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Abstract: An in situ coacervative extraction (IS-CAE) based on a double-solvent supramolecular
system coupled to liquid–liquid microextraction is investigated for extraction and enrichment of
triazole fungicides. The formation of a double-solvent supramolecular system was generated by in
situ formation and used as an extraction solvent for the coacervative extraction method. No disperser
solvent was required. This new double-solvent supramolecular system has a higher extraction ability
than any of its components alone. The different factors that could affect the extraction capability were
studied and optimized, including the type of double extractant and its volume, salt addition, vortex
time, and centrifugation time. Under optimum extraction conditions, this method provides high
enrichment factors (EFs) of 73–318 with low limits of detection (LODs) of 0.3–1 µg L−1 and limits of
quantitation (LOQs) of 1–3 µg L−1. In addition, the proposed method was prosperously applied for
the determination of triazole fungicides in water, fruit juice, and soy milk samples.

Keywords: in situ coacervative extraction; double-solvent supramolecular system; triazole fungicides;
extraction; HPLC

1. Introduction

The selection of a suitable sample preparation method is important because it has
a significant effect on the method’s sensitivity, selectivity, accuracy, reproducibility, and
reliability [1]. Due to complex interfering substances and the presence of analytes at an
ultra-trace level in real samples, various sample pretreatment techniques are needed [2] for
clean up and matrix removal and preconcentration of target analytes. Many sample prepa-
ration techniques require high consumption of hazardous organic solvents which often
generate waste during the process and are time-consuming. To overcome these problems,
miniaturized extraction techniques have been investigated. Nowadays, modern trends
in sample preparation techniques are affected by the concepts of green and sustainable
solvents, especially in liquid–liquid microextraction [3]. According to the requirements of
the sustainable sample preparation process, green alternative solvents should have various
characteristics, which include nontoxicity, low energy consumption, dissolution of a large
spectrum of solutes, and fewer steps [4]. The requirement of environmentally friendly
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solvents is gradually improving. Consequently, it is important to design and to develop an
environmentally friendly alternative solvent in sample preparation methods.

Recently, new classes of extraction solvents, namely supramolecular solvents (SUPRAS),
have been investigated. They are nanostructured liquids that form automatically in col-
loidal suspensions of amphiphiles via the phenomena of self-assembly and coalescence [5].
Due to their unique properties, SUPRAS have been better substitutes for conventional
organic solvents for sample preparation before chromatographic techniques [6]. Their
physico-chemical properties, which make them very attractive as an alternative extraction
solvent in microextraction techniques, include: (i) their ability to interact with analytes via
several interactions such as ionic bonding, hydrogen bonding, π-cation, and hydrophobic
interaction, leading to an improvement in extraction efficiency and (ii) tunability by alter-
ing either the type or concentration of amphiphiles [7]. In addition, SUPRAS are tunable
solvents and the properties of the solvents can be easily changed by altering the group of
the amphiphiles [8]. Moreover, they are environmentally friendly solvents produced from
inexpensive amphiphiles, in which the coacervation occurs rapidly at room temperature [9],
in which the pH, salt, and the solvent are also affecting the coacervation.

Triazole fungicides are a group of highly effective systemic fungicides that contain a
hydroxyl group (ketone group), a substituted phenyl group, and a 1,2,4-triazole group in the
main chain [10]. They have a wide fungicidal spectrum and good control effects on a variety
of crop diseases. Owing to their antifungal properties, they are widely used for preventing
and controlling diseases and are widely used in agriculture for control of various fungal
diseases such as powdery mildew, gray mold, spotted deciduous disease, black star disease,
brown spot disease, and rust disease, in agricultural products such as fruits, vegetables,
legumes, and grain crops [11,12]. However, triazole fungicides have high stability and
lipophilicity, long residual duration, and are not easily degraded, which leads to easy
accumulation in human and environmental media [10]. In order to protect human health,
the Codex Alimentarius Commission (CAC) has established standards/regulations for the
maximum residue limits (MRLs) of triazole fungicides in different matrices. For example,
the MRL of hexaconazole, triadimefon, and bitertanol is 0.01–0.02 mg kg−1; the MRL of
tebuconazole is 0.02–5.0 mg kg−1; and the MRL of myclobutanil is 0.05–3.0 mg kg−1 [10].
Therefore, it is necessary to establish a fast and efficient method for analyzing triazole
fungicides in agricultural products [13].

In this study, we developed an in situ coacervative extraction (IS-CAE) based on
a double-solvent supramolecular system coupled to liquid–liquid microextraction for
extraction and enrichment of triazole fungicides prior to high-performance liquid chro-
matographic analysis. The phase separation obtained after centrifugation was formed by
mixing the double-solvent supramolecular system. No organic solvent or heating were
required. The proposed coacervative extraction strategy is far greener and more sustainable
than the currently employed coacervative extraction. The important parameters affecting
the IS-CAE were optimized and the resulting method was also applied to water, fruit juice,
and soy milk samples.

2. Results and Discussion
2.1. Optimization of In Situ Extraction (IS-CAE) Procedure

In order to obtain high extraction efficiency, different experimental factors that affect
the efficiency of the in situ coacervative extraction (IS-CAE) procedure were investigated
and optimized. The peak area of the studied triazoles was used for the evaluation based on
the one variable-at-a-time method, and all experiments were performed in triplicate using
standard solution at a concentration of 100 µg L−1 of each analyte.

The choice of a suitable double extraction solvent is important because this is a sig-
nificant parameter in the proposed method. A double extraction solvent must have a
melting point close to room temperature, high extraction efficiency, less toxicity, and low
solubility in the aqueous phase [14]. Therefore, 1-dodecanol (melting point 24 ◦C), and
1-undecanol (melting point 24 ◦C) were selected as extraction solvents in this work. First,
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each of the solvents was studied as an extraction solvent, and the results were compared
with their double mixture with a specific ratio (as shown in Figures 1–3). It was found that
the extraction efficiency of triazoles using the double mixture resulted in a higher extraction
efficiency than the single solvent. Therefore, a double mixture solvent (1-dodecanol and
1-undecanol) was used for further study. The formation of the double-solvent supramolecu-
lar system was generated by in situ formation. Therefore, the 1-undecanol and 1-dodecanol
volumes were studied. In this work, the 1-undecanol volume was studied in the range of
25–200 µL (as shown in Figure 4). The results showed that a high extraction efficiency in
terms of peak area was obtained with 50 µL of 1-undecanol. The volume of 1-dodecanol
was investigated in the range of 25–200 µL (as shown in Figure 5). The results showed that
with 25 µL of 1-dodecanol the phase did not occur. A high extraction efficiency in terms of
peak area was obtained with 50 µL of 1-dodecanol. Therefore, the most suitable proportion
of double extractant was selected to be 1:1 of 1-undecanol/1-dodecanol to achieve the best
extraction efficiency in this method.
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Figure 1. Extraction of triazole fungicides using 1-dodecanol as a solvent. Figure 1. Extraction of triazole fungicides using 1-dodecanol as a solvent.
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Figure 3. Extraction of triazole fungicides using mixture solvent (1-dodecanol and 1-undecanol). 
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To evaluate the salt effect on the efficiency of the in situ extraction procedure, various
tests were carried out using different concentrations of salt in the range of 0–10% (w/v)
NaCl (data not shown). The results indicated that by increasing NaCl from 0 to 5% (w/v),
the peak area of triazoles remained nearly constant. At higher percentages, the analytical
signal of the analytes decreased due to the dilution effect. Therefore, the experiments were
carried out in the absence of any salt.

The vortex of the solution can accelerate the transfer of an analyte from an aqueous
solution to the double-solvent supramolecular phase. An appropriate dispersion occurs
in the presence of a strong vortex. Therefore, the vortex time was examined at 0, 15, 30,
and 45 s. The results obtained (Figure 6) showed that the maximal analytical signals were
observed at 30 s. Therefore, 30 s of vortex time was chosen for the next experiments.
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The centrifugation times were studied at 0, 5, 10, and 15 min at 2500 rpm. There were
no significant differences in extraction efficiency found by increasing the centrifugation time
from 5 to 15 min (as can be seen in Figure 7). Incomplete phase separation was obtained at
0 min (without centrifugation). In order to minimize the extraction time, therefore, 5 min
was selected as the optimum centrifugation time.
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2.2. Analytical Performance of the Proposed Extraction Method

Linear ranges (LR), coefficient of determination (R2), limit of detection (LOD), limit of
quantification (LOQ), relative standard deviation (RSD) and enrichment factors (EFs) were
calculated to validate the proposed method. All the data were obtained by conducting three
replicates for each experimental test and the results are shown in Table 1. The calibration
curve was constructed by plotting the peak area ratios against concentrations of triazoles.
The linearity range was found to be from 0.3 to 1000.0 µg L−1, with a high coefficient
of determination (R2 > 0.999), which showed an excellent level of linearity. The LODs
and LOQs of the analytes were determined according to signal-to-noise ratios of 3 and 10,
respectively. The results showed that the LODs ranged from 0.3 to 1.0 µg L−1, while the
LOQs were within 1–3 µg L−1. The precision was studied by intra-day RSDs (n = 3) and
inter-day RSDs (n = 3 × 3), which were lower than 4.84% and 4.95%, respectively. The EFs,
were calculated using the ratio of the extracted analyte concentration in extraction phase
to its initial concentration in aqueous sample solution, and were in the range of 73–318.
The chromatograms of the triazoles obtained by direct HPLC and the proposed in situ
coacervative extraction procedure are presented in Figures 8 and 9, respectively.

Table 1. Analytical performances of the present method.

Analyte
Linear
Range

(µg L−1)
R2 LOD

(µg L−1)
LOQ

(µg L−1)

Intra-Day
Precision

(n = 3), RSD (%)

Inter-Day
Precision

(n = 3 × 3), RSD (%)
EF

(Cex/Co)

tR Peak Area tR Peak Area

Myclobutanil 3–1000 0.9999 1.0 3.0 1.89 2.50 1.96 3.42 74.82
Triadimefon 3–1000 0.9995 0.3 1.0 1.98 4.84 1.99 4.84 103.50

Tebuconazole 3–1000 0.9995 0.3 1.0 1.03 3.89 1.04 4.62 317.49
Hexaconazole 3–1000 0.9998 0.3 1.0 0.56 2.70 0.65 3.13 137.33
Diniconazole 3–1000 0.9995 1.0 3.0 0.61 3.52 0.75 4.95 73.81

R2: coefficient of determination; LOD: limit of detection; LOQ: limit of quantification; RSD: relative standard
deviation; EF: enrichment factor; tR: retention time.
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Figure 9. Chromatogram of standard triazole fungicides obtained with preconcentration using the
proposed in situ coacervative extraction based on a double-solvent supramolecular system. The
concentration of all standards was 100 µg L−1. Conditions: Sample 10 mL, double SUPRA (50 µL
of 1-dodecanol and 50 µL of 1-undecanol), vortex time 30 s, and centrifugation 2500 rpm for 5 min.
Finally, collection of the top layer for HPLC analysis.

2.3. Real Sample Analysis

The applicability of the proposed in situ coacervative extraction (IS-CAE) coupled
to the HPLC method was investigated to determine triazole fungicide residues in wa-
ter, fruit juice, and soy milk samples. To investigate the matrix effect of real samples,
a matrix-match calibration procedure was carried out. A set of matrix-matched cal-
ibration curves was prepared by extracting representative water, fruit juice, and soy
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milk samples spiked with 3.0–1000.0 µg L−1 of each target analyte. The studied triazole
fungicides exhibit wide calibration capability and good linearity, with R2 values greater
than 0.99 for all studied samples.

The matrix effect (ME) was calculated by comparing the ratio of the slopes of the
matrix-matched curve to that of the solvent (as shown in Equation (3)). Generally, An ME
between 80–120% indicates no matrix effects, an ME between 50–80% or 120–150% refers to
minor matrix effects, and an ME < 50% or >150% indicates major matrix effects [15,16]. As
shown in Table 2, from no ME to a minor ME was observed for the water and fruit juice
samples and major MEs were found in the soy milk samples.

Table 2. Matrix effect (ME, %).

Sample Myclobutanil Triadimefon Tebuconazole Hexaconazole Diniconazole

Water I 78.83 77.95 71.31 82.18 82.89
Water II 87.78 71.37 79.63 84.38 86.63

Grape juice 75.00 75.00 83.33 75.00 100.00
Soy milk I 71.12 49.94 155.59 73.45 155.53
Soy milk II 72.25 48.83 152.14 77.72 145.55
Soy milk III 75.15 49.98 145.54 78.83 147.72

The accuracy and repeatability of the in situ extraction coupled to the HPLC method
were evaluated by spiking the real samples with five triazole fungicides at concentration
levels of 10, 30, and 50 µg L−1. The results were shown in Table 3. Extraction recoveries
in the range of 77–117% were obtained with RSDs in the range of 0.1–10.7%. Figure 10
illustrates the chromatograms of the blank and spiked (grape juice) samples. Based on
these observations, it can be concluded that the proposed in situ extraction coupled to
the HPLC method has excellent applicability for the selective extraction of five triazole
fungicides in various samples.
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Table 3. Comparisons of the proposed IS-CAE method with other methods for the determination of
triazole fungicides.

Method Analyte/
Sample Linear Range

Limit of
Detection

(LOD)
%Recovery Enrichment

Factor (EF) Reference

SVME
Triadimefon and
triadimenol/beer

samples

0.5–50 µg L−1

for
triadimenol and
1.0–100 µg L−1

for triadimefon

0.24–0.99
µg L−1 84–100 - [17]

ATPS
Triazole

fungicides/vegetable
samples

0.100–30 µg
mL−1

0.03113–0.3525
µg mL−1 71.57–107.8 - [18]

SBSE

Triazole
fungicides/grape

and
cabbage
samples

0.1–500 µg L−1 0.022–0.071 µg
L−1 80.7–111 49–57 [10]

VA-DLLME

Triazole
fungicide,
herbicide,

pesticide and
insecticide/fruit juice

samples

149–500,000 ng
L−1 45–78 ng L−1 55–89 1382–2246 [19]

CD-DLLME

Triazole and
strobilurin
fungicides/

water, juice, and
vinegar
samples

1–100 µg L−1 0.3 µg L−1 83.0–103.2 124 [20]

IS-CAE Triazole
fungicides 3–1000 µg L−1 0.3–1.0 µg L−1 77–117 73–318 This work

SVME-LC-MS/MS, Supramolecular solvent-based vortex-mixed microextraction coupled with liquid chromatog-
raphy tandem mass spectrometer; ATPS-Online heart-cutting 2D-LC, aqueous two-phase system coupled with
online heart-cutting two-dimensional liquid chromatography; SBSE- HPLC-DAD, stir bar sorption extraction
combined with high-performance liquid chromatography-diode array detector; VA-DLLME, Vaporization assisted
dispersive liquid-liquid microextraction coupled to gas chromatography-flame ionization detection; CD-DLLME-
HPLC-DAD, cyclodextrin-based dispersive liquid–liquid microextraction coupled to high-performance liquid
chromatography-diode array detector.

2.4. Comparison of the Proposed in Situ Coacervative Extraction (IS-CAE) Method with Other
Previous Extraction Methods

To highlight the outstanding points of the developed method, some major characteristics
were compared with those that have been obtained from other reported methods [10,17–20],
as listed in Table 3. As compared with other methods, the established method has var-
ious advantages, such as the use of a green extraction solvent, a short extraction time
(6 min), and avoidance of the use of a disperser solvent. Moreover, the proposed method
exhibits a favorable linear range, low LOD, acceptable recovery, and high enrichment factor.
Therefore, the proposed method is fast, simple, and environmentally friendly.

3. Experimental Methods
3.1. Chemicals and Reagents

All chemicals and reagents used in this work were of analytical grade. Five triazole
fungicides (myclobutanil (MCBT), triadimefon (TDF), tebuconazole (TBZ), hexaconazole
(HCZ), and diniconazole (DCZ)) from Dr. Ehrenstorfer GmbH (Augsburg, Germany)were
used. Methanol (Merck, Darmstadt, Germany) was used to prepare the stock solution of
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each fungicide (1000 mg L−1) and stored in refrigerator at 4 ◦C under light protection until
analysis. HPLC-grade methanol and acetonitrile were obtained from Merck (Darmstadt,
Germany). 1-Undecanol and 1-dodecanol were purchase from Sigma-Aldrich (Darmstadt,
Germany). Deionized water with the resistivity of 18.2 MΩ.cm was obtained from a Type
1 Simplicity® ultrapure water system (Merck, Darmstadt, Germany). All solutions were
filtered through a 0.45 µm nylon membrane filter before injected into the HPLC system.

3.2. Instrumentations

The chromatographic analysis of triazole fungicides was performed on a Waters 1525 Bi-
nary HPLC pump (Water, MA, USA) equipped with a diode array detector (DAD). The
stationary-phase column was a Purospher® STAR RP-18 endcapped (4.6 × 150 mm2, 5 µm)
column (Merck, Darmstadt, Germany) with the column temperature maintained at ambient
temperature. The mobile phase consisted of acetonitrile and water, and the separation was
carried out under an isocratic elution of 50:50 (%v/v), and the flow rate was 1.0 mL min−1,
the injection volume was 20 µL, and the detection wavelength was set to 220 nm.

3.3. In-Situ Coacervative Extraction (IS-CAE) Procedure

The standard solution of triazoles (or sample solution) of 10.00 mL was mixed with
50 µL of 1-dodecanol and 50 µL of 1-undecanol in the centrifuge tube. Then, the solution
was vortexed for 30 s. After that, the emulsion was centrifuged at 2500 rpm for 5 min to
complete the phase separation. The reconstituted solution was collected before injecting
into the HPLC system. A schematic diagram of the proposed microextraction procedure is
shown in Figure 11.
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Conditions: Sample 10 mL, double SUPRA (50 µL of 1-dodecanol and 50 µL of 1-undecanol), vortex
time 30 s, and centrifugation 2500 rpm for 5 min. Finally, collection of the top layer for HPLC analysis.

3.4. Sample Preparation
3.4.1. Water Samples

The water samples were collected from different areas located near rice fields in
Maha Sarakham province, northeastern of Thailand, and were filtered through a 0.45 µm
nylon membrane filter (Millipore, Burlington, MA, USA) before extraction using the pro-
posed method.
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3.4.2. Fruit Juice Samples

Commercial grape and apple juice samples, available in local supermarkets, were
collected for analysis. Before analysis, a 30.0 mL aliquot of fruit juice was centrifuged at
3500 rpm for 15 min, and was filtered through a Whatman No. 42 filter paper. Then, the
filtrate was filtered through a 0.45 µm nylon membrane filter before extraction using the
proposed method.

3.4.3. Soy Milk Samples

Commercial soy milk samples were purchased from a local supermarket in Kan-
tarawichai Distinct, Maha Sarakham Province, Northeast, Thailand. Proteins and fats in
1 mL samples were precipitated by shaking vigorously with acetonitrile and trifluoroacetic
acid (5:1, v/v). then, the mixture was vortexed (1500 rpm, 3 min) and centrifuged at
4500 rpm for 10 min. The supernatant was extracted by using the coacervative extraction
procedure (see Section 2.3). For the fortification of samples, standards of triazole were
spiked into milk samples prior to protein and fat separation.

3.5. Calculation of Enrichment Factor (EF), Relative Recovery (RR), and Matrix Effect (ME)

The EF is the ratio between the concentration of analyte in the sediment phase (Csed)
and the initial concentration of analyte in the aqueous sample solution (C0). To study
the effect of experimental conditions on the extraction efficiency, the EFs were calculated
according to the following equations:

EF = Csed/C0 (1)

The %RR was defined as the %amount of analyte recovered from matrix (real samples)
with reference to the extracted standard (standard spiked into the same matrix):

RR(%) =
Cfound − Creal

Cadded
× 100 (2)

where Cfound is the concentration of analyte after adding a known amount of working
standard to real sample, Creal is the analyte concentration in real sample, and Cadded
represents the concentration of a known amount of working standard that was spiked into
the real samples.

ME (%) is expressed as the ratio of the slopes obtained from calibration curves of each
analyte spiked into the samples to the slopes obtained after extraction using the proposed
method, according to the following equation:

ME(%) =
slope of spiked real sample
slope of standard solution

× 100 (3)

4. Conclusions

In this study, an in situ coacervative extraction (IS-CAE) based on a double-solvent
supramolecular system combined with HPLC was investigated for the analysis of triazole
fungicides. The advantages of this method include a simple and inexpensive operational
procedure, environmentally friendly, dispersive-solvent-free, and low organic solvent con-
sumption. In this method, two long normal chain alcohols are in situ formed in the sample
solution in which coacervative extraction was performed. This new supermolecule is used
as an extractant system, which has a higher extraction power than any of its components
alone. Therefore, IS-CAE fulfills the demand of green and sustainable analytical chemistry.
In addition, this method was successfully applied to determine triazole fungicide residues
in water, fruit juice, and soy milk samples, by providing satisfactory recoveries.
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