGCCAAGAATGTCG-3’

1,134 AcrV 375 41.6 14

vcrV Vibrio parahaemolyticus,
ATCC 17802D-5

BamHI

PstI
5’-CGGGATCCATGACGGATATGACAACAAC-3’
5’-CTGCAGTTAAATGGCTCGTAGGATTTCTTG-3’

1,866 VcrV 619 68.3 -

lssV Photorhabdus luminescens
subsp, luminescens, ATCC

29999

BamHI

HindIII

5’-GGATCCATGGAAATAGGCCATATCAAA-3’
5’-AAGCTTTTAAATTGCGCCGAGAATAT-3’

1,020 LssV 337 38.3 -

oprF Pseudomonas aeruginosa
PAO1

BamHI

HindIII

5’-CGGGATCCATGAAACTGAAGAACACCTTAG -3’
5’-AAGCTTTTACTTGGCTTC AGCTTCTAC-3’

1,053 OprF 362 39.0 -

�Underlines indicate restriction enzyme sites

https://doi.org/10.1371/journal.pone.0220924.t001

Fig 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of extracted

recombinant hexahistidine-tagged V-antigen proteins. Recombinant PcrV from P. aeruginosa, LcrV from Y. pestis,
AcrV from Aeromonas salmonicida, VcrV from V. parahaemolyticus, and LssV from Ph. luminescens were separated

by SDS-PAGE using a 10% Bis-Tris-gel.

https://doi.org/10.1371/journal.pone.0220924.g001
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Adult patients (n = 186) who underwent anesthesia in the Central Operating Division of

Kyoto Prefectural University of Medicine, from April 2012 to March 2013, participated in this

study as volunteers, as reported previously [32]. Briefly, serum was prepared from the remain-

ing small amount of each blood sample collected for arterial blood gas analysis for induction of

anesthesia and then stored at −80˚C.

Anti-V antigen titer measurements

We developed an enzyme-linked immunoabsorbent assay (ELISA) to measure serum anti-V

antigen titers. Microwell plates (Nunc C96 Maxisorp; Thermo Fisher Scientific) were coated

for 2 h at 4˚C with recombinant V-antigen proteins (recombinant PcrV from P. aeruginosa,

LcrV from Yersinia, AcrV from Aeromonas, VcrV from Vibrio, and LssV from Ph. lumines-
cens) suspended in coating buffer (1 μg/mL in coating solution; 0.05 M NaHCO3, pH 9.6) [32]

(Fig 1). The plates were washed twice with phosphate-buffered saline (PBS) containing 0.05%

Tween-20 (P9416; Sigma-Aldrich, St. Louis, MO, USA) and then blocked with 200 μL of 1%

bovine serum albumin/PBS overnight at 4˚C. Samples (serial dilution: 1280×) were applied to

the plates (100 μL/well) and then incubated overnight at 4˚C. Peroxidase-labeled anti-human

IgG (A8667, Sigma- Aldrich) was applied at 1:60,000 for 1 h at 37˚C. After six washes, the

plates were incubated with 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (A3219;

Sigma-Aldrich) at room temperature for 30 min. After adding 0.5 M H2SO4 at 100 μL/well to

the plates, the optical density (OD) at 450 nm was measured with a microplate reader (MTP-

880Lab; Corona Electric, Hitachinaka, Japan). To ensure no cross-reactivity with Escherichia
coli proteins, we performed an inhibition ELISA with a soluble fraction of E. coli M15 lysate,

and no significant effect on titer measurement was observed. Except for human monoclonal

anti-PcrV IgG mAb 6F5 as a standard to measure the anti-PcrV titer [32], there is no human

anti-V-antigen IgG. Therefore, after optimization of the ELISA system for anti-PcrV titers

using the mAb 6F5 standard [32], the OD measured under a consistent condition with the

same secondary antibody was used to evaluate the titers.

Inhibition ELISA

Cross-reactivity was analyzed by an inhibition ELISA. Two human sera with relatively high

anti-PcrV, LcrV, AcrV, VcrV, and LssV titers were diluted at 1:1000 and preincubated with

either recombinant LssV or recombinant OprF (100 μg/mL) overnight at 4˚C. The anti-V-

antigen titers were measured in triplicate by an ELISA using recombinant V-antigen-coated

plates.

Immunizing mice with the V-antigens

Certified pathogen-free, male ICR mice (4 weeks old) were purchased from Shimizu Labora-

tory Supplies, Co, Ltd (Kyoto, Japan). Mice were housed in cages with filter tops under patho-

gen-free conditions. The protocols for all animal experiments were approved by the Animal

Research Committee of Kyoto Prefectural University of Medicine before undertaking the

experiments (Authorization number: M29-592). Three mice per group were intradermally

immunized with one of the five recombinant V-antigen proteins (10 μg/dose) adjuvanted with

complete Freund’s adjuvant in the first injection, and four weeks later with incomplete

Freund’s adjuvant for the second injection. Eight weeks after the first injection, the immunized

mice were euthanized with a large dose intraperitoneal injection of sodium pentobarbital, and

peripheral blood samples were collected. Serum titers against the five V-antigens were individ-

ually measured by ELISAs, as described above.
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Phylogenetic and cluster analyses

The five V-antigens were phylogenetically analyzed using ClustalW (Genome Net, https://

www.genome.jp/tools-bin/clustalw) or RStudio (version 1.2, RStudio, Boston, MA, USA.

https://www.rstudio.com) with R version 3.6.1 (The R Foundation, https://www.r-project.org).

Unrooted trees were prepared using the neighbor-joining method, and rooted trees were pre-

pared using the unweighted pair group method with arithmetic means applied to the ClustalW

site and the standard R function plot.hclust. Heat maps where the individual values contained

in a matrix are represented as colors with dendrograms prepared using the function phylo of
the package “ape” for phylogenies (http://ape-package.ird.fr.) and the function heatmap.2 of

the package gplots. The predicted three-dimensional structures were generated with the Cn3D

macromolecular structure viewer at the National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

Statistical analysis

We performed a regression analysis of the measured antibody titers using the regression data

analysis tool of Microsoft Excel for Mac (ver. 16.16.5, Microsoft Co., Redmond, WA, USA).

Statistical analyses were conducted using InStat version 4.0 (GraphPad Software Inc., La Jolla,

CA, USA). P-values were calculated using the Mann-Whitney U-test. A p-value of less than

0.05 was considered statistically significant.

Results

Anti-V antigen titers and volunteer age distribution

The 186 volunteers included 111 (59.7%) males and 75 (40.3%) females and an age distribution

of 20–29 years (13, 7.0%), 30–39 years (20, 10.8%), 40–49 years (26, 14.0%), 50–59 years (23,

12.4%), 60–69 years (40, 21.5%), 70–79 years (42, 22.5%), and�80 years (22, 11.8%). No study

participant had an active infection. The titers against the V-antigen across the age distribution

of the 186 participants are shown in Fig 2. There was no statistically significant correlation in

the linear regression between age and each anti-V antigen titer, although high anti-PcrV titers

were more common at over 50 years of age in the population, as reported previously [32]. As

an overall trend, two separate titer peaks in the 40–49 and 70–79 age groups were observed in

the age distribution of all anti-V-antigen titers.

Correlations among the anti-V antigen titers

We next analyzed whether any correlations existed among the five anti-V antigen titers. The

anti-LcrV and the anti-AcrV titers showed the highest correlation with a correlation coeffi-

cient of 0.84, followed by the anti-AcrV and anti-VcrV titers at 0.79, and the anti-LcrV titers

and anti-VcrV titers at 0.74 (Fig 3) Low correlations were detected between anti-PcrV and any

of the other anti-V-antigens.

Next, the inhibition ELISA was performed to show cross-antigenicity among V-antigens.

As an irrelevant non-crossreactive protein, we prepared P. aeruginosa recombinant OprF

using the same E.coli-derived recombinant protein construction system. The sequence align-

ment scores obtained from ClustalW between OprF and V-antigens were 9.8–11.4, whereas

those among V-antigens were from 21.3 (between VcrV and AcrV) to 48.3 (between LcrV and

LssV). Two human sera diluted 1000× were preincubated with either recombinant LssV or

recombinant OprF overnight. Then, preprocessed serum titers against each V-antigen were

measured in comparison with the titer levels of the original sera (Fig 5). As a result, preincuba-

tion with OrpF did not affect the specific titer levels. However, preincubation with LssV
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decreased the titer levels compared with the titer levels of the original sera (�p<0.05 for AcrV,

VcrV, and LssV).

Cluster analysis of the correlation coefficient values was conducted, and phylogenetic trees

and a heat map were constructed (Fig 4A). The unrooted and rooted phylogenic trees and

heat map showed that anti-PcrV had a unique profile among the five anti-V-antigen titers.

The anti-LssV titer was located between anti-PcrV and the three other anti-V-antigen titers.

Higher homology in terms of antigenicity was observed among anti-AcrV, anti-LcrV, and

anti-VcrV titers.

Cross-reactive antibodies against V-antigens and anti-V antigen titers in

serum from immunized mice

To evaluate potential cross-antigenicity among the five V-antigens, the serum titers from a

mouse immunized with one of the five recombinant V-antigen proteins were measured by

ELISAs. Cluster analysis of the OD values from the ELISA was performed, from which phylo-

genetic trees and a heat map were constructed (Fig 4B). LssV and AcrV showed higher cross-

Fig 2. Age distribution of human V-antigen titers. The diluted serum (1,280×) was applied to ELISAs, and OD 450 nm values were measured. OD values of�0.5 are

indicated by red dots, while yellow dots represent values between 0 and 0.3. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g002
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antigenicity with each other, unlike VcrV that was less cross-reactive with the other V-antigens

(Fig 4B). Whereas the sera from the AcrV-immunized mice reacted with PcrV, the sera from

PcrV-immunized mice did not react with AcrV.

Next, to determine whether correlations among the V-antigens had some association with

the identity of the primary protein sequences, we investigated the identity of these sequences

in the five V-antigens using the BLOSUM substitution score matrix in ClustalW (Fig 6). In

this map, the overall similarities of two out of five of the V-antigens for the whole molecules

Fig 3. Serum titer correlations between two V-antigens. The diluted serum (1,280×) was applied to ELISAs, and OD values at 450 nm were measured. The titer

correlation of the two V-antigens was mapped in an X–Y plot. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g003
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ranged between 21% and 49%. The similarity of the amino-terminal domain (14%–51%) and

central domains (14%–45%) was low in comparison with the carboxyl-terminal domain that

showed 48%–84% similarity. VcrV was unique with a long additional sequence (>160 amino

acids, aa) at the amino-terminal domain and an additional sequence of 80 aa in the central

domain of the sequence alignment.

We also constructed phylogenetic trees of the V-antigens based on the primary amino acid

sequence similarity scores of whole molecules, amino-terminal domains, central domains, and

Fig 4. Phylogenetic trees and heat maps showing correlations among the five anti-V-antigen titers. A. Human serum titers. The correlation coefficients of the serum

titer correlations shown in Fig 3 were matrixed. Phylogenetic trees (an unrooted tree, neighbor-joining method, and a rooted tree, unweighted pair group method with

arithmetic mean) and a heat map demonstrating correlation coefficient values of the serum titer plots (Fig 3) as a color-index were constructed. B. Anti-V-antigen

serum titers from mice immunized with one of the five V-antigens. The mean values from triplicate measurements were applied to construct a phylogenetic tree

(unrooted tree, neighbor-joining method, and a rooted tree, unweighted pair group method with the arithmetic mean) and a heat map demonstrating O.D 450 nm

values of the serum titers to the V-antigens as a color-index. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g004
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carboxyl-terminal domains (Fig 7). In the cluster analysis of whole molecules, the similarity

score was the highest between LcrV and LssV (48.6%) (Fig 7A). The amino-terminal domains

showed similarity scores of<30%, except for the 51.9% similarity between LcrV and LssV (Fig

7B). For the center domains, the highest similarity score was obtained between AcrV and LssV

(44.5%) (Fig 7C). In the cluster analysis of the carboxyl-terminal domains with the highest

similarity scores (48%–84%) for their amino acid sequences, AcrV, LssV, and PcrV were closer

than VcrV and LcrV (Fig 7D).

These phylogenetic analyses using the primary amino acid sequences did not match well

with the phylogenetic trees constructed from the correlations among the serum IgG titers of

the five V-antigens (Fig 4A). In particular, VcrV, which has an extremely long central domain

containing regions that are missing in the other V-antigens, occupied a separate position in

the phylogenetic trees constructed from the primary amino acid sequences. Therefore, these

findings suggest the titer cross-antigenicity in human sera may not be correlated with the simi-

larity in primary amino acid sequences.

As we have reported previously, a blocking monoclonal antibody called Mab166 against

PcrV recognizes the conformational structure, but not the primary amino acid sequence [15].

As shown in Fig 8, the predicted three-dimensional structures of the V-antigens had similar

dumbbell-like structures with two globular domains on either end of a grip formed by two

coiled-coil motifs [37]. The grip that connected the two globular domains contained an anti-

parallel coiled-coil structure comprising central and carboxyl-terminal coiled-coil regions. The

carboxyl-terminal was folded into a single long α-helix. Regarding the blocking antibody rec-

ognizing the three-dimensional conformational epitopes and not the primary amino acid

sequences, not only the serum titer levels, but also the specific components that bind to the

Fig 5. Inhibition ELISA. Anti-V-antigen titers of human sera (n = 2), which showed relatively high titers against all

five V-antigens, preincubated with either recombinant LssV or OprF were measured in comparison with the original

titer levels of the sera. �p< 0.05 with the Mann-Whitney U-test between mean values of original serum titers and those

of titers after pre-inhibition with recombinant proteins. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g005
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Fig 6. ClustalW sequence alignment of the five primary V-antigen sequences. The overall sequence similarities of

two of the five V-antigens across the whole molecules were between 21% and 49%. The similarity of the amino-terminal

domain (14%–51%) and central domains (14%–45%) was low in comparison with the carboxyl-terminal domain that

PLOS ONE Gram-negative bacterial V-antigen titers

PLOS ONE | https://doi.org/10.1371/journal.pone.0220924 March 10, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0220924


specific blocking regions in V-antigen molecules may be important to prevent the pathogene-

sis associated with TTSS virulence.

Discussion

Yersinia LcrV has been recognized as a V-antigen with immunoprotective characteristics in

Yersinia infections since the 1950s [4, 5, 7, 8]. However, after almost 50 years, LcrV, P. aerugi-
nosa PcrV, and Aeromonas AcrV were anatomically visualized as distinct structures on the tip

of the needle of the injectisome of the type III secretion apparatus [38–41]. Because specific

antibodies binding to a particular portion of this structure inhibit the translocation of type III

secretory toxins in Yersinia and P. aeruginosa [11, 42], gaining a better understanding of the

interactions between V-antigens and the host humoral immunity against the virulence of bac-

terial type III secretion is important to develop potential non-antibiotic treatments for infec-

tions in various hosts.

Cross-antigenicity among Yersinia spp. was reported nearly 40 years ago. In 1980, cross-

immunity to Y. pestis was noted in mice that had been orally infected with Y. enterocolitica
serotype O3 [43]. In 1983, it was also reported that partial protection in mice against Y. pestis

had a 48%–84% similarity range. VcrV was unique with a long additional amino-terminal domain sequence (>160 aa)

and an additional sequence (80 aa) in the central domain of the sequence alignment.

https://doi.org/10.1371/journal.pone.0220924.g006

Fig 7. Phylogenetic trees and heat maps based on the primary amino acid sequences (whole molecule, amino-terminal, center, and carboxyl-terminal) of the V-

antigens. Phylogenetic analyses of the primary amino acid sequences of whole molecules, amino-terminal, center, and carboxyl-terminal domains were performed. The

sequence alignment scores obtained from ClustalW are shown. Phylogenetic trees (an unrooted tree, neighbor-joining method) and a heat map demonstrating sequence

alignment scores between two V-antigens as a color-index were constructed. A. Complete primary sequence. B. Amino-terminal domain, C. Center domain, D.

Carboxyl-terminal domain. The amino acid positions in the amino-terminal, center, and carboxyl-terminal domains are as follows: LcrV: #1–#164, #165–#278, and

#279–#326 respectively; PcrV: #1–#142, #143–#256, and #257–#294, respectively; AcrV: #1–#162, #163–#316, and #317–#361, respectively; VcrV: #1–#361, #362–#558,

and #559–#607, respectively; LssV: #1–#170, #171–#280, and #281–#325, respectively.

https://doi.org/10.1371/journal.pone.0220924.g007
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infection by the Y. enterocolitica V-antigen was linked to the partial cross-reactivity of V-anti-

gens [44]. Later, DNA sequencing of the most common serotypes of human pathogenic Y.

enterocolitica and Y. pseudotuberculosis revealed two evolutionary distinct types of V-antigen

in Yersinia spp. [45]. One type is represented by Y. enterocolitica serotype O8 strains WA,

WA-314, and NCTC 10938 (LcrV-YenO8), whereas the other type is represented by Y. pestis,
Y. pseudotuberculosis, and Y. enterocolitica serotypes O3, O9, and O5 (LcrV-Yps) [45]. By rais-

ing monospecific antisera against both types of V-antigen (Y. enterocolitica serotypes O3 and

O8), anti-V-antigen serum was protective only when the immunizing V-antigen was the same

type as the V-antigen produced by the infecting strain. The difference in protective immunity

between the two types was caused by the presence of a hypervariable region between amino

acids 225 and 232 [45]. The protectivity of the V-antigen was later confirmed and refined

using the recombinant V-antigen of Y. pseudotuberculosis and monospecific anti-V-antigen

serum [46]. In this previous study, antiserum against the Y. pseudotuberculosis V-antigen pro-

vided mice with passive immunity to challenge infection with Y. pestis or Y. pseudotuberculosis,
but not Y. enterocolitica O8 (strain WA). These previous studies on cross-antigenicity to Yersi-
nia V-antigens in mice imply that the structure of the critical domain, but not the overall pri-

mary amino acid sequence similarity per se, is important for protective immunity.

Other than Yersinia LcrV, only two studies of P. aeruginosa PcrV have reported antibody

titers against P. aeruginosa PcrV in human serum [32, 47]. No other studies investigating

antibody titers against other V-antigens have been reported to date. V. parahaemolyticus, a

Gram-negative marine bacterium, of which the V-antigen titers were examined in the present

study, causes food-borne gastroenteritis [48, 49]. Among Vibrio spp., V. harveyi (a Gram-

negative bioluminescent marine bacterium) is ubiquitous in the marine environment. It is

considered as one of the important bacterial species that form the normal flora of healthy

shrimp, and its genome carries a V-antigen homolog gene [33, 50]. This bacterium is some-

times recognized as causing high mortality of shrimps in the worldwide shrimp fishing indus-

try [51, 52]. As a halophilic Vibrio species, V. alginolyticus, which causes wound infections,

was first recognized as pathogenic to humans in 1973 [53]. Recent studies have proposed that

V. alginolyticus possesses the same TTSS gene organization as V. parahaemolyticus and V. har-
veyi [54, 55]. Aeromonas spp., such as A. salmonicida and A. hydrophila, are not pathogenic to

humans, but cause infections in salmon and trout, and carry the AcrV V-antigen homolog

[33]. However, A. hydrophila sometimes causes gastroenteritis in humans who acquire such

infections by ingesting food or water containing sufficient numbers of this organism [56–58].

Ph. luminescens (a gammaproteobacterium in the Enterobacteriaceae family) is also not patho-

genic to humans, but is a lethal pathogen of insects and possesses a pathogenicity island

encoding the TTSS including the LssV V-antigen homolog [59–62]. It lives in the gut of an

Fig 8. Predicted three-dimensional V-antigen structures. The predicted three-dimensional structures were generated by the Cn3D macromolecular structure viewer

at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

https://doi.org/10.1371/journal.pone.0220924.g008
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entomopathogenic nematode in the Heterorhabditidae family [33]. However, human infec-

tions with Photorhabdus spp. have recently been reported in the USA and Australia, suggesting

that these bacteria are emerging human pathogens [63]. In comparison with the infections

caused by P. aeruginosa, infections caused by Y. pestis or V. parahaemolyticus are less com-

mon. Therefore, it is interesting that titers against V-antigens from non-human pathogens

were also detected in this study. Anti-AcrV showed a high correlation with anti-LcrV, and

some correlation was detected between anti-LssV and anti-VcrV. The titers against the anti-

gens from non-human pathogens might result from cross-antigenicity among the V-antigen

homologs. Our cluster analysis with the heat map of anti-V-antigen titers from the 186 adult

volunteers displayed a higher correlation between LcrV, AcrV, and VcrV than the correlation

between PcrV and LssV and the other V-antigens (Fig 4A).

Immunizing mice with one of the five recombinant V-antigens resulted in cross-antigenic-

ity of the sera against the V-antigens (Figs 4B and 5). This result shows that VcrV is unique,

while AcrV, LssV, and LcrV share some degree of cross-antigenicity with each other, although

the results differed slightly from the cross-antigenicity observed with human sera. In our previ-

ous study on anti-PcrV titers in human sera, administration of extracted IgG derived from

high titer anti-PcrV sera protected against challenge with lethal pneumonia in a murine model

[18]. In this study, among the 198 volunteer-derived sera [32], the top 10 high titer sera against

PcrV (greater than or equivalent to 0.5 at OD 450 nm) were used. Although we have human

monoclonal IgG specific against PcrV as a standard for anti-PcrV measurement, no such

human standard IgG against the other four V-antigens are available to date. It is difficult at

this time to clearly evaluate where the level of protection is sufficient, but as many as 5% of the

volunteers showed protective levels in our previous study [18], and the cross-antigenicity

among the five V-antigens probably has a certain level of clinical significance in human immu-

nity. Therefore, despite no similar immunological experiments being performed with other V-

antigens, our study has shown that the cross-reactive antigenicity we observed among the vari-

ous V-antigens with serum-specific anti-V antigen titers may afford some degree of immuno-

logical protection against various Gram-negative bacteria. Further investigation of the

conformational blocking epitopes in the needle cap structure of type III secretory apparatus

and the immunological aspects of the structural antigenicity of a critical portion of the V-anti-

gens should provide a better understanding of how to effectively block the TTSS-associated

virulence associated with various Gram-negative pathogens.
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