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NEURAL REGENERATION RESEARCH 

Neural crest derived stem cells from dental pulp 
and tooth-associated stem cells for peripheral nerve 
regeneration

Introduction
Peripheral nerve injuries (PNI) are some of the most com-
mon types of traumatic lesions affecting the nervous system. 
PNI have an incidence of about 18 per 100,000 persons every 
year in developed countries, with a relatively higher impact 
in developing countries (Jiang et al., 2017). These damages 
result in highly invalidating for the affected patients, either 
physically or psychologically, representing an outstanding 
social burden. PNI can be related to either traumatic events 
or to different illness-related neuropathies, i.e., hereditary, 
toxic, metabolic, and immune-mediated neuropathies (Kato-
na and Weis, 2017). PNI often cause the breakdown of neu-
ronal circuit with following denervation of primary organs 
and functional limitations. It is well known that peripheral 
nervous system has a higher regenerative capacity than cen-
tral nervous system. Following peripheral nerve damage, 
Schwann cells (SCs) undergo several changes needed to sus-
tain axon outgrowth, such as transdifferentiating, losing the 
myelinating phenotype and shifting towards repair cells. SCs 
upregulate the growth-promoting genes, as well as adhesion 
molecules, neurotrophic factors and their receptors (You et 
al., 1997; Rahmatullah et al., 1998; Höke et al., 2002; Chen et 
al., 2007).

However, several factors, including patient’s age, injury 
type and delayed intervention time – determine the degree 
of functional recovery after healing. Indeed, crushed nerves 

show better recovery than do transected nerves, with better 
outcomes of distal injuries when compared to proximal ones, 
since axons that need to cover a short gap to reach the target 
tissue have higher chances to reconnect (Sunderland, 1952; 
Woodhall and Beebe, 1956; Sunderland, 1978; Brushart, 
2011). The lost function may not always be reverted because 
the regenerated axons are not able to reinnervate the areas 
formerly linked by them (Johnson et al., 2005). As a matter 
of fact, complete nerve transections, many of them being 
proximal lesions in the nerve or resulting in a huge gap, have 
poor chances of recovery, thus leading to decreased motor 
and sensory function (Wang and Sakiyama-Elbert, 2018) 
and life-long disabilities for the patients.

Based on the injury type, different therapeutic approaches 
have been investigated so far, ranging from suture for man-
aging nerve discontinuities without a gap, up to nerve au-
tografts for handling huge gap nerve lesions. Such methods 
would be although limited by a poor functional outcome or 
by scarce tissue graft availability and donor site morbidity. 
Furthermore, different synthetic conduits and acellular al-
lografts have been investigated for their peripheral nerve 
regenerative potential and, although demonstrating the abil-
ity to recreate the nerve extracellular matrix, the lack of the 
mainly involved cellular component, i.e., the SCs, revealed to 
be critical for the regeneration (Sun et al., 2009; Moore et al., 
2011; Saheb-Al-Zamani et al., 2013). 
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Cell based therapies might provide a suitable tool for pe-
ripheral nerve regeneration, in fact, the ability of different 
stem cell types to differentiate towards SCs and their regen-
erative potential in animal models of PNI have been widely 
investigated by several research groups in the last decade. 
Particularly, bone marrow mesenchymal stem cells, adipose 
derived stem cells and muscle derived stem cells have been 
studied for their potential application to PNI treatment 
(Shimizu et al., 2007, 2018; Razavi et al., 2012; Lavasani et al. 
2014; Tamaki et al., 2016; Saller et al., 2018).

However, most of these investigated stem cell populations 
are characterized by an embryological origin differing from 
neuroectoderm. In light of the development of cellular ther-
apies in compliance with ethics, it would be preferable to 
identify the most suitable cell source without involving an 
embryological transition. Starting from the characterization 
of Schwann cell physiology and their primary role in PNI 
regeneration, the aim of this article is to discuss the features 
of tooth derived stem cells in light of their shared peculiar 
embryological origin from neural crest and to review their 
contribution to peripheral nerve regeneration, and how 
their regenerative benefits might be extended to pre-clinical 
application.

Search Strategy and Selection Criteria
We searched on PubMed for articles published between 2000 
and 2019, by using the terms “peripheral nerve regeneration” 
and “peripheral nerve injury” in combination with “tooth 
derived stem cells” or “dental stem cells” and the results were 
then selected according to their relevance within the scope 
of this review. Older publications regarded as highly relevant 
to the topic were included as well. Moreover, we also did a 
selection from the references listed in the articles resulting 
from our search on PubMed. 

Neural Crest: the Fourth Germ Layer
The third week of embryo development is characterized by 
two fundamental processes: gastrulation and neurulation. 
During the first one, the three germ layers - ectoderm, me-
soderm and endoderm - take origin, whereas in the second 
one, the development of nervous system occurs.

As far as neurulation is concerned, at the end of the third 
week of embryo development, the notochord induces the 
differentiation of part of ectodermal cells, which give rise 
to neural plate. At this time, ectoderm proceeds toward two 
different fates which will culminate in the formation of ep-
ithelial ectoderm and nervous ectoderm, respectively. Cells 
at the edges of neural plate shape their morphology forming 
the neural folds, that start growing, bulging up to converge 
with each other, converting the neural plate into the neural 
groove. The closing of neural groove begins on the 21st day in 
the neck region corresponding to the fourth pair of somites, 
by proceeding either in cephalic and caudal directions. 
Within 3 days, the neural groove is closed along the whole 
embryo axis, except for the ends of neural tube. The front 
end is the first one being closed, while the rear end being 
closed 2 days later, thus rendering the neural tube the pri-

mordium of the central nervous system. On the other hand, 
while the neural folds are converging to each other, at their 
edges some cells start proliferating without participating 
in the formation of the neural tube. These cells will indeed 
give rise to neural crest, which initially lays between the 
epidermis and the nervous tube and then starts migrating 
laterally to different directions (Le Douarin and Kalcheim, 
1999). Neural crest cells migrate towards different districts, 
where they will differentiate in many different cell and tissue 
types, such as spinal ganglia and autonomic nervous system, 
SCs, pigmented cells, adrenal medulla, encephalic meninges 
and the mesenchyme of head and neck (Kulesa et al., 2010). 
Neural crest derived cells participate to the tooth develop-
ment and reside within the dental pulp connective tissue up 
to adulthood, maintaining their stemness properties (Chai et 
al., 2000).  

Schwann Cells: Development and Role in 
Nerve Injury Regeneration 
SCs are the PNS glial cells, own myelinating functions and 
play a key role in survival and functionality of neurons. 
Besides producing myelin, SCs also exert a primary role in 
regenerating receptors and to receptors’ functions (Bunge, 
1993). There are a plenty of growth factors produced and 
released by SCs, such as neurotrophins, TGF-βs, glial cell 
line-derived neurotrophic factor (GDNF), epidermal growth 
factors (EGFs), and platelet-derived growth factor (PDGF). 
In the first phases of embryo development, SCs take origin 
from the neural crest which includes multipotent cells that 
migrate away from the dorsal neural tube (Le Douarin, 
1986). SCs development takes place through three transi-
tions if neural crest: 1) formation of a Schwann cell pre-
cursor; 2) establishment of an immature Schwann cell; 3) 
postnatal immature SCs can become either myelinating or 
non-myelinating SCs. For each phase, events are modulat-
ed by neuregulins (Bhatheja and Field, 2006). The primary 
function of SCs is to myelinate axons in the PNS. The pro-
duction of myelin, a fatty layer isolating the axon, allows to 
increase the saltatory conduction of the neuron with one 
myelinating SC wrapped around a single axon. Large-diame-
ter axons conduct impulses at the highest speed and become 
myelinated, whereas the thin, slow conducing fibers are 
pushed together and enclosed in massive, globular non-my-
elinating SCs (Voyvodic, 1989). Axon signals are critical 
in directing Schwann cell lineage. The expression of P0, a 
protein specific for Schwann cell myelin, returns to basal 
levels when the immature cell stops being associated with 
the axon, thus demonstrating an axon-dependent response. 
While mature SCs are able to survive without a neuronal 
signal, on the other hand, precursor Schwann cell cannot 
(Jessen and Mirsky, 2005; Bhateja and Field, 2006). Krox-20 
(Erg2), Oct-6, and Sox-10 are transcription factors that regu-
late Schwann cell lineage. The Krox-20 transcription factor is 
important in transforming the immature Schwann cell into 
a myelinating Schwann cell, while also inhibiting cell death 
and proliferation (Topilko and Meijer, 2001). The POU tran-
scription factor Oct-6, as well as Krox-20 is also responsible 
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for myelination with Krox-20 being present only in myelin-
ating cells, whereas Oct-6 is found in all SCs (Jessen and 
Mirsky, 2005; Bhateja and Field, 2006). Peripheral nerves 
regeneration mostly relies on the plasticity of SCs. Indeed, 
after nerve injury, fully mature SCs undergo dedifferentia-
tion towards a cell phenotype resembling different proper-
ties of immature SCs stage (Jessen and Mirsky, 2008; Shin 
et al., 2013; Hyung et al., 2019). During dedifferentiation, 
SCs downregulate the factors promoting myelination, start 
breaking down myelin and activate a repair program which 
provides a supportive environment for axonal regrowth: SCs 
start forming cellular conduits along which axons can re-
grow and express molecules favourable to the survival of in-
jured neurons (Jessen and Mirsky, 2016; Hyung et al., 2019). 
Such features prove evidence for SCs to be the first and most 
widely used support cells in peripheral nerve regeneration 
(Guenard et al., 1992; Rodriguez et al., 2000; Mosahebi et 
al., 2001). Previous findings demonstrated the active role of 
SCs in nerve regeneration, by using a genetic labelling tech-
nique aimed to trace SCs after implantation into the nerve 
injury site (Mosahebi et al., 2002; Tohill et al., 2004; Gu et al., 
2011). A genetic engineering method has been investigated 
to test whether SC-induced axonal growth in the spinal cord 
(Xu et al., 1995) might be optimized. Previous findings from 
Tuszynski et al. (1998) reported that cultured primary adult 
rat SCs were genetically engineered to secrete NGF. Follow-
ing implantation into the midthoracic spinal cord of adult 
rats, these cells not only survived for one year but also were 
densely penetrated by primary sensory nociceptive axons, 
when compared to control implants. Schwan cells effectively 
myelinated axons either in NGF-secreting or in control im-
plants (Tuszynski et al., 1998). When applied to the lesion 
cavity of a dorsal hemisection of the rat spinal cord, a signif-
icant increase in growth of spinal cord axons was observed 
in the implant area (Weidner et al., 1999). A denser network 
of coerulospinal axons and central processes of primary 
sensory afferents was detected in transduced implants, with 
respect to untransduced implants. Furthermore, these axons 
were ensheathed and, in some instances, remyelinated by 
SCs. Weidner et al. (1999) demonstrated that implanted SCs 
exhibited a phenotypic and temporal course of differentia-
tion into a myelinating state while aligning spontaneously. 
Three days after implantation, SCs were still in an undiffer-
entiated or non-myelinating state. After 2 weeks, they had 
upregulated the cell adhesion molecule L1, a marker for 
differentiated non-myelinating SCs. After 3 weeks, the major 
component of peripheral myelin, namely P0 protein, was 
detected, thus indicating that some SCs might have adopted 
a myelinating phenotype. As no differences in SC markers 
were found between NGF-secreting and control implants, it 
was argued that NGF itself did not modulate the SC myelin-
ating phenotype. The observed time course of SC differentia-
tion after grafting into a CNS injury site was the demonstra-
tion of the dedifferentiation process occurring in PNS after 
injury. The physiological response of SCs to injury appears 
to be retained following transplantation to an ectopic site, i.e., 
in the injured spinal cord (Weidner et al., 1999). SCs previ-
ously induced to BDNF secretion through retroviral vectors 

and then implanted as trails, in and distal to the transection 
site of the adult rat spinal cord, were able to attract more 
dorsal root ganglia and spinal and supraspinal fibers than 
control SC implants (Menei et al., 1998). 

The SC track was maintained for at least 1 month and 
most of the fibers showed a germination phenomenon at the 
transection site. SCs that secrete BDNF, however, did not ap-
pear to myelinate regenerating axons, based on the absence 
of P0 expression, which was instead detected in normal SC 
and NGF-transduced SC. Such evidence might allow to state 
that, when BDNF is present, SCs retain a dedifferentiated 
phenotype favorable to fibers regeneration although not 
forming myelination (Menei et al., 1998). These studies show 
that the production of neurophysiological levels of neurotro-
phins by genetically modified SCs may increase the regen-
erative potential of injured spinal axons, but also that other 
characteristics of SCs, such as axon myelination (Ruitenberg 
et al., 2006), can be affected by the expression of a certain 
neurotrophic factor instead of another. The modulatory ac-
tion of neurotrophins on the SCs can therefore be considered 
an interesting therapeutic approach for the PNI as much as 
it is for neurodegenerative diseases strictly correlated to de-
myelination, such as multiple sclerosis (Kocsis and Waxman, 
2007) or peripheral denervation in the amyotrophic lateral 
sclerosis (Vallarola et al., 2018).

Dental Ecto-Mesenchymal Stem Cells
Teeth represent a suitable stem cell source due to their easy 
accessibility through routine procedures of wisdom teeth ex-
traction and, principally, since they provide a huge quantity 
of quickly self-renewing, multipotent stem cells (Goldberg 
et al. 2004; d’Aquino et al., 2009; Tirino et al., 2012). So far, 
it has been well established that dental and periodontal tis-
sues can be considered a reservoir of neural crest stem cells 
(Gronthos et al., 2000). The neural crest, which constitutes 
a peculiar type of mesenchymal tissue, namely the ectomes-
enchyme, gives origin to most of craniofacial structures, 
including dental pulp and periodontal ligament (Chai et al., 
2000). Dental ectomesenchymal stem cells (EMSCs) own a 
common origin with neural crest cells, as a matter of fact the 
formation of oral muscles, bones, tongue, craniofacial nerves 
and teeth relies on ectomesenchyme (Janebodin et al., 2011). 
Nerve tissue regeneration approaches can take advantage 
from the use of dental and periodontal stem cells, since they 
own a neural crest phenotype. As far as mesoderm-derived 
MSCs are concerned, dental EMSCs constitutively express 
neural-progenitors markers yet under standard culture con-
ditions (Davidson, 1994; Gronthos et al., 2002; Miura et al., 
2003; Janebodin et al., 2011), thus suggesting that EMSCs 
might maintain the intrinsic ability to differentiate towards 
nerve cells. In particular, the fact that embryonic origin is 
shared with the peripheral nervous system allows to argue 
that dental EMSCs are much closer to nerve cells than other 
stem cells, such as mesodermal MSCs. Particularly, recent 
evidence from Kaukua et al. (2014) revealed a population of 
dental EMSCs that turned out to be derived from peripheral 
nerve-related glial cells, proposing a strong connection be-
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tween SCs and dental EMSCs during tooth generation.
Dental EMSCs might represent an optimal choice to reach 

an effective neural and glial differentiation, under the appro-
priate conditions (Arthur et al., 2008; Janebodin et al., 2011).

Different stem cells populations were identified in dental 
associated tissues and components, with human dental pulp 
stem cells (hDPSCs) being first isolated by Gronthos et al. 
(2000); then, other stem cells populations were revealed in 
human exfoliated deciduous teeth (SHED), periodontal lig-
ament (PDLSCs) and, finally, in the apical papilla (SCAP) 
(Miura et al., 2003; Seo et al., 2004; Sonoyama et al., 2006). 
For the characterization of these tooth-related stem cells 
populations, a comparison was made with the widely inves-
tigated bone marrow mesenchymal stem cells (BM-MSCs) 
and, as a source of MSCs, they were evaluated for the expres-
sion of typical mesenchymal surface antigens, such as CD44, 
CD73, CD90, CD105, CD271 and STRO-1, while they were 
expected not to express markers such as CD34, CD45, and 
HLA-DR (Uccelli et al., 2008). In spite of this immunophe-
notypical characterization, a specific, strict marker identi-
fying DPSCs has not been outlined, thus allowing to define 
them as a heterogeneous population.

Data from different studies suggest that these dental tis-
sue-derived stem cells not only show self-renewal and mul-
tiple differentiations potential but also display immunomod-
ulatory properties and a promising regenerative potential 
towards different tissue injuries. Table 1 reports the features 
of the different types of stem cells isolated from dental tissue. 
Here we will review the features of each tooth derived stem 
cell population, with particular focus on the translational 
and pre-clinical data concerning their application to periph-
eral nerve regeneration. 

Dental Pulp Stem Cells 
As earlier hinted, DPSCs were first identified and isolated 

from human dental pulp tissue by Gronthos et al.  (2000). 
They are well characterized by a fibroblast-like morphology, 
clonogenic abilities and a high proliferation rate and express 
Oct-4, Nanog and Sox-2, besides nestin and vimentin, all of 
them being peculiar markers of undifferentiated embryonic 
stem cells (Govindasamy et al., 2011). After their original 
characterization and many parallels drawn between DPSCs 
and BM-MSCs through the years (Yamada et al., 2006), these 
stem cells were proved able to commit into different cyto-
types, including osteogenic, chondrogenic, myogenic, adipo-
genic and neural lineages (Gronthos et al., 2002; Laino et al., 
2005; d’Aquino et al., 2007; Arthur et al., 2008; Stevens et al., 
2008; Armiñán et al., 2009; Pisciotta et al., 2018). It was re-
cently demonstrated that DPSCs are also able to differentiate 
to insulin producing cells, thus suggesting that they can also 
be committed to the endodermal lineage (Carnevale et al., 
2013). Moreover, another well-established property is their 
capability to promote angiogenesis in vivo (Pisciotta et al., 
2012a, 2015b; Riccio et al., 2012; Maraldi et al., 2013). 

To our knowledge, after isolation, human dental pulp stem 
cells are able to form colonies with different proliferation 
rates and showing different surface markers. In fact, hDP-
SCs consist in a heterogeneous cell population that cannot 
be defined by strictly specific markers. As well reported 
by Kawashima (2012), the existence of distinct hDPSCs 
subpopulations owning different biological properties was 
demonstrated by the use of different mesenchymal stem 
cell markers. To this regard, STRO-1 and c-Kit are two key 
surface markers whose expression is required to define the 
mesenchymal origin and the stemness of hDPSCs. Farther, 
our previous findings highlighted the presence of hDPSCs 
subpopulation expressing also CD34, in accordance with 
former evidence from Laino et al. (2005). 

Although CD34 was shown to be a conventionally ac-
cepted marker identifying hematopoietic stem cells findings 

Table 1 Tooth derived stem cells characterization, differentiation potential and role in PNI regeneration

Stem cell 
type

Immunophenotype/Surface 
markers expression Differentiation potential In vivo models of PNI

Contribution to PNI 
regeneration

DPSCs Nanog, Oct-4, Sox-2, Nestin, 
Vimentin, CD44, CD105, 
CD73, CD90, CD117, CD34, 
STRO-1, CD271, Sox-10

Osteogenic, 
chondrogenic, 
adipogenic, myogenic, 
neural, β-pancreatic cells

Sciatic nerve injury (Askari et al., 2015; 
Kolar et al., 2017; Omi et al., 2017; Sanen et 
al., 2017; Carnevale et al., 2018)
Facial nerve injury (Sasaki et al., 2008, 2011)

In vivo cell differentiation and 
neurotrophic factors release

SHED Nanog, Oct-4, SSEA-3, SSEA-
4, Nestin, CD44, CD105, 
CD73, CD90, STRO-1, CD146

Odontogenic, osteogenic, 
chondrogenic, 
adipogenic, myogenic, 
neural, hepatocytes

Sciatic nerve injury 
(Sagimura-Wakayama et al., 2015)
Facial nerve injury (Pereira et al., 2019)

Neurotrophic factors in SHED-
conditioned media
In vivo cell differentiation and 
neurotrophic factors release 

PDLSCs Nanog, Oct-4, Klf4, Sox-2, 
Sox-10, Slug, CD271, Nestin, 
CD44, CD105, CD73, CD90, 
STRO-1

Osteogenic, 
chondrogenic, 
adipogenic, neural, 
β-pancreatic, hepatocytes

Mental nerve injury (Li et al., 2013)
Optic nerve injury (Cen et al., 2018)
Sciatic nerve injury (Kolar et al., 2017)

In vivo cell differentiation and 
neurotrophic factors release
Neurotrophic factors release

SCAP Nanog, Oct-4, Notch3, 
CD105, CD73, CD90, STRO-
1, CD146

Odontogenic, osteogenic, 
chondrogenic, 
adipogenic, neural, 
hepatocytes

 Sciatic nerve injury (Kolar et al., 2017) Neurotrophic factors release

hDPSCs: Human dental pulp stem cells; PDLSCs: periodontal ligament stem cells; PNI: peripheral nerve injury; SCAP: stem cells from the apical 
papilla; SHED: stem cells from human exfoliated deciduous teeth.
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from several research groups in the last decades reported the 
expression of CD34 also by mesenchymal stem cells isolated 
from different tissues, such as bone marrow (Dominici et 
al., 2006), adipose tissue (Suga et al., 2009) and dental pulp 
(Laino et al., 2006). Particularly, based on the expression 
of STRO-1, c-Kit and CD34, our research group recently 
identified a subpopulation of DPSCs able to differentiate not 
only towards the mesodermal lineages but also to the ecto-
dermal neural lineage (Pisciotta et al., 2015a). Furthermore, 
this subpopulation demonstrated a strong tendency towards 
the neurogenic commitment, showing the expression, under 
floating 3D spheres culture conditions, of nestin, a cytoskele-
ton intermediate filament protein of neuronal stem cells, and 
of the surface antigen CD271 and SOX-10, which identify 
neural crest derived cells (Pisciotta et al., 2018). According 
to these findings and to previous reports from Laino and 
colleagues (Laino et al., 2006), hDPSCs expressing STRO-
1, c-Kit and CD34 can be defined as a perivascular niche of 
neural crest derived stem cells. Taken together, these find-
ings reveal that several and distinct stem cell subgroups are 
enclosed within dental pulp; in fact, stem cells isolated from 
dental pulp own a typical embryological origin from neu-
ro-ectomesenchyme (Lumsden et al., 1988; Pierdomenico et 
al., 2005; Pisciotta et al., 2015a). 

Previous findings from Askari et al. (2015) showed that 
hDPSCs, following transfection with oligodendrocyte lineage 
transcription factor 2 not only committed towards function-
al oligodendrocytes in vitro but also promoted regeneration 
in a mouse model of PNI. Over the years, multiple investiga-
tions have also proved the capability of hDPSCs-combined to 
different scaffold types-to favour the peripheral nerve regen-
eration and recover functionality in different animal models 
of PNI. Sasaki et al. (2008, 2011) highlighted the potential of 
hDPSCs/polylactic glycolic acid tubes complex to regenerate 
injured facial nerve and to improve functional recovery, sim-
ilarly to autografts. Findings from Carnevale et al. (2016) re-
vealed that the use of hDPSCs-injected collagen scaffolds in 
a rat sciatic nerve injury model contributed to axonal regen-
eration by promoting myelination, which was also reflected 
by a functional recovery. In particular, data from their in 
vitro experiments showed that after glial induction, hDPSCs 
secreted significant amounts of neurotrophic factors, such 
as BDNF, NGF and NT-3, which exert a key neuroprotective 
role during peripheral nerve regeneration. These findings 
confirmed the ability of hDPSCs to support axonal regener-
ation in PNI animal models either directly and via paracrine 
mechanisms, as previously reported by other groups (Sasaki 
et al., 2008; Martens et al., 2014). A later study from Sanen 
et al. (2017) further confirmed the regenerative potential of 
hDPSCs when applied to engineered collagen conduits for 
the repair of critical (15 mm) sciatic nerve gaps. Farther, a 
recent report from Omi et al. (2017) highlighted the con-
tribution of hDPSCs in ameliorating the long-term diabetic 
polyneuropathy in rats; indeed, injected hDPSCs were able 
to improve the impaired sciatic nerve blood flow, to increase 
the sciatic motor-sensory nerve conduction speed and to in-
crease the capillary number-to-muscle and intra-epidermal 
nerve fiber density ratio. 

Stem Cells from Human Exfoliated Deciduous 
Teeth
Human exfoliated deciduous teeth represent an easily ac-
cessible source of multipotent MSCs able to differentiate 
towards different cell types (Gronthos et al., 2000). In com-
parison to DPSCs, SHED display multicytoplasmic processes 
and a higher proliferation rate (Miura et al., 2003).  

SHED express the typical MSCs surface markers proposed 
by ISCT (Pivoriuūnas et al., 2010) and also express Oct4 
and Nanog, SSEA-3 and SSEA-4, as embryonic stem cells 
antigens, and nestin, a neural stem cell marker (Miura et al., 
2003; Liu et al., 2015). Similar to DPSCs they express STRO-
1 and CD146, which characterize the cells in close proximity 
to pulp’s blood vessels, suggesting that these cells reside in 
the perivascular environment. 

These cells own the ability to form sphere-like cell clusters 
expressing glial and neuronal cell surface markers, such as 
nestin, when cultured in neurogenic medium, and a highly 
plastic differentiation potential when transplanted in differ-
ent organs and tissues (Miura et al., 2003). Such a peculiar 
multipotent ability can be ascribed to the neural crest origin 
of dental pulp (Kerkis et al., 2006). Cordeiro et al. (2008) 
showed that SHED are able to differentiate into myogenic 
and chondrogenic lineages. Moreover, when cultured in he-
patic induction medium, they were demonstrated to acquire 
morphological and functional properties of hepatocytes 
(Ishkitiev et al., 2010). 

With regard to the osteogenic potential, SHED are distinct 
from DPSCs, since they are not able to differentiate towards 
osteoblasts or osteocytes, nevertheless, they are able to in-
duce new bone formation through paracrine mechanisms. 
These findings demonstrate that deciduous teeth may not 
only guide the eruption of permanent teeth, but they may 
also be considered an immature form of DPSC, due to their 
odontogenic differentiation potential and osteogenesis pro-
moting effect (Miura et al., 2003).

Moreover, SHED can promote new vascularization, dif-
ferentiate into SCs and facilitate axonal regeneration. Most 
of them express indeed markers of neural progenitor cells, 
oligodendrocytes, and immature neural cells. As a matter 
of fact, studies demonstrated that SHED can be readily in-
duced to differentiate to neuron-like cells and SCs-like cells 
(Ibarretxe et al., 2012). Such ability was then confirmed by 
different studies in vivo. It is noteworthy the capability of 
SHED to regenerate a facial nerve. In fact, several studies 
highlighted the ability of SHED to regenerate peripheral 
nerve directly or via secreting neurotrophic factors. Particu-
larly, Pereira et al. evaluated facial nerve regeneration in rats 
treated with the combination of SHED with different types 
of conduits (Pereira et al., 2019). All the evaluated studies 
highlighted that the successfulness of the grafts was due 
to the contribution of SHED in restoring nerve function. 
Besides the evident contribution of SHED to commit into 
SCs for peripheral nerve regeneration, it is clear that also 
paracrine mechanisms exerted through neurotrophins secre-
tion - NGF, BDNF, NT-3, CNTF, GDNF-played a key role in 
sustaining the regeneration process. As a matter of fact, SCs 
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exposed to SHED-conditioned medium (CM) in vitro ex-
hibited a significant increase in proliferation, migration, and 
higher expression of neuron-, extracellular matrix-, and an-
giogenesis-related genes (Sugimura-Wakayama et al., 2015). 
Moreover, when applied to a rat model of sciatic nerve gap 
the SHED-CM group promoted sciatic nerve reinnervation 
and improved functional recovery (Sugimura-Wakayama et 
al., 2015).

Periodontal Ligament Stem Cells and Stem 
Cells from the Apical Papilla
The periodontal ligament (PDL) is a soft connective tissue 
enclosed between cementum and alveolar bone socket, 
which remodels itself continuously; therefore, it was hypoth-
esized to contain progenitor cells. Early reports highlighted 
that PDL not only provides support to teeth, but it also 
represents a source for tooth nutrition, homeostasis and the 
regeneration of periodontal tissue. PDLSCs can be obtained 
from extracted teeth, either through explanted cultures or 
enzymatic digestion, and their features seem to depend on 
the harvest location, indeed cells isolated from the alveo-
lar bone surface show a higher ability in regenerating the 
alveolar bone, compared to cells harvested from the root 
surface (McCulloch and Bordin, 1991). Similar to the tooth 
derived stem cells reviewed above, also PDLSCs exhibit a 
fibroblast-like morphology, colony forming abilities and a 
high proliferation rate, besides expressing STRO-1 and other 
MSCs markers. Furthermore, PDLSC subgroups may also 
express typical embryonic stem cell- and neural crest-relat-
ed markers, as reported above for hDPSCs. PDLSCs have 
a functional role in maintenance of the homeostasis and 
regeneration of the periodontal tissue (Xu et al., 2009); later, 
they have also been demonstrated to be able to differentiate 
towards all the three germ layers when exposed to defined 
culture conditions (Huang et al., 2009; Xu et al., 2009; Da-
peng et al., 2014; Lee et al., 2014; Ng et al., 2015). 

The apical papilla, a soft tissue contributing to dental de-
velopment, is located at the tip of growing roots in erupting 
permanent teeth and encloses a population of stem cells 
which are characterized by a notably higher proliferation 
rate and a superior mineralization ability, when compared 
to hDPSCs, while expressing the same typical mesenchymal 
markers of the latter (Sonoyama et al., 2006; Sonoyama et 
al., 2008, Ding et al. 2010) and the potential to commit in 
cell types derived from all the three germ layers (Ikeda et al., 
2006; Abe et al., 2012; Patil et al., 2014; Kumar et al., 2017),  

With regard to PDLSCs and SCAP, a few studies described 
their contribution in repairing nerve injuries. A valuable re-
cent study from Kolar et al. compared the ability of PDLSCs, 
SCAPs and DPSCs to respond to glial induction in vitro and 
their direct contribution on sciatic nerve regeneration in 
vivo (Kolar et al., 2017). As reported, the secretion of neuro-
trophic factors was demonstrated either by PCR and ELISA 
analyses. These evaluations allowed the authors to highlight 
that SCAP had increased gene expression of neurotrophic 
factors, such as BDNF and GDNF, with respect to PDLSCs 

and DPSCs; on the other hand, significantly higher release of 
BDNF was observed in SCAP and DPSCs, when compared 
to PDLSCs, whereas no differences were detected with re-
gard to NGF, NT-3 and GDNF in any of the analyzed dental 
stem cell populations. Moreover, the effect of neurotrophic 
factors released in culture media was reflected by the detec-
tion of neurite outgrowth in response to the induction with 
SCAP, PDLSCs and DPSCs, either unstimulated or stimu-
lated. This event triggered the differentiated neuroblastoma 
SH-SY5Y cells to an increased percentage of neurite-pro-
ducing cells and a greater general neurite outgrowth, with 
SCAP-conditioned media proving to be the most effective in 
inducing a significant increase in neurite length (Kolar et al. 
2017). Then, Kolar et al. (2017) also evaluated the ability of 
SCAP, PDLSCs and DPSCs to participate in regeneration of 
a 10mm gap in rat sciatic nerve, when transplanted in com-
bination with a fibrin glue conduit. According to their obser-
vations, the optimal result was obtained in the SCAP-treated 
group. Particularly, the authors conclusions suggest that the 
primary contribution of the investigated stem cells in sciatic 
nerve injury was attributable to their secretome rather than 
to a direct glial differentiation of the cells. As a matter of 
fact, cells were closely localised to the proximal regeneration 
front and BDNF was detected in proximity of the transplant-
ed human stem cells, which however did not stain positively 
against the glial marker S-100. The main limitations of this 
study might be due to the small number of stem cells donors 
and to the 2-week experimental time.  

Further studies confirmed the ability of SCAP and 
PDLSCs to participate either in a paracrine manner or di-
rectly to the regeneration of nerve injuries (Li et al., 2013; 
Cen et al., 2018). 

Conclusions and Future Perspectives
This review aimed to focus on tooth-enclosed stem cells - 
DPSCs, SHED and SCAP - and dental-associated stem cells - 
PDLSCs - with regard to their contribution in promoting the 
regeneration of PNI. 

These stem cells represent indeed a valuable tool for cell 
therapy approaches due to their easy harvesting procedures 
with low invasiveness for the patients, to their ease of ex-
pansion in vitro and, in particular, for their embryological 
origin from neural crest - a peculiar feature shared with SCs 
- which confers them multipotency and makes them the 
ideal candidate as a source/reservoir of glial cells. SCs are 
the primary cell component required and involved in the re-
generation process, following PNI; however, SCs transplant 
is limited by the difficulty to keep them proliferating in vitro 
and by the potential morbidity at donor site. 

Many research groups have highlighted that tooth-derived 
stem cells participate to the regeneration of PNI by secreting 
neurotrophic factors such as BDNF, NGF, NT-3 and GDNF, 
which exert a neuroprotective effect and improves nerve re-
generation, as widely shown by the findings reviewed above. 
Based on the reviewed literature and on our previous find-
ings as well, it is noteworthy how tooth derived stem cells se-
quentially contributed to nerve repair, first by secreting neu-
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rotrophins that play a fundamental role in the earliest phases 
and then, by directly differentiating in vivo towards SC-like 
cells at later experimental times providing the survival of in-
jured neurons, axonal regeneration and target reinnervation.

These findings underline that axonal guidance and align-
ment in nerve regeneration is a key event operated by SCs. 
Therefore, the ideal candidate stem cells for peripheral nerve 
repair are supposed to support the regeneration process ei-
ther directly and via paracrine mechanisms. 

Most of the reviewed studies highlight the ability of stem 
cells to participate in nerve regeneration in animal models, 
but the same studies neglect an important biological aspect 
which is peculiar of stem cells, i.e., the immunomodulatory 
properties. Indeed, the stem cell transplantation is carried 
out under immunosuppressive regimen. A deep characteri-
zation of the immunomodulatory properties of tooth derived 
stem cells would provide several advantages: 1) a niche of 
stem cells that might offer promptly SC-like differentiating 
cells; 2) the release of cytokines that can promote host SCs 
proliferation or inhibit host SC apoptosis. 
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