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Abstract
Context: The diagnosis and evaluation of impaired renal function remains a challenge owing to lack 
of reliable biomarker for assessment of kidney function. The existing panel of biomarkers currently 
displays several limitations, and recently kidney injury molecule‑1  (KIM‑1) has been suggested as 
a sensitive biomarker of renal function and proposed to enter clinical practice. Aims: This study was 
conducted to determine the diagnostic value of serum creatinine, urea, and microalbuminuria  (MAU) in 
relation to the novel biomarker, KIM‑1. Materials and Methods:  Serum creatinine, urea, MAU, and 
KIM‑1 were measured in forty individuals with and forty without kidney disease. Data were analyzed 
using multivariate methods of assessing diagnostic efficiency, test agreement, condition effects, and 
variability. Results: The area under the receiver‑operator characteristic curve revealed a diagnostic 
advantage of creatinine  (0.924  ±  0.0066) and urea  (0.925  ±  0.0068) over MAU  (0.880  ±  0.078) and 
KIM‑1  (0.35  ±  0.124). Overall diagnostic efficiency was higher for creatinine and urea  (89.5% and 
90.9%, respectively), followed by MAU  (85.7%) and then KIM‑1  (56.3%). Logistic regression analysis 
showed that creatinine and urea  (R2 = 0.75 and R2 = 0.72, respectively, P  <  0.001 for both) were better 
predictors of kidney disease than MAU (R2 = 0.64, P < 0.001) and KIM‑1 (R2 = 0.046, P = 0.116). Further 
analysis of agreement showed that urea had an excellent agreement with creatinine  (kappa r  =  0.835, 
P  <  0.001), with KIM‑1  (kappa r = –0.198, P  =  0.087) showing a poor agreement with creatinine. 
Conclusion: Our results indicate that elevated serum creatinine and urea above specific cutoff points 
reliably identifies patients with acute kidney injury or chronic kidney disease. However, more researches 
are warranted to further validate the diagnostic efficiency and application of MAU and for KIM‑1 before 
its implementation in clinical practice.
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Introduction
Renal failure is a disorder in which the 
kidneys fail to function effectively.[1] Acute 
renal failure  (acute kidney injury  [AKI]) 
is a syndrome characterized by the rapid 
loss of the kidney excretory function and 
is one of the most important complications 
among hospitalized patients and accounts 
for a high rate of in‑hospital deaths,[2] 
whereas chronic kidney disease  (CKD) is 
characterized by primary renal failure and 
irreversible renal structural lesions that have 
been present for months to years.[3] AKI and 
CKD are worldwide public health problems 
principal to a progressively growing 
number of patients with end‑stage renal 
disease and are among the most common 
causes of morbidity and premature death, 
with major impact on health‑care costs, 
productivity, and growth.[4] Thus, diagnosis 

and evaluation of impaired renal function 
is of particular importance in treatment, 
monitoring, and prognosis of renal failure. 
Whereas accumulation of end products of 
nitrogen metabolism (urea and creatinine) is 
currently established biomarkers of choice 
for the diagnosis of AKI and CKD, these 
have been rigorously criticized for their 
apparent low diagnostic efficiency and 
inability to accurately determine kidney 
failure in certain circumstances.[5,6]  Their 
possible better replacements, thus, have 
been a legend over many decades retold. 
The aim of this study was to investigate the 
diagnostic value of traditional biomarker 
of kidney function  –  urea, creatinine, and 
microalbuminuria  (MAU) and a previously 
described highly sensitive novel biomarker, 
kidney injury molecule‑1  (KIM‑1)[7,8] in the 
diagnosis of acute and CKD.
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Materials and Methods
Individuals matched on broad age categories  (18–39, 
40–59, 60–75  years old  –  mean  ±  standard deviation; 
35.6  ±  13.5  years, range; and 18–72  years.) and 
genders  (female: male ratio: 3:5) were recruited to the 
study  (n  =  80) between June 2014 and August 2014 at 
the University Teaching Hospital, Lusaka, Zambia. The 
group consisted of previously diagnosed individual with 
kidney disease  (n  =  40; 27 with CKD and 13 with AKI) 
and matched individuals without kidney disease  (n  =  40). 
Kidney disease was defined according to the individual’s 
clinical history, presenting condition and previous 
laboratory diagnosis; with these data obtained from previous 
test results, and current patient registry files. Consecutive 
individuals of either gender that gave written consent were 
recruited to the study. Individuals below 18  years old 
or above 75  years of age were excluded from the study. 
Pregnant women and those with debilitating comorbid 
conditions, including liver disease, diabetes mellitus, major 
surgery, cancer, acute and chronic inflammatory diseases, 
and heart failure, were also excluded from the study. All 
laboratory tests were performed in duplicate on one sample 
of urine or serum appropriately, after collection from study 
participants. Urinary KIM‑1 levels were determined using 
the NeoBioLab® Human HK0032  (USA) ELISA Kit, a 
quantitative competitive immunoassay for measurement of 
Human KIM‑1 according to the manufacturer’s protocol. 
MAU levels were determined using the Fitzgerald® 
Industries International  (USA) ELISA Kit, a quantitative 
competitive immunoassay for measurement of human 
albumin in urine. KIM‑1 and MAU levels in the samples 
were calculated using linear regression equations obtained 
from standard absorbance verses concentration plots. Urea 
and creatinine were measured using the modified Jaffé 
method and the kinetic urease method, respectively, on the 
Bechman Coulter Olympus AU480 automated chemistry 
analyzer. A  full description of the urea and creatinine 
methods and their validation have been published 
elsewhere.[9‑11]

Data were analyzed in the Statistical Package for Social 
Sciences (SPSS) version 22 (IBM Corp. SPSS Inc. Armonk, 
NY, USA)  for MAC  (SPSS Inc., Chicago, IL, USA). The 
Shapiro–Wilk test was used, and histograms, box plots, 
and Q‑Q plots were examined to verify the normality 
of distribution of measurement data. Nonparametric 
receiver‑operator characteristic  (ROC) curves based on 
the Mann–Whitney U‑test statistics were calculated, and 
the area under the curve  (AUC), 95% confidence interval, 
and specific P  values were calculated for each plot.[12] 
Logistic regression was used to calculate the best cut‑off 
points for each biomarker a described previously.[13] 
Sensitivity, specificity, positive predictive values, negative 
predictive values, and overall diagnostic efficiency were 
calculated for each value of creatinine, urea, KIM‑1, and 
MAU. Logistic regression analysis was further applied to 

ascertain the effects of creatinine, urea, KIM‑1, and MAU 
on the likelihood that participants have kidney disease. 
In addition, agreement of creatinine with urea, KIM‑1, 
and MAU in detecting kidney disease was assessed using 
Cohen’s kappa statistic for agreement.[14] Interaction of 
gender at two levels  (male and female) and kidney status 
at three levels  (AKI, CKD, and normal kidney function) 
on each biomarker was evaluated using two‑way analysis 
of variance (ANOVA) with a post hoc Bonferroni test. The 
independent sample Student’s t‑test was used to compare 
mean creatinine values between genders. All statistical 
tests were performed at the 5% significance level, and 
differences were considered significant if two‑tailed 
P < 0.05 for all test applied.

The University of Zambia Biomedical Research Ethics 
Committee IRB00001131 of IORG0000774 approved the 
study protocol; approval reference No.  003‑08‑14. Written 
informed consent was obtained from all study participants. 
Permission to conduct the study was obtained from the 
Directorate of Research and Graduate Studies of the 
University of Zambia.

Results
Discrimination model for diagnosis of kidney disease

Assessing how well the model distinguished patients with 
and without kidney disease was done using the AUC of the 
ROC curve as in Figure 1.

Kidney disease prediction models

A logistic regression was performed to ascertain the 
effects of creatinine, urea, KIM‑1, and MAU on the 
likelihood that participants have kidney disease. The 
logistic regression models for creatinine and for urea 
were statistically significant, P  <  0.0001 for both 
tests. The models for creatinine and urea explained 
75.4% and 71.6% (i.e., Nagelkerke R2  =  0.754 and 

Figure 1: Receiver–operator characteristic curves for the best prediction 
model of kidney disease. The area under the receiver–operator characteristic 
curve values and 95% confidence intervals and P values
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R2  =  0.716, respectively) of the variance in kidney 
disease and correctly classified 89.7% and 90.9% of 
cases, respectively. The MAU logistic regression model 
was statistically significant, P  <  0.0001, the model 
explained 64% of the variance in kidney disease and 
correctly classified 85.7% of cases. KIM‑1 displayed a 
nonstatistically significant model, P  =  0.116, R2  =  0.046 
which explained only 56.3% of cases. Step‑wise logistic 
regression model combined for urea and creatinine 
was statistically significant P  <  0.0001 and this model 
explained 76.6% of the variable in kidney disease and 
correctly classified 93.2% of cases. Adding MAU to the 
urea and creatinine logistic regression model yielded a 
statistically significant model, P  <  0.0001, with which 
81.7% of the variable in kidney disease was explained 
and correctly classified 94.6% of the cases.

Interaction of kidney status and gender on biomarker 
levels

A two‑way ANOVA was conducted that examined the 
effect of gender  (two levels; male and female) and kidney 
status  (three levels; AKI, CKD, or normal) on serum 
creatinine, urea, KIM‑1, and MAU levels.

Creatinine

There was a nonstatistically significant interaction between 
the effects of gender and kidney status on serum creatinine 
levels, P  =  0.437. The main effect kidney status was 
statistically significant, P < 0.001, indicating that creatinine 
levels were different across kidney status. However, 
the main effect gender was not significant  (P  =  0.626), 
indicating that the mean creatinine levels were not different 
for gender across different kidney statuses. Post hoc analysis 
with a Bonferroni adjustment showed that individuals 
with AKI and CKD had statistically significantly elevated 
creatinine levels  (639.2  ±  115.0 µmol/L and 553.3  ±  86.4 
µmol/L, respectively) than the normal control group 
levels  (68.0  ±  70.8 µmol/L), P  <  0.001 and P  <  0.001, 
respectively. Creatinine levels were statistically similar 
between AKI and CKD, P  =  1.0 [Figure  2a]. However, 
creatinine levels were statistically significantly different 
between genders for the control group [Figure 3].

Urea

The main effect kidney status indicated that urea levels 
were different across kidney statuses,  (P  <  0.001). 
Conversely, urea levels were not different for gender across 
different kidney statuses, P = 0.882. Furthermore, there was 
no interaction between the effects of gender and kidney 
status on serum urea  [P  =  0.598, Figure  2b]. Bonferroni 
adjusted post hoc analysis showed that individuals 
with AKI and CKD had statistically significantly 
elevated urea levels  (20.5  ±  3.1 mmol/L and 17.7  ±  2.2 
mmol/L, respectively) than the normal control group 
levels (3.9 ± 1.9 mmol/L), P < 0.001 for both comparisons. 

Whereas there was no statistical difference between AKI 
and CKD creatinine levels (P = 1.0).

Kidney injury molecule‑1

The main effect kidney status and main effect gender 
both showed no difference in KIM‑1 levels across kidney 
status and gender, P  =  0.078, and P  =  0.096, respectively. 
Furthermore, there was no significant interaction between 
the effects of gender and kidney status on KIM‑1 levels 
[P = 0.213, Figure 2c].

Microalbuminuria

The main effect kidney status and main effect gender 
both showed statistically significant differences in MAU 
levels across kidney status and gender, P  <  0.001, 
and P  =  0.003, respectively. There was a statistically 
significant interaction between the effects of gender and 
kidney status on MAU  [P  =  0.002, Figure  2d]. Post hoc 
test with a Bonferroni adjustment showed that individuals 
with AKI and CKD had statistically significantly raised 
MAU  (122.7  ±  16.5 μg/mL and 130.6  ±  11.5 μg/mL, 
respectively) than control group levels  (16.3 ± 9.5 μg/mL) 
(P < 0.001 and P < 0.001, respectively).

Discussion
Our results as demonstrated on ROC curves AUCs 
revealed that the ROC models of urea and creatinine best 
distinguishes individual with and without kidney disease 
and support the advantage of serum urea and creatinine 
over MAU and even more so better than KIM‑1 in the 
diagnosis of kidney disease  [Figure  1 and Table  1]. 
Creatinine AUC‑ROC of  >0.90 also have been reported 
and showing that serum creatinine is a good predictor of 
kidney disease.[15] In addition, creatinine AUC increased 
as the cut‑off value for serum creatinine increased, 
indicating that the diagnostic accuracy of serum creatinine 
improves as renal function worsens.[16] Likewise, this 
could be inferred on urea as urea and creatinine showed 
similar AUCs and excellent agreement as measured using 
Cohen’s kappa statistic [Table 2]. Our results also support 
the occurrence of MAU as a relevant marker of kidney 
disease as previously suggested.[17] Moreover, our KIM‑1 
AUC  (0.35  ±  0.124) value was inconsistent with other 
studies that demonstrated KIM‑1 AUC‑ROC ranging from 
0.52 to 0.98.[8,18] However, it might be argued that such a 
broad range of reported values may indicate inconsistency, 
consequently provides little confidence of KIM‑1 as a 
biomarker for diagnosis of kidney disease.

Calculated sensitivity, specificity, positive and negative 
predictive values further supported the advantage of 
urea and creatinine by their comparably high diagnostic 
sensitivity and excellent specificity, and negative and 
positive predictive values [Table 3]. KIM‑1 further exhibited 
a dismal overall diagnostic efficiency of 0.56, which is not 
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far off a coin toss, suggesting that KIM‑1 may not only 
be inferior to urea, creatinine, or MAU for that matter but 
also that it might be inappropriate for diagnosis of kidney 
disease.[19] These findings further support the observed 
low AUC‑ROC  [Figure  1] plot below the reference line, 
which specifies anything useful for predicting a particular 
condition–kidney disease in our case.[20]

Our logistic regression analysis revealed that urea and 
creatinine had an excellent predictability of kidney 
disease. In addition, we revealed that KIM‑1 prediction 

of kidney disease might be poor as only 4.6% of kidney 
disease were predicated, whereas MAU exhibits a strong 
predictability of kidney disease.[21,22] Moreover, a combined 
logistic regression model of both urea and creatinine to 
predict kidney disease correctly classified 93.2% of cases, 
demonstrating that the use of both tests simultaneously 
offers a slight advantage. Adding MAU to this model 
produced a marginal increase of 1.4% in overall diagnostic 
efficiency and correctly classified 94.6% of the cases. 
However, consideration of this increase in overall efficiency 
together with important concerns in medical practice such 
as cost, time, and labor discourages us from suggesting the 
use of all three tests on patients.[3]

We further analyzed for interaction between kidney 
status  (AKI, CKD, and normal function) since the 

Figure 3: Mean serum creatinine levels of individuals with normal kidney 
function

Table 1: Area under the receiver–operator characteristic 
curve for kidney biomarkers

Biomarker AUC 95% CI P
Creatinine 0.924 0.858-0.991 <0.001
Urea 0.925 0.857-0.992 <0.001
KIM‑1 0.350 0.226-0.474 <0.027
MAU 0.880 0.802-0.958 <0.001
Grading of AUC; 0.90-1: Excellent; 0.80-0.90: Good; 0.70-0.79: 
Fair; 0.60-0.69: Poor; 0.50-0.59: Fail. CI: Confidence interval; AUC: 
Area under the curve; CI: Confidence interval; KIM‑1: Kidney injury 
molecule‑1; MAU: Microalbuminuria

Figure 2:  Interaction between kidney biomarkers with gender and kidney status: two-way analysis of variance showed that main effect kidney status 
was associated with creatinine (P < 0.001) (a), urea (P < 0.001) (b), and microalbuminuria (P < 0.001) (d) but not for kidney injury molecule-1 (P = 0.096) (c)

a b

c d
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detected biomarker quantities may vary with the type 
of kidney disease and gender and other factors.[3] Here, 
we demonstrated that serum creatinine and urea varied 
across different kidney statuses but not with gender, with 
the lowest levels of both biomarkers present among those 
with normal kidney function, thus, adding further impetus 
that urea and creatinine are elevated in kidney disease. 
Nonetheless, it worth stating that creatinine levels were as 
expected higher in males than females with normal kidney 
function as suggested elsewhere [Figure 3].[23]

Despite various compelling evidence presented here, it 
should be noted that for a biomarker to be considered 
better than another, other considerations need to be taken 
into account such as organ specificity, cost, quickly and 
reliably measured, noninvasiveness, and use for monitoring 
and prognosis.[6] More importantly, this means we ought 
to be adept to reach a compromise as to which biomarker 
best meets the criteria of a perfect biomarker  –  serum 
creatinine and urea do practically so mainly in the context 
of cost and quickly and reliably measured. We are not 
blinded, however, from the elements that urea and creatinine 
endure valid scrutiny and reports of low diagnostic values in 
numerous studies is undeniable.[6,24‑26] However, our findings 
present compelling evidence, and it ought to be noted 
also that performance characteristics reported here could 
be lower than those expected in clinical practice, due to 
availability of a complementary clinical diagnosis and other 
patient data such as persons at risk of developing kidney 
disease, recurring disease, persistent urinary infections and 

obstruction, cardiovascular and hepatic disease, nephritic 
drugs, and among others,[3,27] all which are factors of the 
medical diagnosis equation.

Conversely, the professed perfect biomarker may not be 
upon us for years to come, or simply, may be a myth, or 
may lie elsewhere, such as in the science of biosensors,[28‑30] 
or biomathematics and algorithm,[31,32] even this remains 
highly speculative. Since other options are lacking, 
accordingly, as we hope, speculate and evaluate, we 
should continue applying the current sensitive biomarkers 
with “questionable confidence”  –  conscious that urea and 
creatinine meet the fundamental diagnostic tenets of a 
biological test  –  to estimate according to its quantity, the 
presence or absence of disease, and if present, its severity.

Conclusion
Our results indicate that elevated serum creatinine and urea 
above a specific cut‑off point reliably identifies patients 
with AKI and CKD. Improved overall test efficiency to 
predict kidney disease may be obtained by combining urea 
and creatinine measurement in patients simultaneously. 
MAU showed capacity as a good biomarker for kidney 
disease, whereas KIM‑1 performance was overall 
unsatisfactory. However, larger prospective studies are 
warranted with the goal of confirming our observations and 
to further validate the biological efficiency and application 
of MAU and KIM‑1.
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