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Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of

population worldwide. In recent years, exome sequencing has been a successful
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strategy for studies of genetic causes of ID, providing a growing list of both candidate

and validated ID genes. In this study, exome sequencing was performed on 28 ID
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4Pediatric Clinic, Falun, Sweden known and novel ID associated genes. We report the identification of 25 DNVs out of
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Gavle, Sweden pair deletion was identified in the PUF60 gene, which is one of three genes in the critical
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region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to
the growing evidence that PUF60 is responsible for the majority of the symptoms
reported for carriers of a microdeletion across this region. We also report variants in
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several genes previously not associated with ID, including a de novo missense variant in
NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of
NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that
the gene is highly intolerant to loss of function and coding variation, and previously

reported DNVs in neurodevelopmental disorders.
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1 | INTRODUCTION for Europe, 2010). ID is defined by an IQ score lower than 70, and has

an estimated worldwide prevalence of 2-3% (Ropers, 2010). While the

Intellectual disability (ID) is an early, before adulthood, onset condition
characterized by significantly limited ability in learning, reasoning and
communicating (American Association on Intellectual and Develop-

mental Disabilities, 2017; World Health Organization, Reginal office
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etiologies of ID are variable and include environmental factors such as
infections and injuries, it is well established that genetics play a major
role, especially in severe cases of ID (Vissers, Gilissen, & Veltman,
2016).

Genetic causes of ID range from chromosome abnormalities and
copy number variations (CNVs) to single nucleotide variants (SNVs),
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including inherited recessive variants and dominant de novo variants.
Early genetic diagnosis of ID was limited to large structural
abnormalities and targeted tests of known ID genes, which explain
3-6% of cases (Knight et al., 1999). The introduction of chromo-
somal microarray analysis (CMA) enables genome-wide investigation
with increased resolution, which results in clinical diagnosis of
additional 15-20% of ID patients (de Vries et al., 2005; Miller et al.,
2010). The implementation of whole exome sequencing (WES) and
whole genome sequencing (WGS) has led to a rapid increase in the
discovery of genes with variants associated with ID. WES in trio
families has been an especially successful strategy to identify genetic
causes of unexplained ID cases, yielding clinically significant findings
in 20-30% of patients previously screened by CMA (de Ligt et al.,
2012; Miller et al.,, 2010; Tammimies et al., 2015). Despite these
advances, nearly half of the patients with sporadic ID subjected to
genetic testing do not receive a molecular diagnosis. Novel candidate
ID genes can be identified by observing variations in the same gene
in multiple unrelated ID patients with phenotypic similarity, which
underlines the importance of detailed documentation of patient
phenotype and the importance of sharing data between clinical
laboratories and research initiatives.

In this study, WES was performed in 27 patient-parent trios,
where the proband had an ID diagnosis. We report the identification
of 25 DNVs, with five variants classified as pathogenic or likely
pathogenic according to the American College of Medical Genetics
and Genomics (ACMG) guidelines (Richards et al., 2015). Of the
DNVs we identify, we specifically highlight variants in PUF60 and
NAA15 as variants providing novel insight into the etiology of ID.

2 | MATERIALS AND METHODS

2.1 | Study design and patients

The participating patients and parents were recruited between
2012 and 2015 in collaboration with the Genetic Diagnostics Unit
at Uppsala University Hospital. Ethical approval for WES was
received from the Uppsala Ethical Review Board and informed
consent was obtained from the parents of all patients. The
selection criteria for patients included ID/DD and dysmorphol-
ogy/congenital malformations while parents had to be healthy with
no family history of neurodevelopmental disorders. All patients had
previously been screened with CMA (250 K Nsp Array, Genome-
Wide SNP Array V.6.0, or CytoScan HD [Affymetrix, Santa Clara,
CA]) and no pathogenic CNVs had been detected. Genomic DNA
was extracted from peripheral blood leucocytes according to

standard procedures.

2.2 | Exome sequencing and analysis

Exome was enriched using SureSelect v2-5 (Agilent, Santa Clara,
CA) and sequenced on SOLID, lllumina, or lonProton platforms to
at least 30x coverage. All reads were mapped to human reference
genome Hgl9. SOLID reads were mapped using Bioscope (Life
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Technologies) and Life Scope (Life Technologies). lllumina reads
were mapped using BWA (Li & Durbin, 2009), and lonProton reads
were mapped using the Torrent suit software (Life Technologies).
All programs used for mapping were run using default settings.
Variants were called from SOLiD and Illumina reads using Genome
Analysis Toolkit (GATK) and the standard GATK workflow (Broad
Institute). Variants were called from lonProton reads using the
Torrent suit software (Life Technologies). SNVs were filtered
against our in-house database containing previously identified
variants as well as dbSNP V.42 (non-flagged). Identified DNVs and
inherited variants were validated by Sanger sequencing using
standard protocols. Validated variants were interpreted according
to the ACMG guidelines. The number of DNVs identified in patient
cases and controls in a selected set of previous exome sequencing

studies were counted.

3 | RESULTS

3.1 | Exome sequencing

Exome sequencing was performed in a total of 27 trio families (28
patients in 27 families) with ID/DD patients. Families were enrolled in
the study if results from CMA were negative. A total of 25
heterozygous DNVs were identified within the protein-coding region
of 16 patients, with detection of de novo events ranging from O to 4
sites per patient. All identified variants were validated by Sanger
sequencing.

Out of the 25 validated DNVs we determined five variants in six
patients in the genes SMARCA4, FGFR2, SETD5, ASXL3 (two
brothers) and PUF60 to be pathogenic or likely pathogenic (Table 1),
following the standards for interpretation of sequencing variants
recommended by the ACMG (Richards et al., 2015). This results in a
diagnostic yield of 21% (Table 1). We also identified a de novo
heterozygous nonsynonymous variant of uncertain significance
(VUS) in the gene SLC13A5. Although SLC13A5 is a known ID
gene, the inheritance pattern in previously reported patients was
recessive, and the main symptom of the patients was early infantile
epileptic encephalopathy, which is not present in our patient. Several
identified DNVs in other genes represent interesting candidates,
however, without previous reports and well-established functional
studies, these variants were also classified as VUS (Supplemental
Table S1).

3.2 | CADD prediction and previously reported data

In order to predict the deleteriousness of the identified DNVs the
combined annotation-dependent depletion (CADD) score was
calculated for all variants (Supplemental Table S1). CADD scores
are a relative measurement of pathogenicity of genetic variants, with
higher CADD scores indicating higher pathogenicity (Kircher et al.,
2014). It is reported that pathogenic variants in the OMIM database
are significantly enriched for CADD scores over 20 (Shyr et al.,
2014). All variants classified as pathogenic or likely pathogenic in the
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TABLE 2 Results from previous studies showing the number of
DNVs identified in cases and controls in previous exome sequencing
studies, as well as the pLI and Z scores from ExAC for all genes with
nonsense or nonsynonymous DNVs identified in this study

Gene Cases Controls pLI Z score
SMARCA4 2 0 1 8.36
FGFR2 0 1 1 2.74
SETD5 6 1 -0.04
PUF60 2 1 0.85 4.51
ASXL3 2 0 1 -0.94
NAA15 3 0 1 3.12
uTpP14C 2 0 0 -0.88
TAOK1 1 0 1 5.17
PARP1 0 0 0.01 0.57
GJB4 0 0 0 -0.59
KLF16 0 0 0.47 3.17

present study had scores >20. Nonsense and loss of function (LoF)
variants showed the highest scores (>30), including variants located
in SETD5, PUF60, and UTP14C. We also note that nonsynonymous
variants in the genes NAA15, KLF16, TAOK1, IRF2BPL, and PARP1 all
had CADD scores >20. Several of the nonsynonymous DNVs
classified as VUS received a score <10, as did all synonymous DNVs
identified.

To find further evidence for pathogenicity of the DNVs that were
not scored as pathogenic, we combined data from 13 previous studies
in ID and other neurodevelopmental disorders with overlapping
genetic causes, including epilepsy and autism spectrum disorder. The
combined data includes a total of 5 338 patient trios and 2 181 control
trios. Of the 11 genes with nonsense, frameshift, or nonsynonymous
DNVs identified in this study, seven genes had DNVs reported in
patients in these 13 previous exome studies (Table 2). There were
between 0 and 6 variants reported in cases for the pathogenic variants
identified in this study. The most striking result is that three DNVs have
previously been reported in patients with neurodevelopmental
disorders in the gene NAA15, while no DNVs have been reported in
controls. The DNV identified in NAA15 in our study also had a high
CADD score of 24.2. We followed up by searching the DECIPHER

database of the gene NAA15, and note that another nonsynonymous

NAA15
&’
< (83 S
S ) & N D
& & F 3
TPR TPR Tetratricopeptide—likeA A TPR TPR
helical domain o
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& o o Qi‘:
07 Q & AN
Q O &
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DNV in a patient with global developmental delay is reported there
(Firth et al., 2009). In addition, a study has now been published that
specifically targeted candidate genes in ID and autism, identifying
another 12 likely pathogenic variants in NAA15 (Stessman et al., 2017).
An overview of NAA15 with the DNVs identified in patients is shown in
Figure 1.

To further evaluate the genes where DNVs had been identified
in patients also in previous studies, we used the Exome
Aggregation Consortium (EXAC) browser (Lek et al., 2016). EXAC
reports measures of constraint for all genes and we focused on two
relevant metrics reported in EXAC. The measure of Probability of
intolerance to loss of function (pLI) score is based on the difference
in observed and expected loss of function variants in the gene, with
a score >0.9 indicating extremely LoF intolerant genes where
heterozygous LoF is not tolerated. The missense z score represents
the deviation of observed counts from the expected number of
missense variants in a gene, where a positive value means less
variants than expected and a negative score means more variants
than expected. The pLI and z scores are reported in Table 2. Four of
the five pathogenic variants are located in genes that receive a pLI
score of 1 (extremely intolerant to heterozygous LoF), while the
PUF60 gene receives a score of 0.85. Of the genes containing VUS,
we note that NAA15 and TAOK1 both receive a pLI of 1 as well. The
z score correlates less well with pathogenicity in our limited sample
with scores ranging from negative (ASXL3, z=-0.94) to very high
(SMARCA4, z = 8.36) for the pathogenic variants. Both NAA15 and
TAOK1 have positive z scores (>3) indicating that they contain less

coding variation than expected.

4 | DISCUSSION

This WES study identified clinically significant DNV in 6 out of 28
patients with ID, yielding an 21% diagnostic rate, a relatively low
yield compared to previous WES studies in trio families with ID
patients, which typically ranged from 20-30% (de Ligt et al., 2012;
Miller et al., 2010; Tammimies et al., 2015). Two potential factors
could have affected the diagnostic rate. Firstly, the 28 patients were
chosen from a larger ID patient cohort without epilepsy. WES results
of patients with both ID and epilepsy in the full cohort were
previously reported by us with a diagnostic rate of 28% (Halvardson
et al., 2016). The ID patients with epilepsy had generally more severe

Y
xS K x * %
S & P N
K L& A S

FIGURE 1 Schematic model of NAA15, showing previously reported DNVs in patient cases. The red triangle marks the DNV identified in

this study. CC, coiled coil domain; TPR, tetratricopeptide repeat
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phenotypes compared to the ID only patients. This is in line with
earlier observations that clinical yield from genetic diagnostic
screening is higher in patients with more severe phenotype (de
Ligt et al., 2012; Gilissen et al., 2014; Rauch et al., 2012; Vissers
et al., 2010). Secondly, WES of the patients presented here has been
performed sequentially over a long period of time, with different
sequencing techniques, sequencing depth, and enrichment kits.
Potential causal DNVs could therefore have been missed, especially
in the earlier WES of patient trios.

Of the pathogenic variants identified in this study, the de novo
two base pair deletion identified in PUF60 provides further evidence
that the heterozygous loss-of-function of this gene causes ID. PUF60
is one of three genes in the critical region of the 8q24.3 deletion
syndrome (MIM#615583), also known as Verheij Syndrome. Patients
with deletions in this region present with ID, craniofacial dysmor-
phology, vertebra anomalies, and short stature. Functional studies of
the three genes have proved SCRIB and PUF60 as the main
contributors for the phenotype associated with the 8q24.3 deletion
syndrome. PUF60 was first identified as part of a novel complex PUF,
which enhanced the efficiency of splicing of several introns (Liu
et al., 2000). Depletion of PUF60 in human cells indicates that PUF60
is important for neuronal splicing (Hastings, Allemand, Duelli, Myers,
& Krainer, 2007). Knockout of the PUF60 ortholog in C. elegans is
embryonic lethal, while studies in Drosophila implicates a critical role
for the PUF60 ortholog in alternative splicing affecting developmen-
tal regulation (MacMorris, Brocker, & Blumenthal, 2003; Park,
Parisky, Celotto, Reenan, & Graveley, 2004). To date, there have
been 16 reported cases with SNVs in PUF60 (Figure 2), of which the
most common phenotypes include Intellectual disability/develop-
mental delay, short stature, cardiac defects and a recognizable facial
phenotype consisting of square face, full

cheeks, prominent

chromosome 8 B2 7 BT b |

114,159,212

forehead, low set eyebrows, wide nasal bridge, broad nasal tip,
long philtrum, and a thin upper lip (Table 3) (Dauber et al., 2013;
Deciphering Developmental Disorders, 2017; El Chehadeh et al,
2016; Santos-Simarro et al., 2017). Moreover, brain and skeletal
anomalies also seems to be common among reported cases. These
are symptoms that fit well with the phenotype of the patient
reported here, a girl with ID, short stature (-3.5 SD), tetrology of
fallot, scoliosis, hemivertibrae, and facial features that fits well with
the cases described by Dauber and El Chehadeh (Table 3). However,
speech delay seems to be unique for our patient. Thus, our data
further support the role for PUF60 as the major contributor to the
8024.3 deletion phenotype (Dauber et al., 2013).

Of the DNVs we identified that were not scored as pathogenic,
we searched for evidence of pathogenicity using results from
previous exome studies and by using different available tools to
score the variants and genes. We find NAA15, encoding the
N(alpha)-acetyltransferase 15, NatA auxiliary subunit, to be the
most interesting new candidate ID gene. The variant identified in
NAA15 has a high CADD score (24.2), and the gene is under very
strong selective constraint based on results in the EXAC browser.
Another score used to measure constraint is the Residual Variation
Intolerance Score (RVIS) (Petrovski, Wang, Heinzen, Allen, &
Goldstein, 2013), and based on its RVIS score NAA15 is ranked
among the top 10% of genes most intolerant to variation.

De novo variants (DNVs) in NAA15 have been previously
reported in three studies of neurodevelopmental disorders. Two
DNVs (one nonsense and one nonsynonymous) were previously
reported in a study of autism trios (De Rubeis et al., 2014).
Unfortunately no additional information on phenotype is available
for these patients. One patient was reported in the first publication
from the Deciphering Developmental Disorders (DDD) project

(P B EEOEEN EEENc21T  EE H B .

145,847,409

[
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R & 0«*’& &
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FIGURE 2 Schematic model of chromosome 8 and PUF60, showing five reported deletions and previously reported DNVs. The red triangle

marks the 2 bp stop-gain-causing deletion site at amino acid 233 iden

tified in this study. RBD, RNA binding domain
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(Deciphering Developmental Disorders, 2015). This patient has
global developmental delay, abnormal facial gestalt and obesity, and
carries a 4 bp deletion that results in a frameshift (p.Glu337Argfs*5).
In a recent update of the DECIPHER database (Firth et al., 2009),
another de novo variant (nonsense, p.Ser767*) was reported in a
patient with global developmental delay, stereotypic behavior, and
eczema. Recently, NAA15 was identified as a neurodevelopmental
disorder (NDD) risk gene in a study that combined single-molecule
molecular inversion probles (smMIPs) with exome sequencing.
Variants in NAA15 were discovered in 13 patients, of which four
variants were confirmed to be de novo. The patients shared several
key phenotypes including ID (91%), speech delay (83%), Autism
Spectrum Disorder (ASD), and diagnosis (63%) (Stessman et al.,
2017). These symptoms fit well with the patient reported here who
was small for gestational age, with mild ID, motor, and speech delay
including speech dyspraxia (Table 4). Most of the reported NAA15
variants are nonsense variants, and only three NAA15 missense
variants have been reported. However, the phenotypes of the three
patients range from Asperger syndrome, DD, to severe ID, and do
not seem to differ from the patients with nonsense mutations.
NAA15 is regulated by the N-methyl-D-aspartate class of glutamate
receptors (NMDAR), which is responsible for the transmission of signals
between neurons (Fluge, Bruland, Akslen, Varhaug, & Lillehaug, 2002;
Sugiura, Patel, & Corriveau, 2001). Electrical activity occurs early in
developing neurons, which regulates neuronal differentiation and
migration, before a full synaptic network is established. NAA15 was first
discovered in NMDAR knockout mice, where it was shown to be regulated
by physiological levels of NMDAR function in developing neurons in vivo,
and was termed mNAT1 (Sugiura et al., 2001). mNAT1 is expressed at high
levels in the neonatal brain in regions of neuronal proliferation and
migration, and is dramatically down-regulated during early postnatal
development (Sugiura et al., 2001). The mouse homolog of NAA15,
mNAT1, was also shown by in situ hybridization to be highly expressed in
areas of cell division and migration and are down-regulated as neurons
differentiate, suggesting an important role in the generation and
differentiation of neurons (Sugiura, Adams, & Corriveau, 2003).
Knockdown of Nat1 (NAA15 ortholog) in drosophila caused adult early
lethality, erect wings, and impaired locomotor activity (Stessman et al.,
2017). Another knockdown of Nat1 in drosophila was performed with a
presumably weaker RNAI line, which led to normal locomotion and
morphology, but impaired response in the light-off jump paradigm, as well
as habituation deficits (Stessman et al., 2017). It has been shown that
mNAT1 interacts with the protein mMARD1 and forms an acetyltransferase
complex (Arnesen et al., 2005). This is noteworthy as the human homolog
of mARD1 is NAA10, which together with NAA15 forms the major Na-
terminal acetyltransferase complex (NatA) (Sanchez-Puig & Fersht, 2006).
The NAA15 missense variant identified in this study is located in the
tetraticopeptide-like helical domain, which is a structural motif that
mediates protein-protein interactions and the assembly of multiprotein
complexes (Figure 1). This variant could potentially affect the binding
between NAA10 and NAA15. NAA10 is associated with Ogden syndrome,
an X-linked neurodevelopment disorder (MIM#300013). Ogden syn-
drome can be caused by both X-linked dominant inheritance with a milder

phenotype, or X-linked recessive inheritance with severe phenotypes, and
the syndrome is characterized by postnatal growth failure, delayed
psychomotor development, ID, hypotonia, and dysmorphic features
(Casey et al., 2015; Popp et al., 2015; Rope et al., 2011). The phenotype
thus shows some shared features with the phenotype reported for
patients with NAA15 DNVs.

In summary, our exome sequencing study revealed a limited number
of pathogenic variants, but we highlight two variants that we believe
contribute new biologically relevant information. We report a small
deletion in PUF60 that gives rise to a phenotype similar to Verheij
Syndrome, providing further evidence that PUF60 is the major causative
gene within the previously reported microdeletion. We also provide
multiple lines of evidence suggesting that variants in NAA15 are
associated with an ID syndrome. Additional patients and more detailed
patient phenotype comparisons will now be required to further refine
the role of PUF60 and NAA15 in intellectual disability, and better define
the core symptoms associated with causative variants in these genes.
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