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A B S T R A C T

Background: The diagnosis performance of B-mode ultrasound (US) for focal liver lesions (FLLs) is relatively
limited. We aimed to develop a deep convolutional neural network of US (DCNN-US) for aiding radiologists
in classification of malignant from benign FLLs.
Materials and methods: This study was conducted in 13 hospitals and finally 2143 patients with 24,343 US images
were enrolled. Patients who had non-cystic FLLs with pathological results were enrolled. The FLLs from 11 hospi-
tals were randomly divided into training and internal validations (IV) cohorts with a 4:1 ratio for developing and
evaluating DCNN-US. Diagnostic performance of the model was verified using external validation (EV) cohort
from another two hospitals. The diagnosis value of DCNN-US was compared with that of contrast enhanced com-
puted tomography (CT)/magnetic resonance image (MRI) and 236 radiologists, respectively.
Findings: The AUC of ModelLBC for FLLs was 0.924 (95% CI: 0.889�0.959) in the EV cohort. The diagnostic sen-
sitivity and specificity of ModelLBC were superior to 15-year skilled radiologists (86.5% vs 76.1%, p = 0.0084
and 85.5% vs 76.9%, p = 0.0051, respectively). Accuracy of ModelLBC was comparable to that of contrast
enhanced CT (both 84.7%) but inferior to contrast enhanced MRI (87.9%) for lesions detected by US.
Interpretation: DCNN-US with high sensitivity and specificity in diagnosing FLLs shows its potential to assist
less-experienced radiologists in improving their performance and lowering their dependence on sectional
imaging in liver cancer diagnosis.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study

Literature searches were conducted separately using Medline
and ISI Web of Science databases on 12 March 2020 with the
terms (“deep learning” OR “radiomic” OR “convolutional neural
network” OR “Artificial intelligence” OR “traditional machine
learning”) AND (“liver neoplasms”) AND (“ultrasonography”),
without date or language restrictions. A total of two studies
were published that evaluate the use of radiomics or deep
learning to classify the focal liver lesions from B-mode ultra-
sound. Moreover, none of two studies has an external valida-
tion cohort and they are based on single-centre and small
sample size. Potential pseudo and specious result caused by
overfitting from these studies make it tough for clinical general-
ization and actual use.

Added value of this study

Database we built in this study is the largest, multicentric and
prospective, and standardized ultrasound image data for focal
liver lesions, which ensures the quality of ultrasound images,
reduces the difference between radiologists and provide the
large-scale data basis for deep learning analysis. Based on this
database, the deep convolutional neural network model was
developed to improve diagnosis power of FLLs and showed sat-
isfied robustness. The diagnosis capability of our model was
comparable to contrast enhanced CT and superior to skilled
radiologists with 15-year experience in FLLs diagnosis perfor-
mance. In addition, we showed the diagnosis of model as the
attention maps.

Implications of all the available evidence

The high performance of the model for liver lesions will con-
tribute to an increase in ultrasound diagnostic quality, reduce
doctor’s dependence on CT/MRI and biopsy, facilitate the devel-
opment of remote medicine, and decrease the costs in the
national health care through the early diagnosis of diseases.
Furthermore, it has a potential to induce a paradigm shift in the
field of diagnosis of liver lesions via image. And the model could
be particularly valuable for junior radiologists whose expertise
in ultrasound imaging interpretation is insufficient, which will
lead to a reduction in misdiagnosis of focal liver lesions by
them and lesser dependence on CT/MRI.
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1. Introduction

Liver cancer is the sixth most prevalent cancer and the fourth
most frequent cause of cancer-related death worldwide, with about
841,000 new cases and 782,000 deaths per year, representing a great
challenge to health-care systems because of their aggressive presen-
tation [1]. Therefore, early detecting and accurately separating liver
malignancy from benign lesions is crucial for prognosis, surveillance
and management of patients with focal liver lesions (FLLs) [2]. In
clinic practice, B-mode ultrasound (US) is usually the first-line imag-
ing test for FLLs because it is inexpensive and facilitates real time
diagnosis without radiation exposure or nephrotoxicity [4�6]. How-
ever, B-mode US is less accurate at diagnosing FLLs compared with
tomographic imaging modalities because of high dependence on the
quality of the equipment and doctors’ experience, and lack of perfu-
sion information [5,6]. Especially, FLLs of different histological types
often display similar appearances on US images [7], whereas FLLs of
the same histological type may present completely different US
image characteristics because of variances in their disease differentia-
tion and stage [8]. Taking hepatocellular carcinoma (HCC, a growing
global public health problem) as an example, the sensitivity of B-
mode US for diagnosis is only 46%�63% [6,9�11]. Therefore, US was
only recommended as surveillance tool for liver lesion by The Ameri-
can Association for the Study of Liver Diseases (AASLD) and European
Association for the Study of the Liver (EASL) guidelines [9,12].

Therefore, more and more physicians and radiologists have been
relying on contrast enhanced US (CEUS), computed tomography (CT),
and magnetic resonance image (MRI), and even biopsy to obtain
accurate diagnosis of FLLs. This is a costly, time-consuming, often
subjective, and invasive process that requires substantial experience
and expertise among radiologists and pathologists. Further, the
unbalanced distribution of medical resources between developing
and developed areas has inhibited the application of CEUS/CT/MRI
and biopsy. Therefore, timely and effective clinical decisions have
been difficult to make, and they have also become more complex,
demanding the synthesis of decisions from assessment of large vol-
umes of data that represent clinical information. If the FLL can be
well analysed and characterized by US as the routine and primary
scanning technology, which may fuel the time-consuming and rela-
tively expensive contrast enhanced imaging to concentrate on com-
plex cases in order to filtrate highly benign or non-urgent cases for
clinicians. .

The development of an artificial intelligence (AI) framework pro-
vides a new opportunity to improve the diagnostic accuracy of FLLs
by US imaging. Compared with radiologists reading anatomical
images, AI techniques can not only better reflect holistic tumour mor-
phology but also capture granular and task-specific radiological pat-
terns that are difficult to recognize by human vision [13]. Previous
studies explored the validity of traditional pattern recognition classi-
fiers and deep convolutional neural networks (DCNNs) in FLL diagno-
sis via US imaging [14�19]. Nevertheless, these retrospective studies
had small sample sizes, did not employ standardized image data, and
lacked external validation (EV) to ensure the reliability of their
results. Currently, DCNN methods are most widely used in larger-
sample based AI studies. Unlike classical radiomics analysis based on
hand-designed features, DCNN apply an end-to-end learning strat-
egy, taking image pixels and corresponding class labels from medical
image data as inputs to impart enhanced feature learning power. In
our previous study, we successfully used a DCNN for liver fibrosis
assessment using shear wave elastography with superior accuracy
[17].

In this study, we conducted a multicentre study to develop a
DCNN-US for classifying of malignant from benign FLLs. Furthermore,
we compared the model’s results with contrast enhanced CT/MRI
and radiologists with different skill levels based on pathological ref-
erence.

2. Methods

2.1. Overall design

We developed a ResNet-based [18] convolutional neural network
for diagnosis of FLLs using US imaging. Radiomics signatures derived
from FLLs and liver, along with ultrasonic features and clinical factors,
were incorporated to construct the DCNN-US model. A training
cohort was used to determine the radiomic signature. Internal valida-
tion (IV) and EV cohorts were used to validate the performance of the
generated model. In addition, the EV cohort was also used to compare
the performance of contrast enhanced CT/MRI with those of radiolog-
ists who had different levels of liver US experience. This multicentre
study was approved by the ethics committee of each centre and is
registered at ClinicalTrials.gov (NCT03871140). Written informed
consent was obtained from all patients in this study. All authors had
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access to the study data and reviewed and approved the final manu-
script.

All diagnoses were confirmed by liver biopsy and/or resection
pathology within one month after US scan. The results of histological
staining were read by board certified liver pathologists.

2.2. Patients enrollments

All the cohorts used the same inclusion and exclusion criteria. The
inclusion criteria were as follows: (1) focal non-cystic liver lesions
without previous any local therapy; (2) lesion size >1.0 cm; (3) stan-
dard US scan performed less than 1 month before biopsy or surgery;
(4) type of FLL confirmed by histologic examination. The exclusion
criteria were as follows: (1) liver containing only cystic lesions; (2)
any previous local therapy for the index lesion before US scan, includ-
ing radiotherapy, ablation, and transarterial chemoembolization; (3)
unclear US image of liver or lesions or absence of the type of US
image that the study required; (4) absence of definite pathological
diagnosis; (5) absence of clinical disease history.

2.3. US images acquisition

All US images from the 13 hospitals were in DICOM data format.
The US examinations were performed by using 17 devices (Appendix
1.1, Table S2). The criteria for US image acquisition and radiologic fea-
ture evaluation of FLLs were established by the study panel, which
included 13 radiologists from each centre with >10 years of experi-
ence in US-based liver diagnosis. We collected a total of 11 standard
US images, for each FLL patient according to the established protocol
(Appendix 1.2, Fig. S1). A total of 7 primary ultrasonic features were
analysed and summarized in Appendix 1.3, Table S3 and Fig. S2.

2.4. Clinical information acquisition

The demographic and clinical data of all patients including age,
gender, history of hepatitis and extra-hepatic tumours, and alpha
fetoprotein (AFP) were recorded. AFP was measured within 1 week
after US scan. The threshold value for a negative AFP level was
�200 ng/mL. All US and clinical information were deidentified before
they were transferred to investigators.

2.5. Diagnosis model construction by deep learning

The DCNN models were trained on manual planar segmented
regions of interest (ROI) from lesion or liver background (LB) images
(Appendix 1.4). Three DCNN models named ModelLesion (ModelL),
ModelLesion+Background (ModelLB), and ModelLesion+Background+clinic (Mod-
elLBC) with colligated image and clinical information were corre-
spondingly built to analyse their diagnostic capabilities. modelling
analysis was performed on python 3.6.5 (https://www.python.org/).
The machine learning frameworks used were PyTorch 1.0.0 (https://
pytorch.org/) and scikit-learn 0.20.2 (https://scikit-learn.org/stable/).

For ModelL, we applied an 18-layer ResNet [18] pretrained on the
ImageNet dataset [19]. The final fully connected layer was removed
with replacement by a dropout layer [20,21], a batch normalization
[22] layer, and a 512 £ 1 fully connected layer to obtain the final pre-
dictive score. In addition to binary cross entropy loss, which was
commonly used for classification, we also leveraged batch-hard trip-
let loss [23] to let the network focus on difficult-to-diagnose samples.
There were a total of four US images of each lesion, so the lesion-level
output was the average of the four predicted image-level outcomes.

For ModelLB, we added an LB branch that shared the same archi-
tecture as ModelL but with independent network weights. To merge
the features extracted by the two branches, we applied a 1024 £ 1
fully connected layer to concatenate the final global features.
Ground-truth LB types were used to supervise the LB branch by
minimizing the binary cross entropy loss, while the lesion branch
and final output were supervised through the benign and malignant
classes.

To generate a visual explanation of the model diagnosis process,
attention maps were plotted using the GradCAM algorithm [24],
which displays the pixels in the ROIs that provide the greatest contri-
bution to the classification output.

To further integrate additional diagnostic factors, we built Mod-
elLBC, which integrates the outcomes of the lesion-level ModelLB and
clinical-ultrasonic factors by logistic regression. The clinical-ultra-
sonic factors used were selected by multivariate analysis. The training
details are summarized in appendix 1.5�1.7.
2.6. Nomogram development and validation

To provide a graphical presentation of the DCNN models for con-
venient clinical use, a nomogram was developed by integrating
model outcomes and relative clinical-ultrasonic factors. The calibra-
tion curve that measures the concordance of DCNN-predicted out-
come and actual histopathological diagnosis of FLLs was plotted.
Decision curve analysis was performed to determine the nomograms’
clinical utility.
2.7. Stratified analysis to assess the diagnostic accuracy

Lesion size and LB echo are two important factors that affect FLL
diagnosis by radiologists. Stratification analysis was performed to
verify the diagnostic power of the proposed DCNN-US model.
Patients were stratified into several subgroups according to lesion
size (1.1�2.0 cm, 2.1�5.0 cm, and >5.0 cm) and the LB (normal,
hepatic steatosis, and hepatic fibrosis).
2.8. Comparative evaluation of diagnostic performance of DCNN model

We compared the performance of DCNN-US with those of radiol-
ogists with different levels of liver US experience (1�5 years, 5�10
years, 10�15 years, and >15 years), and then the model and contrast
enhanced CT/MRI were compared in terms of diagnostic power for
the index FLLs analysed by DCNN. In total, 236 radiologists indepen-
dently viewed anonymized videos (10�20 s) of the US data of 338
FLLs from the EV cohort that contained the target tumour and whole
LB, with the radiologists blinded to the histological results (Appendix
1.8). These skilled radiologists each had >15 years’ experience of per-
forming and interpreting US and had been certified by a board. All
contrast enhanced CT/MRI images were interpreted by radiologists
with >5 years’ experience in liver diagnosis, who were provided
with the same clinical information as used in the model analysis
(Appendix 1.9�1.10).
2.9. Statistical analysis

Statistical analysis was performed using the R (Version 3.4.1;
www.R-project.org) and PASW Statistics (version 18.0; SPSS Inc., Chi-
cago, IL, USA) software packages. The AUC, accuracy, sensitivity, spec-
ificity, PPV and NPV of DCNN-US were calculated on per-patient
basis. The Youden index was used to set the cut-off for the predicted
score during training. Two-sided Delong tests were used to estimate
whether statistical differences exist between AUC values. Mann-
Whitney U test was used to explore the differences in diagnostic
accuracy, sensitivity, and specificity between the radiologists and
DCNN-US model. Univariate and multivariate analyses were per-
formed by the logistic regression model, and p<0.05 was considered
statistically significant.

https://www.python.org/
https://pytorch.org/
https://pytorch.org/
https://scikit-learn.org/stable/
http://www.R-project.org
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3. Results

3.1. Clinical characteristics

Up to 2263 potentially eligible patients were enrolled in this
cohort between May 2018 and June 2019. According to the
enrollment criteria, 122 patients were excluded because of
unqualified US imaging (unclear, unstandardized data), small
lesion size (maximum diameter �1.0 cm), or indeterminate histo-
logical diagnosis. Finally, 24,343 US images of 2213 nodules from
13 Chinese hospitals were enrolled for analysis (Fig. 1). Among
them, a total of 1815 patients from 11 hospitals were randomly
divided into training (16,500 images of 1500 lesions) and IV
(4125 images of 375 lesions) cohorts with a 4:1 ratio of the
respective numbers of FLLs. The additional 3718 images of 338
FLLs from another two hospitals were enrolled as an independent
EV cohort after the establishment of the DCNN models. In total,
16 types of FLLs were enroled in this study (Table S4). The three
cohorts’ patient characteristics are shown in Table 1.

3.2. Univariate and multivariate analysis

In this study, a total of 14 factors (7 US features and 7 clinical fac-
tors) were analysed with univariate analysis, and those that achieved
statistical significance by univariate analysis were included in the
Fig. 1. Flowchart: development and validation of DCNN-US for diagnosis of focal liver lesion
ROI=Region of interest, BN=Batch normalization, CT=Computed tomography, MRI=Magnetic
multivariable analysis, including 2 US features and 4 clinical factors
(Table S5). The results of multivariable logistic regression analyses
showed that hypoechoic halo (OR, 18.389; 95% CI, 9.921�34.084;
p<0.001), history of extrahepatic tumours (OR, 16.166; 95% CI,
9.311�28.065; p<0.001), history of hepatitis (OR, 11.736; 95% CI,
7.857�17.529; p<0.001), older age of patients (OR, 3.323; 95% CI,
2.096�5.269; p<0.001), male sex (OR, 2.303; 95% CI, 1.629�3.256;
p<0.001), and intratumoural vascularity (OR, 1.911; 95% CI,
1.344�2.717; p<0.001) were independent predictors associated with
malignant FLLs.

3.3. Diagnostic performance of the DCNN-US models

The diagnostic performance of the three DCNN models is
shown in Fig. 2, S4 and table S6. ModelLBC achieved optimal diag-
nostic power, with AUC values of 0.925 (95% CI: 0.886�0.963),
and 0.924 (95% CI: 0.889�0.959) in the IV and EV cohorts, respec-
tively, followed by ModelLB and ModelL, which had relatively
decreased AUCs. The AUC values of ModelLBC in the EV cohort on
lesions 1.1�2.0 cm, 2.1�5.0 cm, and >5.0 cm were 0.926 (95% CI:
0.815�1.000), 0.899 (95% CI: 0.838�0.960) (p = 0.6783,
1.1�2.0 cm vs 2.1�5.0 cm), and 0.962 (95% CI: 0.933�0.991)
(p = 0.5389, 1.1�2.0 cm vs >5.0 cm), respectively (Table 2 and
Fig. S5). Stratification analysis according to lesion size showed no
statistical differences between the IV and EV cohorts (all p>0.05).
s. US=Ultrasound, LB=Liver background, HBV=Heaptitis B virus, HCV=Heaptitis C virus,
resonance image, DCNN-US=Deep convolutional neural network of ultrasound.



Table 1
Characteristics of patients in three cohorts.

Parameters All patients (N = 2143) Training cohort (N = 1446) Internal validation cohort (N = 369) External validation cohort (N = 328)

Mean age§(SD) (years) 55.7 § 12.4 55.6 § 12.3 56.0 § 12.5 55.9 § 12.9
Tumour size (cm)* 3.7 (1.1�19.6) 3.6 (1.1�19.6) 3.7 (1.1�17.3) 4.0 (1.1�16.7)
Gender (%)
Male 1460 (68.1) 995 (68.8) 240 (65.0) 225 (68.6)
Female 683 (31.9) 451 (31.2) 129 (35.0) 103 (31.4)
History of hepatitis (%)
No 1172 (54.7) 766 (53.0) 214 (58.0) 192 (58.5)
Yes 971 (45.3) 680 (47.0) 155 (42.0) 136 (41.5)
AFP (ng/mL) (%)
Missing 137 (6.4) 75 (5.2) 16 (4.3) 46 (14.0)
�200 1732 (80.8) 1180 (81.6) 310 (84.0) 242 (73.8)
>200 274 (12.8) 191 (13.2) 43 (11.7) 40 (12.2)
History of extra-hepatic tumours (%)
No 1634 (76.2) 1122 (77.6) 275 (74.5) 237 (72.3)
Yes 509 (23.8) 324 (22.4) 94 (25.5) 91 (27.7)
Features of the liver background (%)
Normal 1010 (47.1) 655 (45.3) 175 (47.4) 180 (54.9)
Hepatic steatosis 184 (8.6) 127 (8.8) 41 (11.1) 16 (4.9)
Hepatic fibrosis 949 (44.3) 664 (45.9) 153 (41.5) 132 (40.3)
Lymph-node metastasis (%)
No 1965 (91.7) 1348 (93.2) 344 (93.2) 274 (83.5)
Yes 177 (8.3) 98 (6.8) 25 (6.8) 54 (16.5)
Vascular invasion (%)
No 1982 (92.5) 1340 (92.7) 345 (93.5) 297 (90.5)
Yes 161 (7.5) 106 (7.3) 24 (6.5) 31 (9.5)
Ascites (%)
No 2016 (94.1) 1369 (94.7) 347 (94.0) 300 (91.5)
Yes 127 (5.9) 77 (5.3) 22 (6.0) 28 (8.5)
Tumour number (%)*
Malignant 1786 (80.7) 1221 (81.4) 303 (80.8) 262 (77.5)
Benign 427 (19.3) 279 (18.6) 72 (19.2) 76 (22.5)
Tumour shape (%)*
Circular 106 (4.8) 82 (5.5) 13 (3.5) 11 (3.3)
Ellipse 857 (38.7) 564 (37.6) 127 (33.9) 166 (49.1)
Irregular 1250 (56.5) 853 (56.9) 235 (62.6) 161 (47.6)
Tumour margin (%)*
Smooth 1313 (59.3) 882 (58.8) 208 (55.5) 223 (66.0)
Non-smooth 900 (40.7) 618 (41.2) 167 (44.5) 115 (34.0)
Tumour echogenicity (%)*
Hyper- 452 (20.4) 294 (19.6) 75 (20.0) 83 (24.6)
Iso- 80 (3.6) 57 (3.8) 14 (3.7) 9 (2.7)
Hypo- 920 (41.6) 597 (39.8) 141 (37.5) 182 (53.8)
Heterogeneous 761 (34.4) 552 (36.8) 145 (38.7) 64 (18.9)
Intratumoral vascularity (%)*
No 1021 (46.1) 666 (44.4) 176 (46.9) 179 (53.0)
Yes 1192 (53.9) 834 (55.6) 199 (53.1) 159 (47.0)
Posterior acoustic enhancement (%)*
Absent 1412 (63.8) 972 (64.8) 232 (61.9) 208 (61.5)
Present 801 (36.2) 528 (35.2) 143 (38.1) 130 (38.5)
Hypoechoic halo (%)*
No 1439 (65.0) 937 (62.5) 232 (61.9) 270 (79.9)
Yes 774 (35.0) 563 (37.5) 143 (38.1) 68 (20.1)
Peritumoral satellite lesion (%)*
Absent 2182 (98.6) 1476 (98.4) 370 (98.7) 336 (99.4)
Present 31 (1.4) 24 (1.6) 5 (1.3) 2 (0.6)
Diagnostic method (%)*
Biopsy 1394 (63.0) 936 (62.4) 227 (60.5) 231 (68.3)
Resection 819 (37.0) 564 (37.6) 148 (39.5) 107 (31.7)

Note. Qualitative variables are expressed as n (%), and quantitative variables are expressed as Mean§SD or median, as appropriate.
* date calculated based on tumour number.
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The diagnostic results of ModelLBC for FLLs with normal, hepatic
steatosis, and hepatic fibrosis backgrounds are shown in table S7
and Fig. S5.

3.4. Diagnostic robustness of the proposed models

Five-fold cross validation was performed in the training and IV
cohort, which produced 5 independent models validated in IV
cohorts. The Delong tests showed there were no statistical difference
among the 5-fold models (all the p>0.05). In addition, the AUC of
ModelLBC in the EV cohort was 0.924 (95% CI: 0.889�0.959), which
showed no statistical difference with that of IV cohort (0.925, 95% CI:
0.886�0.963) (p = 0.7761) (Fig. S4). The results manifested satisfied
robustness of the DCNN network.

3.5. Development and validation of nomogram

A nomogram was developed based on ModelLBC to provide the
predicted probability of malignant FLLs for each individual (Fig. 3).
The nomogram calibration curves showed good consistency across



Fig. 2. Model robustness analysis. (a-c) represents 1st fold in training, internal validation and external validation cohort, respective. The green, blue, red line represents the ROC
curve of ModelL, ModelLB, ModelLBC, respectively. ROC=Receiver operating characteristic, ModelL=Modellesion, ModelLB=Modellesion+background, ModelLBC=Modellesion+background+clinic.
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the training (p = 0.6573), IV (p = 0.3680), and EV (p = 0.4276, Fig. S5)
cohorts. The decision curve analysis in Fig. 3 shows that with a
threshold of 2%, the net benefit of ModelLBC for diagnosis of FLLs was
0.809, providing a better decision strategy than ModelLB, the “all
malignant FLLs strategy”, or the “all benign FLLs strategy”.

3.6. DCNN-US model versus the radiologists and contrast enhanced CT/
MRI

Comparison of ModelLB in EV cohort with the judgement of 236
US radiologists (accessible to clinical information), each having 15
years’ experience showed that the diagnostic accuracy and sensitivity
of ModelLB were similar (76.0% vs 76.0%, p = 0.8220 and 76.1% vs
77.4%, p = 0.940) (Fig. 4 and Table S8�9). However, the ModelLBC

showed better diagnostic accuracy, sensitivity, and specificity than
those of 15-year skilled radiologists (84.7% vs 76.0%, 86.5% vs 76.1%,
and 85.5% vs 76.9%, respectively) (all p<0.01, Fig. 4 and Table S8�9).

In addition, compared with the contrasted enchanced CT,
ModelLBC showed comparable accuracy (both 84.7%) but slightly infe-
rior to contrast enhanced MRI for lesions detected by US (87.9%)
(Fig. 4 and Table S8).

3.7. Visual interpretation of the model

Fig. 5 presents attention maps of eight cases that had lesions that
were difficult to distinguish between malignant and benign by naked
vision. For FLLs with the same histology but different B-mode US fea-
tures or different histological features but the same B-mode US fea-
tures, DCNN-US provided accurate diagnostic outcomes, with the
attention maps illustrating distinguishable colour patterns. Attention
maps were drawn to interpret the diagnostic mechanism of the neu-
ral network; these quantified each pixel’s contribution to accurate
diagnosis by analysing the lesion ROI. The red parts of the map indi-
cated areas that provided more malignancy-related information dur-
ing the network’s diagnostic process (Fig. 5).

4. Discussion

In this multicentre study, our DCNN-US model was tested in two
validation cohorts and achieved good performance in FLL diagnosis.
Our model’s AUC for classifying malignant from benign lesions after
EV reached 0.924 (95% CI: 0.889�0.959). Its accuracy, sensitivity,
and specificity were higher than those of 15-year skilled radiolog-
ists. Further, its accuracy and sensitivity were comparable to the
diagnostic performance of contrast enhanced CT for lesions detected
by US.

In clinical practice, US is an indispensable and the most commonly
used imaging modality in the work-up, management, and follow up
of patients with FLLs [3,4,9]. High dependence on doctors’ experience
lead to difficulties with accurate recognition of malignant character-
istics among complex lesion types by radiologists, especially when
the lesions occurred in the liver with cirrhosis or steatosis, as shown
by varying diagnostic rates between the radiologists in our study. AI
approaches provide an inspiring opportunity to recognize the diverse
image characteristics of FLLs that are difficult to identify by naked
vision. The DCNN technique we used automatically extracts FLLs
mapping features through large cohort-based data mining. Subtle
textural patterns that contributed to the diagnosis of FLLs could be
explored and found via the neural network, thus improving its diag-
nostic power.

Clinical information is a vital referent for radiologists to make
right diagnoses after analysis of image characteristics. Different from
previous published three studies [14-16], we developed three DCNN-
US models that incorporate lesions, the LB image signature, and
seven easily acquired clinical factors in this study. We achieved
improved diagnostic power for diagnosis of FLLs with strict valida-
tions and large sample analysis, which could increase the efficiency
of full excavation of the neural network. In this study, patients were
enrolled from 13 different centres and US images were acquired from
17 different devices, so the DCNN was forced to learn centre- and
device- invariant features and rules for diagnosis of FLLs, which
improved generalization of data-driven algorithms. The effective per-
formance of the EV cohort also verified the feasibility of our idea. In
addition, DCNN modelling can convert obscure and unexplainable
derived imaging features into comprehensible attention maps, which
renders radiomics no longer a black box but a visual tool that can pro-
vide highly suspected malignant regions to which radiologists can
refer, especially for heterogeneous nodules. Particularly, in our
research, we leveraged batch-hard triplet loss to mine difficult sam-
ples and forced the network to pay more attention to the differentia-
tion of those samples, thus further improving the performance of the
DCNNmodel to a level that surpassed previous studies [21,24,25].

When our model was constructed by mining the diverse image
characteristics of lesion and liver, the diagnostic power of ModelLB

could reached the level of 15-year skilled radiologist but is inferior to
contrast enhanced CT/MRI. Once the clinic information were fed into
ModelLB, its diagnostic ability exceeded that of 15-year skilled radiol-
ogists and was comparable to that of contrast enhanced CT for lesions
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detected by US. Even for lesions �2.0 cm, ModelLBC also obtained sat-
isfactory diagnostic performance, which overcome the limitation of
US-based diagnosis of small lesions [3,6]. All these satisfied results
were attribute to standardized image acquisition criteria in the study,
the automated quantification of large numbers of image features
from multicentre database and model design advatages. It is worth
mentioning that our FLLs US database is unique and valuable in that a
total of 2213 lesions confirmed by pathology with 24,343 standard-
ized images from multicentres were used to develop the DCNN
model. It is a challenge for AI study in US of liver although it is not as
enough as AI studies on MRI/CT [26,27].

The DCNN-US model has a high potential to maximize healthcare
resources and narrow the gap in FLLs diagnosis between radiologists
with different experience levels, decrease the dependence on sec-
tional imaging and rich-experienced radiologists. Some patients with
benign conditions may even be able to bypass the contrast enhanced
CT/MRI evaluation and be referred for routine surveillance or short-
term follow-up, while for patients with malignant FLLs may be earlier
detected and timely given a privilege to further evaluation, which
could be considered as cost-effective in view of the high expenditure
for treating liver cancer. Once the DCNN-US model with convincing
results is translated into the clinic in the future, operators would only
need to perform a selection of DCNN-US ROIs in the daily workflow
of B-mode US to conduct this analysis and acquire a second opinion
proposed by the model, which is potentially easy for clinical applica-
tion.

Our study has some limitations. First, only 19.3% of this study’s
enroled lesions were benign lesions. The unbalanced nature of the
data may compromise the efficacy of DCNN-US to some extent. The
main reason is that a tight US follow-up is often recommended clini-
cally for patients with imaging possible benign FLLs, which decreased
the proportion of enrollment of benign FLLs with pathological diag-
nosis. Second, we only achieved favourable ability in diagnosing
benign and malignant FLLs for not enough lesion numbers for AI anal-
ysis. Classification of different type of FLLs will be our future effort.
Third, for the lesions detected by US, our model was comparable to
contrast enhanced CT in identifying benign and malignant FLLs,
therefore our research suffered from some degree of bias due to the
missed detection of US and detection ability of AI on US is also our
future research effort. Finally, the DCNN-US developed here classifies
FLLs solely on the basis of B-mode US imaging data. In the future, we
anticipate that an AI system based on CEUS data can be constructed
for more precise FLLs classification. And the observe if radiologists'
diagnostic performance and detection ability for FLLs will be
improved with use of proposed model as an effective tool to aid radi-
ologists in current clinical settings need to be tested.

In conclusion, this study suggests that DCNN-US shows improved
sensivity and specificity in identifying benign and malignant FLLs,
which is superior to skilled radiologists and comparable to that of
contrast enhanced CT. The advanced technical performance obtained
by the DCNN-US model suggests the potential of this non-invasive,
cheap, and convenient method to proceed and be tested in clinical
trials.
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Fig. 3. Individualized predictive graphical presentation for clinical use. (a) Nomogram for the DCNN-US model. By integrating the predicted score, clinical factors including gender,
age, tumour history, hepatitis history, hypoechoic halo, and vascularity of lesion and the final diagnostic outcome are presented on the bottom line of the nomogram along with
malignancy probability. Gender, 0: female, 1: male; Tumour history, 0: no, 1: yes; Hepatitis history, 0: none, 1: HBV, 2: HCV, 3: HBV+HCV; Hypoechoic halo, 0: absent, 1 present;
Vascularity, 0: absent, 1: present. (b) Calibration curve of the training cohort’s nomogram. (c) Calibration curve of the internal validation cohort’s nomogram. (d) Calibration curve
of the external validation cohort’s nomogram. Calibration curves indicate the consistency between histological diagnosis and predicted malignancy scores. The blue dotted line rep-
resents a perfect prediction by an ideal model. The pink solid line represents the nomogram’s performance. A closer distance of the pink line to the blue line represents a better pre-
diction. The p value of the Hosmer�Lemeshow test was greater than 0.05 for both the training and internal validation cohorts, showing good calibration between predictive
outcome and histological diagnosis. (e) Decision curve analysis. The y-axis represents net benefit. The yellow and green lines measure the benefit obtained from ModelLB and Mod-
elLBC, respectively. The blue and black lines measure the benefit of using the “all malignant FLLs” and “all benign FLLs” strategies, respectively. DCNN-US=Deep convolutional neural
network of ultrasound, FLLs=Focal liver lesions, ModelLB=Modellesion+background, ModelLBC=Modellesion+background+clinic.

Fig. 4. Classification performance of the DCNN-US model and radiologists on focal liver lesions. (a-c) represents accuracy, sensitivity and specificity comparison between 15-year
skilled radiologists and DCNN-US model, respectively. All p values were performed by non-parametric test. (d) Bar graph shows the diagnostic performance of the DCNN-US model,
contrast enhanced CT and MRI. CT=Computed tomography, MRI=Magnetic resonance imaging, DCNN-US=Deep convolutional neural network of ultrasound.
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Fig. 5. Attention maps of model on the benign and malignant lesions. Colours from warm to cold represent the degree of pixels’ contribution to FLL diagnosis. Red indicates the
areas that contributed most, and blue areas contributed least. The number in the picture indicates the malignancy probability predicted by the model. (a) Hepatocellular carcinoma
with different ultrasound appearance (Left MP: 0.9988, Right MP: 0.9989). (b) Metastatic cancer with different ultrasound appearance (Left MP: 0.9497, Right MP: 0.9997). (c) Hepa-
tocellular carcinoma (MP: 0.9981) with similar ultrasound appearance to hepatic adenoma (MP: 0.2099). (d) Cholangiocellular carcinoma (MP: 0.8686) with similar ultrasound
appearance to focal nodular hyperplasia (MP: 0.1393). FLL=Focal liver lesion, MP=malignancy probability predicted by the model.
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