DOI: 10.1111/1753-0407.13140

LETTER TO THE EDITOR

What is the role of admission HbA1c in managing COVID-19 patients?

To the Editor,

Some recent articles published in the *Journal of Diabetes* have raised concerns about the importance of checking glycosylated hemoglobin (HbA1c) upon hospital admission for coronavirus disease 2019 (COVID-19) patients.¹⁻³ It is now undoubtedly clear that absolute hyperglycemia at the time of admission increases the risk of severe outcomes of COVID-19, independent of prior diabetes status,^{4,5} and tight glycemic control improves the prognosis of these patients significantly.^{4,5} However, the role of

admission HbA1c, which reflects average glycemia over the preceding 2 to 3 months, in the management of COVID-19 patients remains uncertain.

Some studies have shown a significant association between admission HbA1c and disease progression or mortality in COVID-19 patients, whereas a few others did not (Table 1). While the reasons for this discrepancy are not clear, most of these studies are constrained by a small number of patients,^{6,7} a large proportion of missing HbA1c data,⁸ and inadequate adjustment of potential

Authors and country	N	Known diabetes, n (%)	Mean (SD) or median (IQR) HbA1c (%)	Outcome (s)	Findings	Variables adjusted for
Liu L et al, ⁷ China	77	33 (43.0)	NR	Mortality	1% increase in HbA1c was significantly associated with mortality with an hazard ratio of 1.58 (95% CI 1.16, 2.15), <i>P</i> = .004	dehydrogenase, lymphocyte count, NT-proBNP, and
Liu Z et al, ⁶ China	64	64 (100)	8.1 (6.6-9.7)	Disease progression (transferred to ICU or death) during hospitalization	1% increase in HbA1c was significantly associated with disease progression with an OR of 3.29 (95% CI 1.19, 9.13), <i>P</i> = .022	Maximum of in-hospital blood glucose, lymphocytes, CRP, and prothrombin time
Wang Z et al, ⁹ China	132	31 (23.5)	6.4 (5.8-7.2)	Mortality Markers of inflammation and hypercoagulability, and oxygen saturation	Higher mortality rate with increasing HbA1c levels: 9.8% in group A (n = 41, no diabetes and HbA1c $\leq 6.0\%$), 11.4% in group B (n = 44, no diabetes and HbA1c > 6.0 - < 6.5%), and 27.7% in group C (n = 47, diabetes and/or HbA1c $\geq 6.5\%$), $P = .04$ Negative correlation between HbA1c and SaO ₂ (r = -0.22,	None
						(Continues

© 2020 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd

²⁷⁴ WILEY Journal of Diabetes

TABLE 1 (Continued)

Authors and country	N	Known diabetes, n (%)	Mean (SD) or median (IQR) HbA1c (%)	Outcome (s)	Findings	Variables adjusted for
					P = .01). Positive correlation between HbA1c and ferritin (r = 0.24, $P = .01$), CRP (r = 0.22, $P = .01$), fibrinogen (r = 0.27, P < .01), and ESR (r = 0.27, $P < .01$)	
Cariou B et al, ⁸ France	1317	7 1317 (100)	8.1 (1.9)	Invasive mechanical ventilation or death within 7 days of admission	No significant association: compared with HbA1c <7%, OR for 7%-7.9% was 0.84 (95% CI 0.55, 1.27), OR for 8%-8.9% was 0.92 (95% CI 0.59, 1.45), and OR for ≥9.0% was 0.78 (95% CI 0.51, 1.21)	None
Ling P et al, ¹ China	51	51 (100)	8.0 (1.5)	Disease progression (nonsevere to severe illness)	No significant association	Age, sex, blood glucose, smoking status, and blood pressure

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HbA1c, glycosylated hemoglobin; ICU, intensive care unit; IQR, interquartile range; NR, not reported; NT-proBNP, N-terminal prohormone natriuretic peptide; OR, odds ratio; SaO₂, oxygen saturation; SD, standard deviation.

confounders.^{8,9} Previous research has shown that background glycemia mediates the association between admission glucose and outcomes in patients with a variety of medical conditions.¹⁰⁻¹² Thus, correcting admission glucose levels for background glycemia estimated by HbA1c, the so-called relative hyperglycemia predicts outcomes in acute health conditions better than absolute hyperglycemia,^{10,13} albeit not yet proven in the COVID-19 context.

Since HbA1c is relatively unaffected by the stress of acute illness,¹⁴ it may help identify newly diagnosed diabetes cases in COVID-19 patients. Newly diagnosed diabetes (new onset or previously undiagnosed) is now increasingly recognized as a common phenomenon in COVID-19 patients.^{15,16} More importantly, COVID-19 patients with newly diagnosed diabetes appear to be at a greater risk for poor prognosis not only compared with those without diabetes but also individuals with known diabetes.¹⁷⁻¹⁹

To summarize, admission blood glucose is certainly a key biomarker to risk stratify and guide the clinical management of COVID-19 patients, with or without known diabetes. Thus, it is essential that all COVID-19 patients be screened for absolute hyperglycemia upon admission so that early and appropriate treatment can be initiated if required. While the role of admission HbA1c as a marker of COVID-19 severity is yet to be fully established, HbA1c assists in identifying patients with newly diagnosed diabetes.^{15,20} These patients are a high-risk group and should be closely monitored for the emergence of cardiometabolic disorders in the long term.¹⁶

ACKNOWLEDGEMENTS

No funding received.

DISCLOSURE

None declared.

Thirunavukkarasu Sathish¹ Yingting Cao²

¹Population Health Research Institute (PHRI), McMaster University, Hamilton, Ontario, Canada
²Non Communicable Disease Unit, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia

Correspondence

Thirunavukkarasu Sathish, Population Health Research Institute (PHRI), McMaster University, Hamilton, ON L8L 2X2, Canada. Email: speaktosat@gmail.com

275

ORCID

Thirunavukkarasu Sathish ^b https://orcid.org/0000-0002-2016-4964

Yingting Cao D https://orcid.org/0000-0001-8555-0463

REFERENCES

- Ling P, Luo S, Zheng X, Cai G, Weng J. Elevated fasting blood glucose within the first week of hospitalization was associated with progression to severe illness of COVID-19 in patients with preexisting diabetes: a multicenter observational study. *J Diabetes*. 2020;13:89-93. https://doi.org/10.1111/1753-0407. 13121.
- Lippi G, Sanchis-Gomar F, Henry BM. Response to: is newly diagnosed diabetes a stronger risk factor than pre-existing diabetes for COVID-19 severity? *J Diabetes*. 2020. https://doi.org/ 10.1111/1753-0407.13127.
- Bloomgarden Z. Does glycemic control affect outcome of COVID-19? J Diabetes. 2020;12(12):868-869.
- Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. *Lancet Diabetes Endocrinol.* 2020;8(9):782-792.
- Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. *Nat Rev Endocrinol.* 2020;17:11–30. https://doi.org/10.1038/s41574-41020-00435-41574.
- 6. Liu Z, Bai X, Han X, et al. The association of diabetes and the prognosis of COVID-19 patients: a retrospective study. *Diabetes Res Clin Pract*. 2020;169:108386.
- Liu L, Wei W, Yang K, et al. Glycemic control before admission is an important determinant of prognosis in patients with coronavirus disease 2019. *J Diabetes Investig*. 2020. https://doi.org/ 10.1111/jdi.13431.
- Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. *Diabetologia*. 2020;63(8):1500-1515.
- Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. *Diabetes Res Clin Pract.* 2020;164: 108214. https://doi.org/10.1016/j.diabres.2020.108214.

- 10. Lee TF, Drake SM, Roberts GW, et al. Relative hyperglycemia is an independent determinant of in-hospital mortality in patients with critical illness. *Crit Care Med.* 2020;48(2):e115-e122.
- 11. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. *Stroke*. 2001;32(10):2426-2432.
- Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. *Lancet.* 2000;355(9206):773-778.
- 13. Roberts GW, Quinn SJ, Valentine N, et al. Relative hyperglycemia, a marker of critical illness: introducing the stress hyperglycemia ratio. *J Clin Endocrinol Metab.* 2015;100(12):4490-4497.
- Luethi N, Cioccari L, Tanaka A, et al. Glycated hemoglobin A1c levels are not affected by critical illness. *Crit Care Med.* 2016;44(9):1692-1694.
- Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis. *Diabetes Obes Metab.* 2020: In Press. https://doi.org/10.1111/dom.14269.
- Sathish T, Tapp RJ, Cooper ME, Zimmet P. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. *Diabetes Metab.* 2020. https://doi.org/10.1016/j.diabet. 2020.1010.1002.
- Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. *Diabetes Obes Metab.* 2020;22:1897–1906. https://doi.org/10.1111/dom.14099.
- Singh AK, Singh R. Hyperglycemia without diabetes and newonset diabetes are both associated with poorer outcomes in COVID-19. *Diabetes Res Clin Pract.* 2020;167:108382. https:// doi.org/10.1016/j.diabres.2020.108382.
- Sathish T, de Mello GT, Cao Y. Is newly diagnosed diabetes a stronger risk factor than pre-existing diabetes for COVID-19 severity? *J Diabetes*. 2020. https://doi.org/10.1111/1753-0407.13125.
- Sathish T, Cao Y. Is newly diagnosed diabetes as frequent as preexisting diabetes in COVID-19 patients?. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*. 2020. http://doi. org/10.1016/j.dsx.2020.12.024.