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Human immunodeficiency virus (HIV) is associated with an increased risk of age-associated comorbidities and mortality com-
pared to people without HIV. This has been attributed to HIV-associated chronic inflammation and immune activation despite
viral suppression. The adenosine pathway is an established mechanism by which the body regulates persistent inflammation to limit
tissue damage associated with inflammatory conditions. However, HIV infection is associated with derangements in the adenosine
pathway that limits its ability to control HIV-associated inflammation. This article reviews the function of purinergic signaling and
the role of the adenosine signaling pathway in HIV-associated chronic inflammation. This review also discusses the beneficial and
potential detrimental effects of pharmacotherapeutic strategies targeting this pathway among people with HIV.
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Despite viral suppression on antiretroviral therapy (ART),
human immunodeficiency virus (HIV) has been associated
with elevated levels of systemic inflammation and immune ac-
tivation, which accompanies an increased risk of morbidity and
mortality from non-acquired immunodeficiency syndrome
(AIDS)-associated chronic diseases [1, 2]. People with HIV
(PWH) experience accelerated immunologic aging and develop
cardiovascular disease (CVD), liver disease, and non-AIDS-
defining cancers earlier than people without HIV (PWOH) of
similar age [3, 4].

In a recent study, purinergic signaling has been impli-
cated in regulating the immunopathogenesis of HIV [5, 6].
Purinergic receptor activation impacts phagocytosis, antigen
presentation, cytotoxicity, chemotaxis, chemokine and cytokine
release, and T lymphocyte differentiation [7, 8]. Therefore, tai-
loring pharmacotherapeutic interventions to target purinergic
signaling could be an important strategy in regulating chronic
inflammation and persistent immune activation associated with
chronic HIV. This review highlights (1) the immunologic im-
portance of adenosine triphosphate (ATP) and its nucleoside,
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adenosine, in modulating the immunologic response and in-
flammation in chronic HIV infection and (2) the potential role
of purinergic receptor-targeted therapies in the prevention and
treatment of the chronic disease events seen in PWH.

THE IMMUNOLOGIC FUNCTION OF ADENOSINE

The relationship between extracellular ATP to adeno-
sine is a major local signal of immunoactivation versus
immunosurveillance, which is governed by extracellular and
intracellular purinergic metabolism (Figure 1). In response to
stress, large amounts of ATP are actively and passively released
into the extracellular space. Adenosine triphosphate acts as a
damage-associated molecular pattern (DAMP) and activates
type 2 purinergic (P2) receptors [9]. The P2 receptors consist
of 2 main subtypes, P2X and P2Y receptors. The P2X receptors
are ATP-gated ionotropic channels that are generally involved
in proinflammatory processes. In particular, P2X_ stimulation
causes further ATP release that triggers a positive feedback loop
to amplify the ATP signal while recruiting appropriate cells to
the area [10]. The P2Y receptors are G-protein-coupled recep-
tors that are implicated in a broad range of functions, including
facilitating platelet aggregation, vasodilation, cell migration,
and immune responses [11].

Extracellular ATP is catabolized into adenosine 5’-mono-
phosphate (5-AMP) by a family of enzyme ectonucleotidases,
(CD39).
Subsequently, 5-AMP is converted to adenosine mainly by
ecto-5"-nucleotidase (CD73) and other tissue nonspecific al-
kaline phosphatases [12]. Extracellular adenosine can be fur-

the most important being dephosphorylase-1

ther metabolized to a proinflammatory substrate, inosine,
via adenosine deaminase or be transported intracellularly
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Figure 1.  Schematic representation of transport pathways and extracellular enzymes involved in purinergic metabolism. The ratio of extracellular adenosine triphosphate
(ATP) to adenosine signal for local immunoactivation (ATP-rich environment) versus immunosurveillance (adenosine-rich environment). The ATP is released into the extracel-
lular space as a sign of cell damage, which promotes immune activation via purinergic 2X (P,,) and purinergic 2Y (P,,) receptor activation. Extracellular ATP is broken down to
adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine via CD39 and CD73 ectonucleotidases. Extracellular adenosine promotes local immunosup-
pression via activation of A,, receptor. Extracelullar adenosine concentration is regulated by transport into the cell via equilibrative nucleoside transporter (ENT) or conversion

to inosine via adenosine deaminase (ADA).

via equilibrative nucleoside transporters (ENTs) [13, 14].
Extracellular adenosine activates type 1 purinergic (P1) re-
ceptors, which consists of subtypes A, A,, A, and A,, that
modulate adenylyl cyclase and the 3’5’-cyclic monophosphate
pathway [15]. The A, receptor is ubiquitous throughout the
human body and typically has a proinflammatory effect [16].
However, A, receptors exhibit an anti-inflammatory role [17].
Specifically, activating the A,, receptor suppresses neutro-
phil responses [18, 19], monocyte and macrophage recruit-
ment as well as macrophage phagocytic function [20], and
proinflammatory cytokine secretion [21, 22]. A,, receptor
agonists interfere with T-cell receptor signaling and suppress
T-cell proliferation and effector function [23], ultimately pro-
ducing anergic T cells [24, 25].

Constitutively low levels of extracellular ATP and adenosine
are maintained by nucleoside and purine transporters under
normal physiological conditions [26]. On most cells, including
lymphocytes and endothelial cells, the surface expression of
CD39 and CD73 is regulated by external stimuli that ultimately
influence the concentration of adenosine in the local environ-
ment to mediate paracrine signaling [27]. The concentrations
of extracellular ATP and adenosine are intrinsically regulated
during inflammation and immune responses, which modu-
lates the functions of myeloid and lymphoid cells [28]. During
acute inflammatory responses, high levels of extracellular ATP
act as a DAMP and trigger proinflammatory effector functions
in a setting of low extracellular adenosine levels, including T
lymphocyte migration and proliferation [29]. In the ATP-rich,
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adenosine-poor environment, A, receptors work synergistically
with P2 receptors to promote cell migration, cytotoxicity, ap-
optosis, and proinflammatory cytokine secretion in neutrophils
[30], monocytes [31, 32], and macrophages [33, 34].

As inflammation persists, the concentration of extracel-
lular adenosine increases as a result of the breakdown of ATP
[35, 36]. Immune cells in the most injured areas produce an
adenosine-rich environment to inhibit themselves, and other
local immune cells, while allowing neighboring cells to con-
tinue eliminating the pathogen [37]. The protective increase in
extracellular adenosine inhibits effector functions of neutro-
phils, macrophages, dendritic cells, and T lymphocytes [28].
Thus, a rise in extracellular adenosine and A, receptor expres-
sion provides a negative feedback mechanism to prevent further
tissue damage [38]. These characteristics, combined with the
short half-life of adenosine in vivo, allow for efficient paracrine
and autocrine adenosine signaling among immune cells [39].

THE ADENOSINE PATHWAY IN HUMAN
IMMUNODEFICIENCY VIRUS INFECTION

Given the established ability of the adenosine pathway in modu-
lating immune function, multiple studies have examined the re-
lationship between adenosine and HIV (Table 1). Specifically,
antagonism of the P2X receptor inhibits HIV infection of CD4"
T lymphocytes [52]. For example, CD34" hematopoietic pro-
genitor cells from PWH who are immunologic nonresponders
(INRs) overexpress P2X R, and inhibition of these receptors
promotes maturation of CD4" T cells [51]. Moreover, macro-
phages, which can act as HIV reservoirs, release HIV-1 virions
from stored vacuoles when stimulated with P2X_R agonists [53].
Human immunodeficiency virus infection directly impairs
purinergic metabolism on inflammatory immune cells, which
skews towards an adenosine-poor local environment, thereby
promoting chronic immune activation [6]. In our study com-
paring CD39 and CD73 expression on Tregs, we found higher
frequencies of ectonucleotidase coexpression as well as higher
levels of adenosine in gut mucosal tissue in the nonprogressive
model of simian immunodeficiency virus (SIV) infection in
African green monkeys (AGM) compared with the progressive
model in pigtailed macaques (PTM) [5]. This finding suggests a
potential role for adenosine in AGM through the control of im-
mune activation and inflammation, despite SIV infection, that
prevents them from progressing to AIDS. When examining the
functionality of adenosine ex vivo, we found that adenosine sig-
nificantly suppressed cytokine production of CD4" and CD8" T
cells in both AGM and PTM [5].

In addition to chronic immune activation, changes to the
purinergic pathway during HIV infection are associated with
T-cell exhaustion, immunosenescence, and immunosuppres-
sion, which mitigates the ability of the immune system to ef-
fectively manage chronic viral infection or cancer [54-56].

Human immunodeficiency virus infection is associated with

the downregulation of CD73" and upregulation of CD39" on
CD8" T cells, the latter of which has been identified as a marker
of terminal exhaustion [50, 57]. Among viremic PWH, there is
greater CD39, but not CD73, expression in natural killer cells,
which correlates with viral load and markers of systemic in-
flammation [58].

Although the adenosine pathway could be protective in HIV-
associated chronic inflammation and immune activation, its
immunosuppressive function could have important implica-
tions in HIV persistence. Regulatory T cells (Tregs) represent
important viral reservoirs during chronic HIV infection, and
the frequency of CD39" Tregs is correlated with Treg HIV deox-
yribonucleic acid levels [59]. The Treg cells coexpress CD39 and
CD73, which make them highly efficient in generating adeno-
sine [60]. Because CD39 expression is upregulated in Tregs for
PWH, this creates an adenosine-Treg positive feedback loop to
promote a local adenosine-rich, immunosuppressant environ-
ment [48]. In addition, A, receptor activation increases Treg
suppressive activity [25, 61, 62]. There is evidence in vitro that
CD4'CD25" Tregs in ART-treated PWH diminishes CD4" and
CD8" T-cell function and proinflammatory cytokine production
[63, 64]. Specifically, the adenosine/Treg-mediated suppression
of CD4" T cells inhibits interleukin (IL)-2 and interferon-y re-
lease as well as gag-stimulated CD8" T-cell cytotoxic activity
[65-67]. Antibodies that block CD39 activity inhibit Treg-
mediated suppression of CD8" T-cell cytokine production, sug-
gesting that adenosine metabolism is integral in the suppressive
effects of Tregs in HIV infection [48]. Therefore, although HIV
infection is associated with a persistent immunoactivated state,
local enhanced production of adenosine by Treg cells may me-
diate inappropriate immune tolerance.

IMPACT OF ADENOSINE SIGNALING ON
INFLAMMATION AND COMORBIDITIES INTREATED
HUMAN IMMUNODEFICIENCY VIRUS

Despite the extended survival of PWH on ART, virally sup-
pressed individuals experience a greater rate of age-associated
non-AIDS events compared with PWOH, and this is a believed
to be due to higher levels of inflammation [3]. Multiple fac-
tors contribute to this persistent inflammation. We have pre-
viously shown that PWH, regardless of viremia level or CD4"
T-cell reconstitution, have lower frequencies of CD4" T cells ex-
pressing the rate-limiting enzyme CD73 and that CD4"CD73"
T-cell frequencies are associated with lower T-cell activation
and C-reactive protein levels [49]. Likewise, Toth et al [50]
showed decreased frequencies of CD8" T cells expressing
CD?73, and this correlated with immune activation and T-cell
exhaustion. These findings suggest that alterations in the aden-
osine pathway are playing an important role in chronic HIV-
associated inflammation.

An important factor contributing to the persistent inflam-
mation in PWH is microbial translocation resulting from the

The Adenosine Pathway and HIV-Associated Inflammation « OFID « 3



SANLT A pemoj|o) *,£/dD 1O S|8A8| uoissaldxe 1semo| 8y} paAe|dsip siuedionied olwalIA

s||8d ,££dD 4o sebe

-lusolad 1s8ybiy eyl pemoys siuedioilied psalesll- Yy pue sO3 ‘siuedioiued (AlH eyl Buowly
S|enpIAIpUl -AJH Ylm paiedwod

sBal|-Uuou D pue s||90 | .8@D Ul Jamoj Ajpuediubis sem s||90 .££a0% ‘S[ENPIAIPUL LAIH U]
S||199 | QD Buissaldxe-auiy01A0 Jo ebelusdied syl Ul seseslosp auIsouspe snousbox3
QUISOUSPE 01 ]V snouabo

xa azAjoipAy 01 8199 | .£/0D,¥AD PUE ,6£0D. YD Y0g Jo 8doussald sy aiinbal s|j8d | . ¥3D
S|on8| YD ewse|d syl yum o sjjeo | ,8dD 1o

+#AD paieAnoe Jo Aouanbaly syl yiim a1eje1109 Jou pip Aousnbaly s|192 | ,6£QD.¥dD Bunenai)
S[enpIApul L AIH Ul 440 ewseld pue 's||8d | 800 palea

-1108 ‘S||80 | .70 PO1BAIIOR UlIM 81e[81l0d AjasieAul |18 | £/ dD,vdD +O siequinu 8injosqy
uoissalddns [eJIA JO SS9

-pieBai _A|H 01 paiedulod sjenplAIpul ,AlH Ul J8MO| 8.e s||8d | ,£/dD,¥dD 40 slequinu 81njosqy
9seasIp |-A|H 4O uoisseiboid Jemo|s 81edipul Aew

pue SgN.1T YHM paieroosse ‘uoissaldxs Jo sjeas| Jamo| Buisned ‘wsiydiowAjod susb 6D v
S1UNOD 81N|osqe |[80-] ,+dD

YUM Aj@SIaAUl pUB UOIIBAILOR sunwWl YlIM paleje.llod Ajeanisod Ball .6ed) ‘stuedioinied ,AJH u|
uoniqiyul palelpaw-suisouspe/gedd 01 Alliq

-3dsosns JeyBiy e pasnes YoIym ‘SienpiAipul ,AJH Peiesiiun uo uoisseldxe Y ™y o [ens| JoybiH
S[ENPIAIPUL _A[H SA ,AlH Ul uoinonpoud auby

-01A0 pue uoneltsjjoid (199,800 Jeybly e pasned Hai| uo uoisseidxe gE@D 4O uonenBaiumoq
uolssaldxa 8Z@) O SSO| PUB 82UBISBUSS PBILIS|SIIE YOIYM

‘ainsodxe suisouspe pabuojoid 01 se1hooydwA| | 80D pe1oslgns uoissaidxe yQy 40 doeq
_vay uey: Allianoe aselsuwlolal Jelealb pey ,yqy o.e 1eyl se1hooydwA| | ,8200D,80D

$8INND BAISS82INS e 1S0| Sem s81AooydwA| | ,8dD UO uoissaidxe yQy

sosuodsel 710 pue Jedjay | enoid

-Wwi 0} 8suodsal | Y] e a1owoud 01 (97| pue "0-4N | ‘A-Nd|) uononpoid suiyolAd pasesidul YAy
uoleseyljold |99-] ,8dD PUB D JO JUSWSOURYUS PaONPU-YAY

AIH U1 uonoelalul 9zao-vay pasiedw ozLdb

S|182 L ut (0L-] pue ‘9| ‘A-N41) uononpold sunolAd pednpu-yay Pednpal AlH

peo] [BJIA YlIM Pale|aliod AjaaieBau ajiym

1unod pue abelusdied QD YHM paiejaiiod Ajaailisod pue uonelsyljold ||99-] pesealoul yay
uoisselddns Bulnp ajos Juepoduwi ue paAeid osje Bal| uo uoissaldxe gED

S[|92 | [PUOIIUSAUOD Ul {7 &Seuly uiejold pajea

-110B 1By} wisiueydaw 1uspuadep-d|Ay2 e eiA suonoun| deb ybnoiyl peiinooo uoissaiddns Hal|
SI189 IN3D

uo uoissaidxa 0 BuLsle INoYIM uoissaidxe GUHD) pue yYIXD peonpal uonenbeidn Y ay
UIMOI6 |99 INFD PaUAIYUI PUEB HYZY JO UOIBAILDE PBISISSE SIUOPY

s||92 8|nuelb Jejjeq

2190 pue §||80 Z|.0d Ul sisordode peonpui-ie] 1suiebe uonosioid paheldsip Y¥'y Jo uoneAnoy
gM-N U0 1uepuadep uoissaidxe 8SeYIUAS 8pIX0-OL1IU 8|gIoNpul 1O uonigiyul Yy

urelold 18] AlH AQ paleIpaw 8pIX0 dLHU puB WNIOJeD Ul 8SeaIoul 8y} passaiddns uoneanoe y” 'y
AlAnjoe esejeydsoyd uieloid uo paijel sio1dedel suisouspe Jo suonoe Alowgiyu|

sa1A00uUOW Ul UoIRONPoId DN pPaH

~QIyur WINIDJBD JBN||S0BIIUI JO UOONPSI PUB ‘9ses|al WNIojed paonpui-ie] paigiyul uoeairoe Yy
uonIgiyul 1oy uoissaidxe gD uo Juspuadap |99 FHIXD

s108}48 AJonqiyul 0z dB peoueyus s|199 yHIXD

Buipuig 9zaD-vAV Uqiyul o1 djge sajonled A|H pue 0zLdb s|gnjos

sjuaned olwaliA pue ‘syusned |HY ‘SN
’S)3 's|043U0D yijeay :sdnoib G ssoloe paiedwiod
alom suolieindod ||99-] Jo sisAjeue oidAjousydounwiw)

UOI1BAIIOR BUNWIWI
PO1BID0SSE-A|H Ul JUBWSAJOAUI |80+ ,E/0D,¥AD pue
uolle[NPOWOUNWWI PAONPUI-BUISOUSPE 4O UOIeBIISaAU|

AIH }0 uoissalboid pue sisesuaboyied ayj ul
JUBWISA|OAUL SIXE BUISOUBPE/EEdD By} 4O Uoieulwex]

S||99 | ,8@D UBWNY Ul 82U8d
-SoUas dAIledI|del UO QY 4O 9|01 8y} JO UoIEBIISaAU|
SOUI0EA o1Inad
-BJ8Y] POSEq-||99 dlIpusp A|H Ul lueAnlpe ue se
VAV 40 Ssaujnjesn o16ojounwiull 8y} JO JUsWaINSEs|A

S[[82 | Ul UOIIBINWIIS0O
VAV UO AJH 4O 92U8N|juUl 8Y} JO UOIRIO|dXT

UOI}BWLIO) BUISOUSPE Jejn||@deiIxa Buipnjoul sbai)
JO S8 e oAIssa.ddns 8y} 4O uoivadsul [euooun4

sl192 1 IN3D, @D uo ‘siuopy Y™y 01 Apoqnue
|[BUOIOOUOW %1|-}SIUOBE UB JO 9ouan|jul 8y} 4O SISAjeuy

A1101X0} paonpul-ie| A|H 1sulebe
uoneAnoe Joideosl 'y Jo |enusiod eaioeloldoinaN

uoioNPoId DN PUB WNIoJed Jejn|[ed
-BJUI POONPUI-IE] A|H UO 8ouanjjul J01dedal suisouspy

92@) uewny o1 Bupuiq
VAV J0 UoqIyul paonpui-0zLdb o uonesisaaul

sjuedion
-ed _A\IH £Z PUe ,AIH 6 ‘0NIA X3

syuedion
-ed _A\IH OL PUe ,AlH 9€ ‘ONA X3

sjuedion
-led _AIH Gz ‘@|gels [Hv-0 ‘,AIH
6€ -9AI_U | HY-0 “,AIH BE ‘OAIA X3

sjuedio
-led _AJH wouy SOINGd “OAIA X3

siuedioiued _A|H (+AIH 8 ‘OAIA X3

suedion
-ed _A\IH OL PUe ,AlH 9€ ‘0NA X]

suedio
-led _AJH wouy SOINGd “OAIA X3

G400 PUB PHOXD WY
Buissaidxs aul| ||90 ewoydwA|-|

uewny @D e 's||82 [N FD ‘04UA U]

SeIN}Nd uoinau ajnueld Jejjeq
-8199 1Bl PUE S||80 Z1Dd ‘OJHA U]

$81A0
-ououl uewiny Aseudud [0JlA U|

7HIXD PUB ‘D ‘9zgD uewny
Buisse.dxe saU0|d BULINW ‘OJ}IA U]

[0G] e 38 oL

CIZNERERENEEI

[8] B 18 BAOIONIN

[£¥] |B 30 ysiied

[97] |8 38 JuswiD

7
|B 18 OIABN-ZBUILIEIA|

vl e 18
Z8pUBUIS4-0UBIOIN

lev] e 1o Ag
[cv] e 18 8|buld
[Ly]

|e 18 weyBuuaylo4

[07] [e 30 OouElg

sBuipul Jolep|

1ujodpug

uolie|ndod Apnis

odualajey

uonaaju| AIH pue Aemuyjeq auisouapy ays uo sbuipuiq jo Arewwng

‘L alqeL

4 « OFID . Hixson et al



Table 1. Continued

Major Findings

Endpoint

Study Population

Menkova-Garnier et al Ex vivo; 16 HIV* IRs; 16 HIV*

Reference

e There was no difference in the frequency of CD34* cells between the 3 groups

Limiting dilution assays of circulating CD34" he-

e The T-cell potential of CD34" cells was significantly lower in INRs compared to HIV- participants

matopoietic progenitor cells; frequency of

INRs; 18 HIV™ participants

[51]

and IRs
* P2X, was more strongly expressed in INRs than in IRs and HIV™ participants

e CD73 expression was undetectable in all the INRs studied

recent thymic emigrants (RTEs), defined as

CD31"CD27"CCR7*CD45RA*CD4" cells; RT-qPCR

analysis of FAS, P2X7 and CD73, mRNA levels in

e P2X, inhibition with PPAD significantly improved the potential of CD34" cells from INRs to dif-

purified CD34 cells; transcriptomic analysis of CD3*

cells in HIV IRs versus INRs.

ferentiate into T cells

e Coexpression of CD38 and CD73 was low in circulating CD4* Tregs and CD8" Tregs in both

Changes of markers related to ADO production (CD39

In vivo; 14 PTM (pathogenic

He et al [5]

AGMs and PTMs before infection
e Coexpression of CD39 and CD73 was highest in intestinal Treg cells and significantly higher in

and CD73) and breakdown (CD26 and ADO deami-

SIV host) and 15 AGM

nase) on T cells from blood, lymph nodes, and intes-

tine after SIV acute infection

(nonpathogenic SIV host)

AGMs compared with PTMs
¢ |ntestinal levels of adenosine increased during acute SIV infection in AGMs but not in PTMs

Abbreviations: ADA, adenosine deaminase; ADO, adenosine; AGM, African green monkeys; ART, antiretroviral therapy; ATP. adenosine triphosphate; cAMP, 3'5'-cyclic monophosphate; c-ART, combination ART, CRP, C-reactive protein; CTL, cytotoxic T lym-
phocyte; EC, elite controllers; HIV, human immunodeficiency virus; IFN, interferon; IL, interleukin; INR, immunological nonresponder; IR, immunological responder; LTNPF long-term nonprogressor; mRNA, messenger ribonucleic acid; PBMC, peripheral

blood mononuclear cell; PTM, pigtail macaques; SIV, simian immunodeficiency virus; RT-gPCR, quantitative reverse-transcription polymerase chain reaction; TNF, tumor necrosis factor; Treg, regulatory T cells.

disruption of the intestinal epithelial integrity and mucosal im-
mune dysfunction [68-71]. Multiple markers of microbial trans-
location and innate immune activation have been associated
with HIV comorbidities, including CVD [72-74]. Extracellular
adenosine signaling has been implicated in promoting resto-
ration of the epithelial barrier in inflammatory bowel disease
(IBD) [75, 76], and enhanced migration of antigen-presenting
cells (APCs) to the gut mucosa can be induced via preferential
activation of A receptors [77]. Given these findings, decreased
adenosine levels in the gut epithelium could be an important
contributing factor to the disrupted epithelial barrier caused
by HIV.

NLRP3 inflammasome activation and IL-1fp production
are factors that contribute to HIV-associated inflammation,
and these are strongly implicated in the development of ath-
erosclerosis and hypertension [78, 79]. Activation of the
NLRP3 inflammasome and release of IL-1{ are strongly tied to
purinergic signaling, particularly P2X R stimulation [78, 80]. In
addition, the inflammasome system may contribute to the loss
of CD4" T-cell populations and overall lack of immune recovery
seen in PWH [81]. For example, INRs upregulate NLRP3
inflammasome and caspase-1 expression compared with those
who experience immune recovery on ART [82]. Antagonism of
P2X_R may therefore help to suppress inflammasome activity
and IL-1p release [78]. The exact role of how other compo-
nents of the adenosine pathway can influence inflammasome
activity is still unclear. In non-HIV studies, adenosine has been
shown to be necessary for sustained inflammasome activation
via the A,, receptor [83]. In animal models of hypertension,
proinflammatory cytokines, including IL-1P, downregulate
CD39 expression [84]. However, CD39 has recently been im-
plicated to serve a protective role by limiting NLRP3 activation
and IL-1f release [85]. Upregulation of CD397/CD73" Tregs
are thought to be protective against CVD and unstable plaque
rupture [86-89]. Antiretroviral therapy-treated PWH with cor-
onary artery disease have depressed levels of CD39'/CD73"
Tregs, which may predispose them to atherosclerotic develop-
ment [90]. How the adenosine pathway affects inflammasome
activation in treated HIV will require additional studies to fully
understand its role in HIV pathogenesis.

It has recently been shown that purinergic signaling is linked
to metabolic disease and dyslipidemia, which contributes to
CVD and liver disease among PWH [91, 92]. P2X R expression
is upregulated in the peripheral blood mononuclear cells from
patients with type 2 diabetes and in adipocytes of patients with
metabolic syndrome [93, 94]. In addition, P2X_R expression
correlates with low-density lipoprotein cholesterol, which is a
major component of metabolic syndrome and elevated cardio-
vascular risk [93]. Furthermore, extracellular nucleotides have
been associated with insulin resistance and dysregulated lip-
oprotein synthesis [95]. There is also emerging evidence that
P2Y R activation may contribute to obesity [96].
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From our current knowledge of the adenosine pathway,
focusing on the role of adenosine as an anti-inflammatory
agent could prove beneficial in developing safe and effective
interventions in clinical settings. However, although chronic
immunoactivation has an integral role in HIV-associated
chronic conditions, local immunosuppression plays a key role
in cancer risk and viral persistence. Although ART has re-
duced the mortality of AIDS-related cancers [97], PWH still
experience accelerated aging and other risk factors for cancer
diagnoses [98]. Long-term immunosuppression is likely the
main contributor to non-AIDS-defining cancers [99, 100].
Enhanced adenosine activation in tumor microenvironments
generates an immunosuppressant environment that supports
tumor growth and evasion from T-cell immune defense [101].
Therefore, modulating adenosine activation in PWH, who are
at risk for both solid and liquid malignancies, should be closely
monitored.

Viruses that are commonly comorbid with HIV can also
upregulate the expression and activity of CD39 and CD73 to
facilitate infection [102, 103]. Endothelial cells infected with
cytomegalovirus demonstrate an increase in local adenosine
production due to the upregulation of both ectonucleotidases
[102]. This is thought to facilitate viral entry into target cells
by creating a locally immunosuppressive environment. In ad-
dition, compared with people with resolved hepatitis B virus
(HBV) infection, HBV carriers have higher proportions of
Tregs, and increase proportions of circulating CD39" Tregs cor-
related with serum viral load, thus, suggesting that CD39" Tregs
contribute to chronic viral persistence [103].

Finally, modifying the adenosine pathway can have impor-
tant implications on quality of life among PWH. Adenosine is
a well established sleep regulatory substance, and enhanced ex-
tracellular concentrations in the brain are associated with sleep
deprivation and promotion of sleep, particularly via stimulation
of A and A, receptors [104]. Indeed, caffeine, an adenosine an-
tagonist, is commonly used to thwart sleepiness in the general
population [105]. Sleep disturbances are highly prevalent
among PWH and, therefore, they may be especially vulnerable
to worsened fatigue [106]. Enhancing adenosine activation may
facilitate insomnia and nocturnal sleep quality among PWH.
However, adenosine activation may promote daytime sleepi-
ness and fatigue as well. Alternatively, changes in sleep patterns
have been demonstrated to augment P2X_ and A,, receptor
expression on circulating leukocytes [107]; this suggests that
modifying sleep behavior may be a novel nonpharmacologic
mechanism to alter purinergic signaling in PWH.

POTENTIAL OF PHARMACOTHERAPIES

There is an understandably heightened interest in developing
effective pharmacotherapies to reduce the incidence of non-
AIDS-related comorbidities that lead to early mortality in

PWH. Targeting the purinergic signaling pathway to shift the
balance away from proinflammatory P2 activation towards
anti-inflammatory activation of adenosine receptors is an at-
tractive model to test pharmacotherapeutics. For example, A,
receptors are a critical part in the negative feedback loop of lim-
iting and inhibiting inflammatory responses, providing a ra-
tionale to develop A,, receptor-targeted therapeutics to either
inhibit or enhance immune responses [38, 108, 109]. There has
been emerging literature on pharmacological approaches that
target purinergic signaling in various ways to reconstitute the
subsequent immune damage of HIV-1 infection [110, 111].
This review focuses on potential therapies to reduce inflamma-
tion and promote viral clearance (Figure 2).

Investigation into several potential therapies to curb chronic
inflammation in ART-treated PWH and show promising pre-
liminary results [112]. Given that T-cell expression of CD73
is reduced among PWH, attempts have been made to assess
whether modulating the adenosine signaling pathway may de-
crease the persistent chronic inflammatory profile experienced
in PWH. In a double-blind, placebo-controlled study, we ran-
domized 40 ART-controlled PWH to 12 weeks of dipyridamole
versus placebo, followed by 12 weeks of open-label dipyrida-
mole [113]. Dipyridamole is a nucleoside transport inhibitor
and phosphodiesterase 3 inhibitor used clinically in patients
with a history of peripheral vascular disease and stroke patients
to prevent future thrombotic events. It increases extracellular
adenosine by blocking ENTs and preventing transport of aden-
osine intracellularly down its concentration gradient [114, 115].
Initial data showed that dipyridamole decreased CD8" T-cell
activation in the treatment arm versus placebo arm. In pooled
analyses, after 12 weeks of dipyridamole, there was a signifi-
cant decrease in CD4" T-cell activation and a trend toward de-
creased CD8" T-cell activation in blood [113]. In a substudy,
we collected rectosigmoid biopsies from 18 participants to fur-
ther assess the effect of dipyridamole on mucosal immune cells.
Those receiving dipyridamole had (1) a median 70.2% decrease
from baseline in the Treg population and (2) an 11.3% increase
in CD8" T cells. There were also trends towards decreased CD4"
T-cell activation and CD8" T-cell activation [116]. Because the
population of Tregs increased in response to heightened inflam-
mation, these data suggest that there is a decrease in gut inflam-
mation that obviates a compensatory Treg response.

Modulating ectonucleotidase activity, particularly CD39
and CD73 activity, is an attractive therapeutic target to reduce
proinflammatory extracellular ATP concentrations in favor of
anti-inflammatory adenosine. Methotrexate and sulfasalazine,
immunosuppressants commonly used in IBD, may be partially
effective in treating IBD by enhanced CD73 production of aden-
osine [117]. Among PWH, although low doses of methotrexate
had no effect on systemic inflammatory endothelial markers,
there were improvements in brachial artery ultrasound meas-
urements, which may indicate favorable vasculature changes
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[118, 119]. Rosuvastatin, typically used to treat high cholesterol
and triglyceride levels, can also increase extracellular adenosine
formation via upregulation of CD73, and it has shown in vivo
protection against inflammation [120-122]. The Randomized
Trial to Prevent Vascular Events in HIV (REPRIEVE) is an on-
going, prospective, randomized placebo-controlled clinical trial
of a pitavastatin strategy for the primary CVD prevention among
PWH [123]. In addition to informing the field on the efficacy of
statin strategy among PWH, it includes multiple measurements
of plaque stability, immune activation, and inflammation [124].
This trial may provide valuable insights on the role of statins in
modifying purinergic metabolism.

Selectively inhibiting P2Y, receptor expression with small
interfering ribonucleic acids reduces the HIV-induced inflam-
matory response and cell death [125, 126]. Inhibiting P2X,
receptors to restore T-cell differentiation from CD34" hemato-
poietic progenitor cells could be a potential strategy in PWH,
who experience reduced immune recovery while on ART, to
regenerate new T-cell populations [51]. Due to the ubiquitous
nature of purinergic receptors, there should be a narrowed
focus on refining the characterization of cellular patterns
and molecular control of expression of crucial enzymes in
the purinergic signaling pathway to minimize unwanted side

effects. It is important to understand receptor regulation to
design and improve purinergic receptor strategies to effec-
tively prevent accelerated aging and control systemic inflam-
mation in PWH.

CONCLUSIONS

Although ART is effective in viral suppression and prolonging
the development of AIDS, the concern lies in patient suscep-
tibilities to morbidity and early mortality of age-associated
diseases due to immunological dysfunction caused by HIV.
Adenosine agonists provide immune advantage by inhibiting
T-cell effector function, in conjunction with Tregs, to re-
duce the chronic immune activation and dysfunction seen in
PWH. However, although enhancing CD39 and CD73 activity
may improve inflammation and immunoactivation-related
comorbidities in HIV, modulating ectonucleotidase activity
is a double-edged sword. The adenosine/Treg axis can be det-
rimental by suppressing HIV-specific immune responses.
Additional studies are necessary to determine the proper bal-
ance between controlling inflammation but still allowing the
generation of an effective immune response against the virus.
Novel and innovative strategies targeting these 2 contrasting
functions of the adenosine pathway can lead to a decreased risk
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for non-AIDS-associated chronic disease and, at the same time,
target viral persistence.
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