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Human immunodeficiency virus (HIV) is associated with an increased risk of age-associated comorbidities and mortality com-
pared to people without HIV. This has been attributed to HIV-associated chronic inflammation and immune activation despite 
viral suppression. The adenosine pathway is an established mechanism by which the body regulates persistent inflammation to limit 
tissue damage associated with inflammatory conditions. However, HIV infection is associated with derangements in the adenosine 
pathway that limits its ability to control HIV-associated inflammation. This article reviews the function of purinergic signaling and 
the role of the adenosine signaling pathway in HIV-associated chronic inflammation. This review also discusses the beneficial and 
potential detrimental effects of pharmacotherapeutic strategies targeting this pathway among people with HIV.
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Despite viral suppression on antiretroviral therapy (ART), 
human immunodeficiency virus (HIV) has been associated 
with elevated levels of systemic inflammation and immune ac-
tivation, which accompanies an increased risk of morbidity and 
mortality from non-acquired immunodeficiency syndrome 
(AIDS)-associated chronic diseases [1, 2]. People with HIV 
(PWH) experience accelerated immunologic aging and develop 
cardiovascular disease (CVD), liver disease, and non-AIDS-
defining cancers earlier than people without HIV (PWOH) of 
similar age [3, 4].

In a recent study, purinergic signaling has been impli-
cated in regulating the immunopathogenesis of HIV [5, 6]. 
Purinergic receptor activation impacts phagocytosis, antigen 
presentation, cytotoxicity, chemotaxis, chemokine and cytokine 
release, and T lymphocyte differentiation [7, 8]. Therefore, tai-
loring pharmacotherapeutic interventions to target purinergic 
signaling could be an important strategy in regulating chronic 
inflammation and persistent immune activation associated with 
chronic HIV. This review highlights (1) the immunologic im-
portance of adenosine triphosphate (ATP) and its nucleoside, 

adenosine, in modulating the immunologic response and in-
flammation in chronic HIV infection and (2) the potential role 
of purinergic receptor-targeted therapies in the prevention and 
treatment of the chronic disease events seen in PWH.

THE IMMUNOLOGIC FUNCTION OF ADENOSINE

The relationship between extracellular ATP to adeno-
sine is a major local signal of immunoactivation versus 
immunosurveillance, which is governed by extracellular and 
intracellular purinergic metabolism (Figure 1). In response to 
stress, large amounts of ATP are actively and passively released 
into the extracellular space. Adenosine triphosphate acts as a 
damage-associated molecular pattern (DAMP) and activates 
type 2 purinergic (P2) receptors [9]. The P2 receptors consist 
of 2 main subtypes, P2X and P2Y receptors. The P2X receptors 
are ATP-gated ionotropic channels that are generally involved 
in proinflammatory processes. In particular, P2X7 stimulation 
causes further ATP release that triggers a positive feedback loop 
to amplify the ATP signal while recruiting appropriate cells to 
the area [10]. The P2Y receptors are G-protein-coupled recep-
tors that are implicated in a broad range of functions, including 
facilitating platelet aggregation, vasodilation, cell migration, 
and immune responses [11].

Extracellular ATP is catabolized into adenosine 5’-mono-
phosphate (5’-AMP) by a family of enzyme ectonucleotidases, 
the most important being dephosphorylase-1 (CD39). 
Subsequently, 5’-AMP is converted to adenosine mainly by 
ecto-5’-nucleotidase (CD73) and other tissue nonspecific al-
kaline phosphatases [12]. Extracellular adenosine can be fur-
ther metabolized to a proinflammatory substrate, inosine, 
via adenosine deaminase or be transported intracellularly 
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via equilibrative nucleoside transporters (ENTs) [13, 14]. 
Extracellular adenosine activates type 1 purinergic (P1) re-
ceptors, which consists of subtypes A1, A2A, A2B, and A3, that 
modulate adenylyl cyclase and the 3’5’-cyclic monophosphate 
pathway [15]. The A1 receptor is ubiquitous throughout the 
human body and typically has a proinflammatory effect [16]. 
However, A2 receptors exhibit an anti-inflammatory role [17]. 
Specifically, activating the A2A receptor suppresses neutro-
phil responses [18, 19], monocyte and macrophage recruit-
ment as well as macrophage phagocytic function [20], and 
proinflammatory cytokine secretion [21, 22]. A2A receptor 
agonists interfere with T-cell receptor signaling and suppress 
T-cell proliferation and effector function [23], ultimately pro-
ducing anergic T cells [24, 25].

Constitutively low levels of extracellular ATP and adenosine 
are maintained by nucleoside and purine transporters under 
normal physiological conditions [26]. On most cells, including 
lymphocytes and endothelial cells, the surface expression of 
CD39 and CD73 is regulated by external stimuli that ultimately 
influence the concentration of adenosine in the local environ-
ment to mediate paracrine signaling [27]. The concentrations 
of extracellular ATP and adenosine are intrinsically regulated 
during inflammation and immune responses, which modu-
lates the functions of myeloid and lymphoid cells [28]. During 
acute inflammatory responses, high levels of extracellular ATP 
act as a DAMP and trigger proinflammatory effector functions 
in a setting of low extracellular adenosine levels, including T 
lymphocyte migration and proliferation [29]. In the ATP-rich, 
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Figure 1.  Schematic representation of transport pathways and extracellular enzymes involved in purinergic metabolism. The ratio of extracellular adenosine triphosphate 
(ATP) to adenosine signal for local immunoactivation (ATP-rich environment) versus immunosurveillance (adenosine-rich environment). The ATP is released into the extracel-
lular space as a sign of cell damage, which promotes immune activation via purinergic 2X (P2X) and purinergic 2Y (P2Y) receptor activation. Extracellular ATP is broken down to 
adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine via CD39 and CD73 ectonucleotidases. Extracellular adenosine promotes local immunosup-
pression via activation of A2A receptor. Extracelullar adenosine concentration is regulated by transport into the cell via equilibrative nucleoside transporter (ENT) or conversion 
to inosine via adenosine deaminase (ADA).



The Adenosine Pathway and HIV-Associated Inflammation  •  ofid  •  3

adenosine-poor environment, A1 receptors work synergistically 
with P2 receptors to promote cell migration, cytotoxicity, ap-
optosis, and proinflammatory cytokine secretion in neutrophils 
[30], monocytes [31, 32], and macrophages [33, 34].

As inflammation persists, the concentration of extracel-
lular adenosine increases as a result of the breakdown of ATP 
[35, 36]. Immune cells in the most injured areas produce an 
adenosine-rich environment to inhibit themselves, and other 
local immune cells, while allowing neighboring cells to con-
tinue eliminating the pathogen [37]. The protective increase in 
extracellular adenosine inhibits effector functions of neutro-
phils, macrophages, dendritic cells, and T lymphocytes [28]. 
Thus, a rise in extracellular adenosine and A2A receptor expres-
sion provides a negative feedback mechanism to prevent further 
tissue damage [38]. These characteristics, combined with the 
short half-life of adenosine in vivo, allow for efficient paracrine 
and autocrine adenosine signaling among immune cells [39].

THE ADENOSINE PATHWAY IN HUMAN 
IMMUNODEFICIENCY VIRUS INFECTION

Given the established ability of the adenosine pathway in modu-
lating immune function, multiple studies have examined the re-
lationship between adenosine and HIV (Table 1). Specifically, 
antagonism of the P2X receptor inhibits HIV infection of CD4+ 
T lymphocytes [52]. For example, CD34+ hematopoietic pro-
genitor cells from PWH who are immunologic nonresponders 
(INRs) overexpress P2X7R, and inhibition of these receptors 
promotes maturation of CD4+ T cells [51]. Moreover, macro-
phages, which can act as HIV reservoirs, release HIV-1 virions 
from stored vacuoles when stimulated with P2X7R agonists [53]. 
Human immunodeficiency virus infection directly impairs 
purinergic metabolism on inflammatory immune cells, which 
skews towards an adenosine-poor local environment, thereby 
promoting chronic immune activation [6]. In our study com-
paring CD39 and CD73 expression on Tregs, we found higher 
frequencies of ectonucleotidase coexpression as well as higher 
levels of adenosine in gut mucosal tissue in the nonprogressive 
model of simian immunodeficiency virus (SIV) infection in 
African green monkeys (AGM) compared with the progressive 
model in pigtailed macaques (PTM) [5]. This finding suggests a 
potential role for adenosine in AGM through the control of im-
mune activation and inflammation, despite SIV infection, that 
prevents them from progressing to AIDS. When examining the 
functionality of adenosine ex vivo, we found that adenosine sig-
nificantly suppressed cytokine production of CD4+ and CD8+ T 
cells in both AGM and PTM [5].

In addition to chronic immune activation, changes to the 
purinergic pathway during HIV infection are associated with 
T-cell exhaustion, immunosenescence, and immunosuppres-
sion, which mitigates the ability of the immune system to ef-
fectively manage chronic viral infection or cancer [54–56]. 
Human immunodeficiency virus infection is associated with 

the downregulation of CD73+ and upregulation of CD39+ on 
CD8+ T cells, the latter of which has been identified as a marker 
of terminal exhaustion [50, 57]. Among viremic PWH, there is 
greater CD39, but not CD73, expression in natural killer cells, 
which correlates with viral load and markers of systemic in-
flammation [58].

Although the adenosine pathway could be protective in HIV-
associated chronic inflammation and immune activation, its 
immunosuppressive function could have important implica-
tions in HIV persistence. Regulatory T cells (Tregs) represent 
important viral reservoirs during chronic HIV infection, and 
the frequency of CD39+ Tregs is correlated with Treg HIV deox-
yribonucleic acid levels [59]. The Treg cells coexpress CD39 and 
CD73, which make them highly efficient in generating adeno-
sine [60]. Because CD39 expression is upregulated in Tregs for 
PWH, this creates an adenosine-Treg positive feedback loop to 
promote a local adenosine-rich, immunosuppressant environ-
ment [48]. In addition, A2A receptor activation increases Treg 
suppressive activity [25, 61, 62]. There is evidence in vitro that 
CD4+CD25+ Tregs in ART-treated PWH diminishes CD4+ and 
CD8+ T-cell function and proinflammatory cytokine production 
[63, 64]. Specifically, the adenosine/Treg-mediated suppression 
of CD4+ T cells inhibits interleukin (IL)-2 and interferon-γ re-
lease as well as gag-stimulated CD8+ T-cell cytotoxic activity 
[65–67]. Antibodies that block CD39 activity inhibit Treg-
mediated suppression of CD8+ T-cell cytokine production, sug-
gesting that adenosine metabolism is integral in the suppressive 
effects of Tregs in HIV infection [48]. Therefore, although HIV 
infection is associated with a persistent immunoactivated state, 
local enhanced production of adenosine by Treg cells may me-
diate inappropriate immune tolerance.

IMPACT OF ADENOSINE SIGNALING ON 
INFLAMMATION AND COMORBIDITIES IN TREATED 
HUMAN IMMUNODEFICIENCY VIRUS

Despite the extended survival of PWH on ART, virally sup-
pressed individuals experience a greater rate of age-associated 
non-AIDS events compared with PWOH, and this is a believed 
to be due to higher levels of inflammation [3]. Multiple fac-
tors contribute to this persistent inflammation. We have pre-
viously shown that PWH, regardless of viremia level or CD4+ 
T-cell reconstitution, have lower frequencies of CD4+ T cells ex-
pressing the rate-limiting enzyme CD73 and that CD4+CD73+ 
T-cell frequencies are associated with lower T-cell activation 
and C-reactive protein levels [49]. Likewise, Tóth et  al [50] 
showed decreased frequencies of CD8+ T cells expressing 
CD73, and this correlated with immune activation and T-cell 
exhaustion. These findings suggest that alterations in the aden-
osine pathway are playing an important role in chronic HIV-
associated inflammation.

An important factor contributing to the persistent inflam-
mation in PWH is microbial translocation resulting from the 
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disruption of the intestinal epithelial integrity and mucosal im-
mune dysfunction [68–71]. Multiple markers of microbial trans-
location and innate immune activation have been associated 
with HIV comorbidities, including CVD [72–74]. Extracellular 
adenosine signaling has been implicated in promoting resto-
ration of the epithelial barrier in inflammatory bowel disease 
(IBD) [75, 76], and enhanced migration of antigen-presenting 
cells (APCs) to the gut mucosa can be induced via preferential 
activation of A1 receptors [77]. Given these findings, decreased 
adenosine levels in the gut epithelium could be an important 
contributing factor to the disrupted epithelial barrier caused 
by HIV.

NLRP3 inflammasome activation and IL-1β production 
are factors that contribute to HIV-associated inflammation, 
and these are strongly implicated in the development of ath-
erosclerosis and hypertension [78, 79]. Activation of the 
NLRP3 inflammasome and release of IL-1β are strongly tied to 
purinergic signaling, particularly P2X7R stimulation [78, 80]. In 
addition, the inflammasome system may contribute to the loss 
of CD4+ T-cell populations and overall lack of immune recovery 
seen in PWH [81]. For example, INRs upregulate NLRP3 
inflammasome and caspase-1 expression compared with those 
who experience immune recovery on ART [82]. Antagonism of 
P2X7R may therefore help to suppress inflammasome activity 
and IL-1β release [78]. The exact role of how other compo-
nents of the adenosine pathway can influence inflammasome 
activity is still unclear. In non-HIV studies, adenosine has been 
shown to be necessary for sustained inflammasome activation 
via the A2A receptor [83]. In animal models of hypertension, 
proinflammatory cytokines, including IL-1β, downregulate 
CD39 expression [84]. However, CD39 has recently been im-
plicated to serve a protective role by limiting NLRP3 activation 
and IL-1β release [85]. Upregulation of CD39+/CD73+ Tregs 
are thought to be protective against CVD and unstable plaque 
rupture [86–89]. Antiretroviral therapy-treated PWH with cor-
onary artery disease have depressed levels of CD39+/CD73+ 
Tregs, which may predispose them to atherosclerotic develop-
ment [90]. How the adenosine pathway affects inflammasome 
activation in treated HIV will require additional studies to fully 
understand its role in HIV pathogenesis.

It has recently been shown that purinergic signaling is linked 
to metabolic disease and dyslipidemia, which contributes to 
CVD and liver disease among PWH [91, 92]. P2X7R expression 
is upregulated in the peripheral blood mononuclear cells from 
patients with type 2 diabetes and in adipocytes of patients with 
metabolic syndrome [93, 94]. In addition, P2X7R expression 
correlates with low-density lipoprotein cholesterol, which is a 
major component of metabolic syndrome and elevated cardio-
vascular risk [93]. Furthermore, extracellular nucleotides have 
been associated with insulin resistance and dysregulated lip-
oprotein synthesis [95]. There is also emerging evidence that 
P2Y6R activation may contribute to obesity [96].R
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From our current knowledge of the adenosine pathway, 
focusing on the role of adenosine as an anti-inflammatory 
agent could prove beneficial in developing safe and effective 
interventions in clinical settings. However, although chronic 
immunoactivation has an integral role in HIV-associated 
chronic conditions, local immunosuppression plays a key role 
in cancer risk and viral persistence. Although ART has re-
duced the mortality of AIDS-related cancers [97], PWH still 
experience accelerated aging and other risk factors for cancer 
diagnoses [98]. Long-term immunosuppression is likely the 
main contributor to non-AIDS-defining cancers [99, 100]. 
Enhanced adenosine activation in tumor microenvironments 
generates an immunosuppressant environment that supports 
tumor growth and evasion from T-cell immune defense [101]. 
Therefore, modulating adenosine activation in PWH, who are 
at risk for both solid and liquid malignancies, should be closely 
monitored.

Viruses that are commonly comorbid with HIV can also 
upregulate the expression and activity of CD39 and CD73 to 
facilitate infection [102, 103]. Endothelial cells infected with 
cytomegalovirus demonstrate an increase in local adenosine 
production due to the upregulation of both ectonucleotidases 
[102]. This is thought to facilitate viral entry into target cells 
by creating a locally immunosuppressive environment. In ad-
dition, compared with people with resolved hepatitis B virus 
(HBV) infection, HBV carriers have higher proportions of 
Tregs, and increase proportions of circulating CD39+ Tregs cor-
related with serum viral load, thus, suggesting that CD39+ Tregs 
contribute to chronic viral persistence [103].

Finally, modifying the adenosine pathway can have impor-
tant implications on quality of life among PWH. Adenosine is 
a well established sleep regulatory substance, and enhanced ex-
tracellular concentrations in the brain are associated with sleep 
deprivation and promotion of sleep, particularly via stimulation 
of A1 and A2A receptors [104]. Indeed, caffeine, an adenosine an-
tagonist, is commonly used to thwart sleepiness in the general 
population [105]. Sleep disturbances are highly prevalent 
among PWH and, therefore, they may be especially vulnerable 
to worsened fatigue [106]. Enhancing adenosine activation may 
facilitate insomnia and nocturnal sleep quality among PWH. 
However, adenosine activation may promote daytime sleepi-
ness and fatigue as well. Alternatively, changes in sleep patterns 
have been demonstrated to augment P2X7 and A2A receptor 
expression on circulating leukocytes [107]; this suggests that 
modifying sleep behavior may be a novel nonpharmacologic 
mechanism to alter purinergic signaling in PWH.

POTENTIAL OF PHARMACOTHERAPIES

There is an understandably heightened interest in developing 
effective pharmacotherapies to reduce the incidence of non-
AIDS-related comorbidities that lead to early mortality in 

PWH. Targeting the purinergic signaling pathway to shift the 
balance away from proinflammatory P2 activation towards 
anti-inflammatory activation of adenosine receptors is an at-
tractive model to test pharmacotherapeutics. For example, A2A 
receptors are a critical part in the negative feedback loop of lim-
iting and inhibiting inflammatory responses, providing a ra-
tionale to develop A2A receptor-targeted therapeutics to either 
inhibit or enhance immune responses [38, 108, 109]. There has 
been emerging literature on pharmacological approaches that 
target purinergic signaling in various ways to reconstitute the 
subsequent immune damage of HIV-1 infection [110, 111]. 
This review focuses on potential therapies to reduce inflamma-
tion and promote viral clearance (Figure 2).

Investigation into several potential therapies to curb chronic 
inflammation in ART-treated PWH and show promising pre-
liminary results [112]. Given that T-cell expression of CD73 
is reduced among PWH, attempts have been made to assess 
whether modulating the adenosine signaling pathway may de-
crease the persistent chronic inflammatory profile experienced 
in PWH. In a double-blind, placebo-controlled study, we ran-
domized 40 ART-controlled PWH to 12 weeks of dipyridamole 
versus placebo, followed by 12 weeks of open-label dipyrida-
mole [113]. Dipyridamole is a nucleoside transport inhibitor 
and phosphodiesterase 3 inhibitor used clinically in patients 
with a history of peripheral vascular disease and stroke patients 
to prevent future thrombotic events. It increases extracellular 
adenosine by blocking ENTs and preventing transport of aden-
osine intracellularly down its concentration gradient [114, 115]. 
Initial data showed that dipyridamole decreased CD8+ T-cell 
activation in the treatment arm versus placebo arm. In pooled 
analyses, after 12 weeks of dipyridamole, there was a signifi-
cant decrease in CD4+ T-cell activation and a trend toward de-
creased CD8+ T-cell activation in blood [113]. In a substudy, 
we collected rectosigmoid biopsies from 18 participants to fur-
ther assess the effect of dipyridamole on mucosal immune cells. 
Those receiving dipyridamole had (1) a median 70.2% decrease 
from baseline in the Treg population and (2) an 11.3% increase 
in CD8+ T cells. There were also trends towards decreased CD4+ 
T-cell activation and CD8+ T-cell activation [116]. Because the 
population of Tregs increased in response to heightened inflam-
mation, these data suggest that there is a decrease in gut inflam-
mation that obviates a compensatory Treg response.

Modulating ectonucleotidase activity, particularly CD39 
and CD73 activity, is an attractive therapeutic target to reduce 
proinflammatory extracellular ATP concentrations in favor of 
anti-inflammatory adenosine. Methotrexate and sulfasalazine, 
immunosuppressants commonly used in IBD, may be partially 
effective in treating IBD by enhanced CD73 production of aden-
osine [117]. Among PWH, although low doses of methotrexate 
had no effect on systemic inflammatory endothelial markers, 
there were improvements in brachial artery ultrasound meas-
urements, which may indicate favorable vasculature changes 
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[118, 119]. Rosuvastatin, typically used to treat high cholesterol 
and triglyceride levels, can also increase extracellular adenosine 
formation via upregulation of CD73, and it has shown in vivo 
protection against inflammation [120–122]. The Randomized 
Trial to Prevent Vascular Events in HIV (REPRIEVE) is an on-
going, prospective, randomized placebo-controlled clinical trial 
of a pitavastatin strategy for the primary CVD prevention among 
PWH [123]. In addition to informing the field on the efficacy of 
statin strategy among PWH, it includes multiple measurements 
of plaque stability, immune activation, and inflammation [124]. 
This trial may provide valuable insights on the role of statins in 
modifying purinergic metabolism.

Selectively inhibiting P2Y2 receptor expression with small 
interfering ribonucleic acids reduces the HIV-induced inflam-
matory response and cell death [125, 126]. Inhibiting P2X7 
receptors to restore T-cell differentiation from CD34+ hemato-
poietic progenitor cells could be a potential strategy in PWH, 
who experience reduced immune recovery while on ART, to 
regenerate new T-cell populations [51]. Due to the ubiquitous 
nature of purinergic receptors, there should be a narrowed 
focus on refining the characterization of cellular patterns 
and molecular control of expression of crucial enzymes in 
the purinergic signaling pathway to minimize unwanted side 

effects. It is important to understand receptor regulation to 
design and improve purinergic receptor strategies to effec-
tively prevent accelerated aging and control systemic inflam-
mation in PWH.

CONCLUSIONS

Although ART is effective in viral suppression and prolonging 
the development of AIDS, the concern lies in patient suscep-
tibilities to morbidity and early mortality of age-associated 
diseases due to immunological dysfunction caused by HIV. 
Adenosine agonists provide immune advantage by inhibiting 
T-cell effector function, in conjunction with Tregs, to re-
duce the chronic immune activation and dysfunction seen in 
PWH. However, although enhancing CD39 and CD73 activity 
may improve inflammation and immunoactivation-related 
comorbidities in HIV, modulating ectonucleotidase activity 
is a double-edged sword. The adenosine/Treg axis can be det-
rimental by suppressing HIV-specific immune responses. 
Additional studies are necessary to determine the proper bal-
ance between controlling inflammation but still allowing the 
generation of an effective immune response against the virus. 
Novel and innovative strategies targeting these 2 contrasting 
functions of the adenosine pathway can lead to a decreased risk 
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for non-AIDS-associated chronic disease and, at the same time, 
target viral persistence.
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