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ABSTRACT The Dongxiang Blue-shelled chicken is one of the most valuable Chinese indigenous poultry
breeds. However, compared to the Italian native White Leghorn, although this Chinese breed possesses
numerous favorable characteristics, it also exhibits lower growth performance and fertility. Here, we utilized
genotyping sequencing data obtained via genome reduction on a sequencing platform to detect 100,114
single nucleotide polymorphisms and perform further biological analysis and functional annotation. We
employed cross-population extended haplotype homozygosity, eigenvector decomposition combined with
genome-wide association studies (EigenGWAS), and efficient mixed-model association expedited methods
to detect areas of the genome that are potential selected regions (PSR) in both chicken breeds, and
performed gene ontology (GO) enrichment and quantitative trait loci (QTL) analyses annotating using the
Kyoto Encyclopedia of Genes and Genomes. The results of this study revealed a total of 2424 outlier loci
(p-value ,0.01), of which 2144 occur in the White Leghorn breed and 280 occur in the Dongxiang Blue-
shelled chicken. These correspond to 327 and 94 PSRs containing 297 and 54 genes, respectively. The most
significantly selected genes in Blue-shelled chicken are TMEM141 and CLIC3, while the SLCO1B3 gene,
related to eggshell color, was identified via EigenGWAS. We show that the White Leghorn genes JARID2,
RBMS3, GPC3, TRIB2, ROBO1, SAMSN1, OSBP2, and IGFALS are involved in immunity, reproduction, and
growth, and thus might represent footprints of the selection process. In contrast, we identified six signif-
icantly enriched pathways in the Dongxiang Blue-shelled chicken that are related to amino acid and lipid
metabolism as well as signal transduction. Our results also reveal the presence of a GO term associated with
cell metabolism that occurs mainly in the White Leghorn breed, while the most significant QTL regions
mapped to the Chicken QTL Database (GG_4.0) for the Dongxiang Blue-shelled breed are predominantly
related to lesions, bone mineral content, and other related traits compared to tibia length and body weight
(i.e., at 14, 28, 42, and 70 d) in the White Leghorn. The results of this study highlight differences in growth,
immunity, and egg quality traits between the two breeds, and provide a foundation for the exploration of
their genetic mechanisms.
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The Chinese indigenous Dongxiang Blue-shelled chicken breed has
been subject to constant attention from the poultry industry over
recent decades because of its numerous excellent characteristics
(Wang et al. 2009). In tandem with the White Leghorn—a breed
originally native to Italy that has particularly desirable production
attributes—the Dongxiang Blue-shelled chicken has been subject to
intensive selection over recent years. Thus, due to both natural
selection and persistent human domestication, both these chicken
breeds have experienced huge genomic changes in their growth,

immunity, egg quality, and eggshell color. Large-scale regions of
the genome that exhibit marked variation caused by selective pres-
sure are called “selected regions”; identifying the genes and/or ge-
netic variation within these regions is key to the analysis of selection
and evolution. Although Liao et al. (2015) revealed the presence of
novel growth and egg trait variants in Dongxiang Blue-shelled and
White Leghorn chickens, research on selected regions of the genome
between these two breeds has not yet been reported. Identifying
genomic loci under selection that correlate with particular features
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would be beneficial for future breeding programs, as well as to
identify genes in chicken that are related to biological processes
and traits of interest.

As a result of rapid technological developments in high-through-
put gene analysis, it is now possible to obtain genome-wide genetic
markers at low cost, enabling the evaluationof geneticmechanisms in
poultry at this level. These approaches are also useful for the detection
of selected regions related to specific traits via the identification of
distorted patterns in genetic variation; Li et al. (2012) utilized
chicken microarray data to detect �385 selected regions in White
Leghorn chickens and revealed a series of genes related to egg pro-
duction, metabolic, and immune response traits including EYA2,
NCKX1, and LHK2. Similarly, Gholami et al. (2014) utilized 600K
single nucleotide polymorphism (SNP) chips from three laying and
14 nonlaying strains to show that the genes NCOA1, SREBF2, and
RALGAPA1 are related to breeding, laying, nesting, and other traits.
One strategy applied to date for studying genetic variation has been
aimed mainly at the detection of selection signatures based on iden-
tified patterns of linkage disequilibrium (LD) (Ennis 2007). A series
of detection statistics for these selection signatures has been devel-
oped, including extended haplotype homozygosity (Sabeti et al.
2002) for use in cases of recent selection, as well as Tajimas’ D
statistic (Tajima 1989), which can be applied in cases of relatively
ancient selection. However, methods such as Tajima’s D (Tajima
1989), the Hudson-Kreitman-Aguade test (Hudson et al. 1987), and
Fay and Wu’s H test (Fay and Wu 2000) were not designed for
locating genome-wide SNPs, while other methods, such as Relative
Extended Haplotype Homozygosity (REHH) (Sabeti et al. 2002) and
Integrated Haplotype Score (iHS) (Voight et al. 2006), are not suit-
able for detecting selection signatures at the genome level between two
breeds. Thus, given the aims of this study, and the various statistics
available to identify the signatures of positive selection from SNP data,
we chose to utilize the cross-population extended haplotype homozy-
gosity (XP-EHH) test. We also applied eigenvector decomposition
combined with genome-wide association studies (EigenGWAS) and
efficient mixed-model association expedited (EMMAX) (Kang et al.
2010) methods in this study to achieve maximum statistical power
for localizing selection sources, and confirming the results of the
XP-EHH method.

We also performed principal component (PCA) and LD anal-
yses on SNPs in this study.We investigated selection patterns in the
two chicken breeds, and identified several genomic regions that
control traits related to growth, egg quality, and immunity. Thus, by
analyzing nucleotide diversity, we aim to identify genomic regions
that exhibit selection signatures and candidate genes that occur in
proximity to these regions.We hope to identify themost significant
indicators of selection, and thus gain further insights into the
genome-wide footprints of chicken selection. We also investigated
the functions associated with genes under likely selection via gene

ontology (GO) enrichment analysis applying Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotations and pathways.

MATERIALS AND METHODS

Preparation of population and sequencing data
Individual laying chickens were housed in individual cages at the
Shanghai Xin Yang Poultry Breeding Center, Shanghai, China. We
sequenced 252 Dongxiang Blue-shelled and White Leghorn chick-
ens using the genotyping by genome reducing and sequencing
(GGRS) method (http://klab.sjtu.edu.cn/GGRS/) (Chen et al. 2013).
This method utilizes next-generation sequencing technology, and en-
ables the effective and highly reproducible genotyping of species. We
generated �400 million raw reads using this approach, an average
of �1.4 million good reads per sample. We have previously reported
detailed information regarding the individual chickens within our geno-
typing sample as well as our methods for acquiring raw Illumina DNA
sequence data (Liao et al. 2015). In this study, we mapped raw sequence
reads to the chicken reference genome (Gallus_gallus-5.0) using the
Burrows-Wheeler-Aligner (Li andDurbin 2010), while SNP calling was
completed using the software SAMtools (version1.6) (Li et al. 2009).
We applied the following filter requirements for SNPs: (1) SNP test
scores$20 (i.e., an accuracy of.99%); (2) SNP calling rates$90%; (3)
Minor allele frequency$5%; and (4) SNPs detected are the only ones
that appear on a fixed chromosome. We then phased SNPs prior to
genotyping using the software FASTPHASE (Scheet and Stephens
2006) and imputed missing genotypes using the software imputed best
linear unbiased prediction (iBLUP) (Yang et al. 2014) for further pos-
itive selection analysis. The iBLUP software implements a method for
imputing missing genotypes using identity-by-descent and LD infor-
mation. This method can impute missing genotypes with greater accu-
racy than other commonly applied approaches, including the software
BEAGLE (Yang et al. 2014). The SNP and phenotype data are available
through the link http://klab.sjtu.edu.cn/SNPchicken/data.zip or https://
jbox.sjtu.edu.cn/l/FoibdS.

PCA
We performed PCA to collate the information contained in all SNPs
applying the eigen function in the software R. Thus, we obtained
eigenvectors in descending order and utilized the first two to dis-
tinguish population structure.

LD analysis
We calculated the genotype correlation coefficient (r2) between all pairs
of SNPs using the software PLINK (Purcell et al. 2007) (version 1.07) in
order to estimate genome-wide LD, and summarized r2 values at dif-
ferent distances by calculating means across all chromosomes.

The XP-EHH test
The XP-EHH test was proposed by Sabeti et al. (2007), and utilizes the
extended haplotype method and iHS construction strategy. This statis-
tical method improves the reliability of selected region detection by
introducing a group comparison strategy, expressed as follows:

XP2 EHH ¼ ln

�
IA
IB

�
:

In this expression, IA denotes the integral of the EHH statistic of
genetic distance in the observed population, while IB is the integral
for the reference population (Sabeti et al. 2007). Because this ap-
proach is comparable between the selected regions of the two groups,
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we applied the XP-EHH test (Sabeti et al. 2007) to detect selection sig-
natures between the two chicken breeds. We used White Leghorn chick-
ens as the observation population in this study, while the Dongxiang
Blue-shelled breed was designated as the reference population. Thus, a
positive XP-EHH test value demonstrates selection in the observation
population, while a negative value is indicative of selection in the reference
population.We calculated test values using the software XP-EHH (http://
hgdp.uchicago.edu); because the empirical distribution of XP-EHH sta-
tistics conforms to a normal distribution, these can be used to calculate
p-values based on a standard normal distribution. As positive and
negative values of this statistic can be distinguished based on the two
different groups, we calculated p-values using a two-sided test, and
designated values ,0.01 as outlier loci. Thus, if the distance between
two outlier loci was,10 kb, we supposed that they were merged into
one outlier section, while genomic segments extended on both sides of
this section were defined as potentially selected regions (PSRs).

EigenGWAS and EMMAX analysis
Eigenvectorshave routinelybeenused inpopulation genetics toquantify
genetic differentiation across populations and to infer demographic
history (Patterson et al. 2006; Nelson et al. 2008). Thus, in order to

complement and verify the results obtained via the XP-EHH test, we
utilized EigenGWAS analysis to further determine ancestry informative
markers and loci under selection. The EigenGWAS phenotype is an
eigenvector generated fromGWAS data, commonly used in population
genetics to characterize the structure of genetic data (Chen et al. 2016).
SNP effects can be estimated using the single-marker regression, which
is computationally much easier in practice, and is implemented inmany
software packages (Chen et al. 2016). Here, we used the following code: “
java –jar gear.jar eigengwas–bfile plink–ev 5–out plink” to get the p value
of SNPs. “–bfile ” specifies the genotype files in plink binary format, and
“–ev” specifies the eigenvectors that are used from EigenGWAS anal-
ysis. More details can be found in Chen et al. (2016).

Although GWASs have been used to identify numerous loci asso-
ciatedwithcomplex traits,weappliedEMMAXanalysis in this studyas it
is known tooutperformbothPCAandgenomic control in correcting for
sample structure (Kang et al. 2010). EMMAX code for calculating the
kinship matrix and more details can be found in Kang et al. (2010).

Functional gene set enrichment analysis
We performed an additional analysis to further elucidate the biological
function of selected regions, initially mapping candidate regions and

Figure 1 (A) PCA results for White Leghorn and Dongxiang Blue-shelled chickens. In this graph, eigenvector 1 is on the x-axis, while eigenvector
2 is on the y-axis. (B) Decay in average pairwise LD (r2) over distance between SNPs in White Leghorn and Dongxiang Blue-shelled chickens. (C)
Genome-wide distribution of selection signatures detected by using the XP-EHH test. (D) Q-Q plot of p-values with XP-EHH test.
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genes using gene annotation data for chicken extracted from the
Ensembl Genes 87 database (http://asia.ensembl.org/info/data/
index.html). We annotated GO analyses using the KEGG as well
as for candidate-selected regions using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID v6.7). We
defined a significant threshold p-value to be 0.05, and established a
link to reveal relationships between the selected regions and char-
acters. This enabled us to map selected regions onto quantitative
trait loci (QTL) sections using data from the chicken QTL data-
base (http://www.animalgenome.org/cgi-bin/QTLdb/GG/index).
Because not all of the QTL are suitable for analysis, as the lengths
of some are too large for efficient postprocessing, we removed QTL with
lengths.1 Mb, and, when two or more QTL overlapped by.50%,
we merged them into one larger QTL. Then we mapped the selected
regions to the QTL regions from the chicken QTL database. If the
QTL falls within the selected regions, or the region falls within the
QTL, we define it as an overlap. The PERL script was used to con-
duct the above QTL-based annotations.

Data availability
All the SNP and phenotype data we used have been uploaded to our
website (http://klab.sjtu.edu.cn/SNPchicken/data.zip or https://jbox.
sjtu.edu.cn/l/FoibdS). Supplemental Material, File S1 contains the

results of XP-EHH analysis. File S2 contains the results of EigenGWAS
analysis, and File S3 contains the results of EMMAX analysis. File S4
contains a genotype file with a total of 100,014 SNPs and a phenotype
file with five columns of eigenvectors.

RESULTS

PCA
We performed PCA on loci from entire genotypes (i.e., SNPs;
n = 100,114) to characterize the pattern of individual samples. As
shown in Figure 1A, both the first and second eigenvector (63.3% of
total variance) distinguish White Leghorn from Dongxiang Blue-
shelled chickens. At the same time, two strains of White Leghorn
chickens can also be differentiated via the second eigenvector
(14.5% of total variance).

LD analysis
We calculated LD between all pairs of SNPs within each popula-
tion; results show that LD decays with increasing distance in both
breeds (Figure 1B). Average r2 was higher in White Leghorn com-
pared to Dongxiang Blue-shelled chickens between 0 and 1 Mb,
while breed differences decreased as distance between markers
increased. When the r2 threshold was set at 0.3, LD extended to

n Table 1 Number and length distribution of PSRs detected using the XP-EHH test (Mb)

CHR
Positive Value Negative Value

Total SNPsSNP1 Sig1 Length (Mean Value) SNP2 Sig2 Length (Mean Value)

1 415 90 2,465.755 (27.397) 48 14 314.360 (22.454) 463
2 106 24 623.224 (25.968) 31 14 293.355 (20.954) 137
3 211 31 1,081.652 (34.892) 35 10 246.272 (24.627) 246
4 40 11 241.676 (21.971) 39 14 322.283 (23.020) 79
5 147 21 662.781 (31.561) 5 3 60.020 (20.007) 152
6 111 23 654.200 (28.443) 5 2 40.207 (20.104) 116
7 15 4 99.583 (24.896) 2 2 40.000 (20.000) 17
8 53 9 272.414 (30.269) 5 3 60.293 (20.098) 58
9 316 30 1,171.214 (39.040) 0 0 0 316
10 125 20 654.585 (32.729) 1 1 20.000 126
11 22 7 163.538 (26.363) 11 2 42.212 (21.106) 33
12 19 2 97.988 (48.994) 14 1 83.731 (83.731) 33
13 20 2 75.582 (37.791) 23 6 146.549 (24.425) 43
14 207 18 756.989 (42.054) 12 4 80.214 (20.054) 219
15 192 11 643.978 (58.543) 1 1 20.000 (20.000) 193
16 0 0 0 0 0 0 0
17 14 2 71.710 (35.855) 24 5 172.692 (34.538) 38
18 0 0 0 3 2 40.011 (20.006) 3
19 41 9 248.163 (27.574) 3 2 40.156 (20.078) 44
20 63 7 280.412 (40.059) 4 2 48.901 (24.451) 67
21 7 2 49.305 (24.653) 0 0 0 7
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 0 0 2 1 20.152 (20.152) 2
25 1 1 20.000 (20.000) 0 0 0 1
26 8 1 20.531 (20.531) 4 2 41.326 (20.663) 12
27 0 0 0 8 3 97.337 (32.446) 8
28 11 2 55.313 (27.657) 0 0 0 11
W 0 0 0 0 0 0 0
Z 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
Total 2144 327 10,410.596 (31.84) 280 94 2230.071 (23.72) 2424

SNP1, number of significant SNPs in White Leghorn chickens; SNP2, number of significant SNPs in Dongxiang Blue-shelled chickens; Sig1, number of PSRs in White
Leghorn chickens; Sig2, number of PSRs in Dongxiang Blue-shelled chickens.
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120 kb in White Leghorn chickens, compared to 20 kb in the
Dongxiang Blue-shelled breed.

Detection and distribution of PSRs
We detected a total of 2424 outlier loci in this study, including 2144 posi-
tive and 280 negative outliers. These loci correspond to 327 and 94 poten-
tially selected regions, 10.41 and 2.23 Mb in length, and encompassing
0.85 and 0.18% of the chicken genome. It is therefore clear that White
Leghorn chickens have undergone more selection, and have been under
more pressure, than their counterpart breed. The number, length, and
mean of PSRs detected via XP-EHH are shown in Table 1, while the
statistics of potentially selected regions on each chromosome are shown
in Figure 1C (Manhattan distribution) andQ-Qplots (Figure 1D).We also
used EigenGWAS to identify loci under selection among populations for
comparison with the XP-EHH method; we used the top five eigenvectors
to construct Manhattan plots as shown in Figure 2. We used the top 2–5
eigenvectors for this analysis because the presence of toomuchnoisewithin
the first eigenvector rendered it meaningless for our analysis.We therefore
utilized EMMAX to produce Manhattan and Q-Q plots (Figure 3).

Function annotation
Results show that the gene ROBO1 is significant within potentially
selected regions because it acts on follicle development and exerts a

marked effect onWhite Leghorn chicken laying hen performance (Fan
2014). Our results also demonstrate that the gene OSBP2 functions in
cell proliferation (Charman et al. 2014), while SAMSN1 is associated
with the malignant hepatocellular carcinoma phenotype (Sueoka et al.
2015). We also detected the ROBO1 and SAMSN1 genes using the
EigenGWAS method, and, in addition to JARID2, RBMS3, GPC3,
and TRIB2, which are all responsible for immune traits, we isolated
genes such as IGFALS, which was associated with growth in White
Leghorn chickens. Of particular note, EigenGWAS results show that
the SLCO1B3 gene is related to eggshell color (Zheng et al. 2014) in
Dongxiang Blue-shelled chickens.

In order to further elucidate the biological functions of genes within
potentially selectedregions,wecarriedoutGOenrichmentanalyses.Results
reveal the presence of six significant KEGG pathways in Dongxiang Blue-
shelled chickens, and one significant GO term in theWhite Leghorn breed
(Table 2). Compared to Dongxiang Blue-shelled chickens, selected re-
gions inWhite Leghorns weremainly enriched in cell metabolism, while,
conversely, some amino acids, lipid metabolism, and signal transduction
pathways were enriched in the former breed.

These differences in amino acid enrichment are indicative of egg
quality differences between the two breeds, and to some extent reflect
variation between Chinese and western diets.

Figure 2 Manhattan plots generated using EigenGWAS for eigenvectors 2–5 for White Leghorn and Dongxiang Blue-shelled chickens.
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We established the relationship between PSRs and traits by QTL
overlap (Table 3). These data reveal large differences in the number
of healthy and production trait selected regions between the two
chicken breeds. Indeed, more selected regions for production traits

are present in White Leghorn chickens compared to the Dongxiang
Blue-shelled breed, likely the result of stronger artificial selection.
This result also corroborates the reliability of our method. In addi-
tion, the fact that the number of health trait-related selected regions

Figure 3 Manhattan and Q-Q plots generated using EMMAX for eigenvectors 1–5 for White Leghorn and Dongxiang Blue-shelled chickens.
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in White Leghorn chickens is also higher than in the Dongxiang
Blue-shelled breed is likely the result of greater pressures on the
immune system due to the domestic environment since their in-
troduction into China.

We compared and analyzed information from significant PSRs
and the chicken QTL database. Comparisons show that several
QTL intervals with lowest p-values are due to pathological changes
and mineral content in Dongxiang Blue-shelled chickens. However,
these intervals are related mainly to tibia length and body weight
(i.e., 14, 28, 42, and 70 d), and can help to explain differences in the
growth and egg quality traits between the two chicken breeds.

DISCUSSION
Our PCA results reveal genetic distance between White Leghorn and
Dongxiang Blue-shelled chicken breeds. This distance implies trait
differences, especially in terms of growth, egg quality, and the immune
system.

The phenomenon of LD refers to a nonrandom association between
different loci (Single et al. 2016), and a long linkage region can result
from intensive selection. Thus, understanding LD is necessary if we are
to understand the evolutionary history of a population; as shown in
Figure 1B, White Leghorn chickens exhibit longer linkage distances
compared to the Dongxiang Blue-shelled breed, which may be indica-
tive of relatively higher selection.

We utilized three statistical approaches to detect potentially
selected regions in White Leghorn and Dongxiang Blue-shelled
chickens in order to achieve explanatory power localizing the source
of selection. We initially applied the XP-EHH test to make com-
parisons between the two chicken breeds. This statisticwas originally
designed to estimate alleles that have increased in frequency to the
point of fixation (or close to it) in one population, as well as to assess
haplotype differences between two populations (Simonson et al.
2010).

The Dongxiang Blue-shelled breed is particularly renowned for
its slow growth compared to White Leghorns. Thus, while the
results of our statistical gene comparisons reveal common growth
performance in White Leghorn chickens, this is not the case in the
Dongxiang Blue-shelled breed, where the insulin-like growth factor
(IGF) binding protein acid labile subunit (IGFALS) gene was not
found in the study.

We also identified a number of genes in this study that are associated
with immune system traits in White Leghorn chickens, including
JARID2, RBMS3, GPC3, SARM1, and TRIB2. A previous study has
explored the effects and underlying molecular mechanisms of the
JARID2 gene on leukemia cell proliferation (Su et al. 2015); the RNA
binding motif single stranded interacting protein3 (RBMS3) is known
to act as a tumor suppressing gene, and is a favorable prognosticmarker
in lung squamous cell carcinoma. At the same time, the GPC3 gene
inhibits hepatocellular carcinoma cells, and plays an important role in
immunity (Dargel et al. 2015; Liang et al. 2015), while sterile a and TIR
motif containing one (SARM1) genes are also related to immunity, and
are responsible for regulating neuronal inflammation (Lin and Hsueh
2014). Finally, the TRIB2 gene—a novel regulator of thymocyte cellular
proliferation—is important in thymopoietic responses to genotoxic
and oncogenic stress, and functions to suppress tumors (Liang et al.
2016).

Our results show that there is a much higher number of PSRs in
White Leghorn chickens than is the case in the Dongxiang Blue-shelled
breed. These results imply that the immune systems of White Leghorn
chickens have been subject to significant environmental pressures since
being introduced to China because of complex domestic conditions.
These chickens also produce more eggs and grow faster as a result of
greater selection pressure. Our analysis of PSRs has revealed a series of
genes that are associated with important economic traits, and has
elucidated molecular genetic mechanisms in both White Leghorn
and the Dongxiang Blue-shelled chickens.

ACKNOWLEDGMENTS
This study was supported by the National Natural Science Foundation
of China (31101706), China Agriculture Research Systems (CARS-41-
K05), and the National 948 Project of China (2012-Z26, 2014-Z29).

Author contributions: Y.P. and Q.W. designed and supervised the
study, while Q.Z. analyzed the data and wrote the article. R.L. improved
the genotyping by using the GGRS approach for chickens, with the help
of H.S., while Z.Z. implemented the iBLUP method. All authors read
and edited the article.

LITERATURE CITED
Charman, M., T. R. Colbourne, A. Pietrangelo, L. Kreplak, and N. D.

Ridgway, 2014 Oxysterol-binding protein (OSBP)-related protein
4 (ORP4) is essential for cell proliferation and survival. J. Biol. Chem.
289: 15705–15717.

Chen, G. B., S. H. Lee, Z. X. Zhu, B. Benyamin, and M. R. Robinson,
2016 EigenGWAS: finding loci under selection through genome-wide
association studies of eigenvectors in structured populations. Heredity
(Edinb) 117: 51–61.

Chen, Q., Y. Ma, Y. Yang, Z. Chen, R. Liao et al., 2013 Genotyping by
genome reducing and sequencing for outbred animals. PLoS One 8:
e67500.

n Table 2 Significant GO or pathway in PSRs

Category Term Count p-Value

White GOTERM_BP_2 GO:0044237: cellular metabolic process 11 3.2E22
Green KEGG_PATHWAY gga00592: a-linoleic acid metabolism 3 7.6E23

KEGG_PATHWAY gga00591: linoleic acid metabolism 3 8.6E23
KEGG_PATHWAY gga00565: ether acid metabolism 3 2.5E22
KEGG_PATHWAY gga00590: arachidonic acid metabolism 3 2.7E22
KEGG_PATHWAY gga04010: MAPK signaling pathway 6 3.0E22
KEGG_PATHWAY gga00330: arginine and proline metabolism 3 3.8E22

White, White Leghorn chickens; Green, Dongxiang Blue-shelled chickens.

n Table 3 Number of PSRs revealed by QTL analysis in some
related traits

Population
Number
of PSR (%)

Healthy
Characters

Production
Traits

Physiological
Characters

White 66 (68.75%) 14 49 3
Green 30 (31.25%) 1 29 0

White, White Leghorn chickens; Green, Dongxiang Blue-shelled chickens.

Volume 8 February 2018 | Identifying Genetic Differences | 475



Dargel, C., M. Bassani-Sternberg, J. Hasreiter, F. Zani, J. H. Bockmann et al.,
2015 T cells engineered to express a T-cell receptor specific for glypican-3
to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology
149: 1042–1052.

Ennis, S., 2007 Linkage disequilibrium as a tool for detecting signatures of
natural selection. Methods Mol. Biol. 376: 59–70.

Fan, X., 2014 Temporal and spatial expression of Slit2/Robo1 gene which
effect on the development of prehierarchical follicles on the chicken.
Doctoral dissertation, Jilin Agricultural University.

Fay, J. C., and C. I. Wu, 2000 Hitchhiking under positive Darwinian se-
lection. Genetics 155: 1405–1413.

Gholami, M., M. Erbe, C. Gärke, R. Preisinger, A. Weigend et al.,
2014 Population genomic analyses based on 1 million SNPs in com-
mercial egg layers. PLoS One 9: e94509.

Hudson, R. R., M. Kreitman, and M. Aguade, 1987 A test of neutral mo-
lecular evolution based on nucleotide data. Genetics 116: 153–159.

Kang, H. M., J. H. Sul, S. K. Service, N. A. Zaitlen, S. Y. Kong et al.,
2010 Variance component model to account for sample structure in
genome-wide association studies. Nat. Genet. 42: 348–354.

Li, D., W. B. Liu, J. F. Liu, G. Q. Yi, L. Lian et al., 2012 Whole-genome scan
for signatures of recent selection reveals loci associated with important
traits in White Leghorn chickens. Poultry Sci. 91: 1804–1812.

Li, H., and R. Durbin, 2010 Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 26: 589–595.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The sequence
alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Liang, K. L., C. O’Connor, J. P. Veiga, T. V. McCarthy, and K. Keeshan,
2016 TRIB2 regulates normal and stress-induced thymocyte prolifera-
tion. Cell Discov. 2: 15050.

Liang, Y. N., Y. Liu, Q. Meng, X. Li, F. Wang et al., 2015 RBMS3 is a tumor
suppressor gene that acts as a favorable prognostic marker in lung
squamous cell carcinoma. Med. Oncol. 32: 459.

Liao, R., Z. Wang, Q. Chen, Y. Tu, Z. Chen et al., 2015 An efficient genotyping
method in chicken based on genome reducing and sequencing. PLoS One
10: e0137010.

Lin, C. W., and Y. P. Hsueh, 2014 Sarm1, a neuronal inflammatory regu-
lator, controls social interaction, associative memory and cognitive flex-
ibility in mice. Brain Behav. Immun. 37: 142–151.

Nelson, M. R., K. Bryc, K. S. King, A. Indap, A. R. Boyko et al., 2008 The
population reference sample, POPRES: a resource for population, disease,
and pharmacological genetics research. Am. J. Hum. Genet. 83: 347–358.

Patterson, N., A. L. Price, and D. Reich, 2006 Population structure and
eigenanalysis. PLoS Genet. 2: e190.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira et al.,
2007 PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81: 559–575.

Sabeti, P. C., D. E. Reich, J. M. Higgins, H. Z. Levine, D. J. Richter et al.,
2002 Detecting recent positive selection in the human genome from
haplotype structure. Nature 419: 832–837.

Sabeti, P. C., P. Varilly, B. Fry, J. Lohmueller, E. Hostetter et al.,
2007 Genome-wide detection and characterization of positive selection
in human populations. Nature 449: 913–918.

Scheet, P., and M. Stephens, 2006 A fast and flexible statistical model
for large-scale population genotype data: applications to inferring
missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78:
629–644.

Simonson, T. S., Y. Yang, C. D. Huff, H. Yun, G. Qin et al., 2010 Genetic
evidence for high-altitude adaptation in Tibet. Science 329: 72–75.

Single, R. M., N. Strayer, G. Thomson, V. Paunic, M. Albrecht et al.,
2016 Asymmetric linkage disequilibrium: tools for assessing multiallelic
LD. Hum. Immunol. 77: 288–294.

Su, C. L., T. R. Deng, Z. Shang, and Y. Xiao, 2015 JARID2 inhibits leukemia
cell proliferation by regulating CCND1 expression. Int. J. Hematol. 102:
76–85.

Sueoka, S., M. Kanda, H. Sugimoto, D. Shimizu, S. Nomoto et al.,
2015 Suppression of SAMSN1 expression is associated with the malig-
nant phenotype of hepatocellular carcinoma. Ann. Surg. Oncol. 22(Suppl.
3): S1453–S1460.

Tajima, F., 1989 Statistical method for testing the neutral mutation hy-
pothesis by DNA polymorphism. Genetics 123: 585–595.

Voight, B. F., S. Kudaravalli, X. Wen, and J. K. Pritchard, 2006 A map of
recent positive selection in the human genome. PLoS Biol. 4: e72.

Wang, X. L., J. X. Zheng, Z. H. Ning, L. J. Qu, G. Y. Xu et al., 2009 Laying
performance and egg quality of blue-shelled layers as affected by different
housing systems. Poult. Sci. 88: 1485–1492.

Yang, Y., Q. Wang, Q. Chen, R. Liao, X. Zhang et al., 2014 A new genotype
imputation method with tolerance to high missing rate and rare variants.
PLoS One 9: e101025.

Zheng, C., Z. Li, N. Yang, and Z. Ning, 2014 Quantitative expression of
candidate genes affecting eggshell color. Anim. Sci. J. 85: 506–510.

Communicating editor: D. J. de Koning

476 | Q. Zhao et al.


