
ORIGINAL RESEARCH
published: 16 July 2015

doi: 10.3389/fpsyg.2015.00989

Edited by:
Emily Mather,

University of Hull, UK

Reviewed by:
Teresa Mitchell,

University of Massachusetts Medical
School, USA

Elizabeth B. Torres,
Rutgers University, USA

*Correspondence:
Jean-René Cazalets,

CNRS UMR 5287, Institut
de Neurosciences Cognitives

et Intégratives d’Aquitaine, Université
de Bordeaux, Zone nord Bât 2,
2e étage, 146, rue Léo Saignat,

33076 Bordeaux, France
jean-rene.cazalets@u-bordeaux.fr

Specialty section:
This article was submitted to
Developmental Psychology,

a section of the journal
Frontiers in Psychology

Received: 28 January 2015
Accepted: 29 June 2015
Published: 16 July 2015

Citation:
Amestoy A, Guillaud E, Bouvard MP

and Cazalets J-R (2015)
Developmental changes in face visual
scanning in autism spectrum disorder
as assessed by data-based analysis.

Front. Psychol. 6:989.
doi: 10.3389/fpsyg.2015.00989

Developmental changes in face
visual scanning in autism spectrum
disorder as assessed by data-based
analysis
Anouck Amestoy1,2, Etienne Guillaud2, Manuel P. Bouvard1,2 and Jean-René Cazalets2*

1 Department of Child and Adolescent Psychiatry, Charles Perrens Hospital, Université de Bordeaux, Bordeaux, France,
2 CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, Université de Bordeaux, Bordeaux,
France

Individuals with autism spectrum disorder (ASD) present reduced visual attention to
faces. However, contradictory conclusions have been drawn about the strategies
involved in visual face scanning due to the various methodologies implemented in
the study of facial screening. Here, we used a data-driven approach to compare
children and adults with ASD subjected to the same free viewing task and to address
developmental aspects of face scanning, including its temporal patterning, in healthy
children, and adults. Four groups (54 subjects) were included in the study: typical
adults, typically developing children, and adults and children with ASD. Eye tracking
was performed on subjects viewing unfamiliar faces. Fixations were analyzed using a
data-driven approach that employed spatial statistics to provide an objective, unbiased
definition of the areas of interest. Typical adults expressed a spatial and temporal
strategy for visual scanning that differed from the three other groups, involving a
sequential fixation of the right eye (RE), left eye (LE), and mouth. Typically developing
children, adults and children with autism exhibited similar fixation patterns and they
always started by looking at the RE. Children (typical or with ASD) subsequently looked
at the LE or the mouth. Based on the present results, the patterns of fixation for
static faces that mature from childhood to adulthood in typical subjects are not found
in adults with ASD. The atypical patterns found after developmental progression and
experience in ASD groups appear to remain blocked in an immature state that cannot
be differentiated from typical developmental child patterns of fixation.

Keywords: face, eye tracking, spatial statistic, autism, development, face perception

Introduction

Individuals with autism spectrum disorder (ASD) are characterized by social deficits and with faces
being the most complex and frequently encountered social visual stimulus, it has been proposed
that face scanning processing may be impaired in ASD (Behrmann et al., 2006; for review see
Dawson et al., 2005; Golarai et al., 2006; Jemel et al., 2006; Sasson, 2006; Harms et al., 2010;
Falck-Ytter and von Hofsten, 2011; Falck-Ytter et al., 2013b). Eye tracking-based experiments have
revealed atypical characteristics in visual scanning strategies (Schultz et al., 2000; Klin et al., 2002b;
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Pelphrey et al., 2002; Dalton et al., 2005; Corden et al., 2008;
Hernandez et al., 2009; Nakano et al., 2010; Yi et al., 2013), leading
to reduced visual attention to faces and to the development
of the excess mouth/diminished eye gaze hypothesis suggesting
that the eyes are not meaningful or that they are perceived as
threatening (for review see Falck-Ytter and von Hofsten, 2011; Yi
et al., 2013). Over the last 10 years, however, it has emerged, that
face scanning performance in ASD is a more complex issue than
initially assumed.

Understanding how infants, children and adults capture
details from their environment is important in trying to unravel
how learning and developmental processes take place (Klin
et al., 2002a; Boraston and Blakemore, 2007; Falck-Ytter et al.,
2013b). Eye tracking techniques allow to efficiently determine
how the observer distributes gaze under various monitored
experimental conditions and can serve to address a wide range
of scientific questions (for review see Boraston and Blakemore,
2007; Falck-Ytter et al., 2013a). Yarbus (1967) first demonstrated
that adults display a distinct and ordered pattern of eye
movements during face encoding and recognition, with fixations
primarily converging on core facial features, i.e., eyes and mouth
that form a triangular scanpath. This template routine has
been partially replicated in other studies (Groner et al., 1984;
Henderson et al., 2005), which leads to the presumption that
such a triangular scan trajectory represents a strategy employed
universally by individuals as the most efficient way to extract
visual information.

Studies using static or dynamic stimuli have established that
subjects with ASD spend a lower percentage of time watching
core facial features, whereas they view non-core feature areas
more frequently (Dalton et al., 2005; Jemel et al., 2006; Spezio
et al., 2007a; Corden et al., 2008). In contrast, other studies
have failed to find any differences between ASD patients and
matched control subjects (Lahaie et al., 2006; Spezio et al., 2007b;
Fletcher-Watson et al., 2009). With specific consideration of
the mouth region, the results also remain unclear, since the
differences between groups were small, particularly when static
neutral pictures were used (for review see Klin et al., 1999;
Jemel et al., 2006; Rutherford and Towns, 2008; Falck-Ytter
and von Hofsten, 2011; Rice et al., 2012; Falck-Ytter et al.,
2013b).

Although the findings from various studies may differ
according to the type of stimuli used (Boraston and Blakemore,
2007) or to the participant’s age, atypical scanning strategies
especially concerning the time spent on the eye region, have
been reported very early in development. Infants subsequently
diagnosed with ASDs exhibit a decline in eye fixation within
the first 2–6 months of life, a pattern not observed in
infants who do not develop ASD (Jones and Klin, 2013).
In contrast, Chawarska et al. (2012) did not find marked
differences between typical infants and infants later diagnosed
with ASD in the distribution of their attention to eyes or
mouth, although the ASD group exhibited a weaker attention
to a social scene and the face compared to objects of the
scene. However, these two experimental situations differ in
terms of the level of directness of stimulation, with infant-
directed speech being used in the Jones and Klin (2013)

experiment. Furthermore, the excess mouth/diminished gaze
effect seems to be strongly dependent on dynamic aspects of
the stimuli (Falkmer et al., 2011) and whether the video’s actor
is addressing, or not, the participants (Chawarska et al., 2012,
2013).

Furthermore, even in a ‘typical’ population, the developmental
course of face scanning is to date poorly understood.
Therefore, one crucial remaining issue relating to the excess
mouth/diminished eye gaze hypothesis is understanding the
typical developmental evolution of attention to face, and the
way attention shifts between the core facial features (Pascalis
et al., 2011). The differences found across studies may be related
to the age of participants but also, as recently highlighted, to
cultural differences. Wheeler et al. (2011) recently reported that
6-months-old infants fixate significantly more on the left eye (LE)
and mouth of own-race faces, but more on the nose of other-race
faces. Furthermore, the importance of the core features may vary
with age. Specific human eye attraction seems to be absent in
newborns but emerges from 3 months of age and remains stable
thereafter (Dupierrix et al., 2014) suggesting the importance of
experience in the core feature scanning strategy and role for
face recognition in humans. Along the same line, when they had
to recognize face parts independently of the entire face, 13- to
14-years-old children had already reached adult performance
levels in their recognition of the eye region, while their mouth
recognition ability continued to develop beyond 14 years of
age (Liu et al., 2013). Altogether, these studies suggest that the
developmental trajectory of face scanning is a more complex
issue than initially thought, and is likely to be only understood
through the combined contributions of the various experimental
approaches.

Part of the contradictory conclusions drawn in the various
studies to datemay also come frommethodological pitfalls. In eye
tracking studies, the definition of the regions of interest (ROIs)
considered for analysis relies on experimenter subjectivity, since
there is no consensual rules to delineate them (e.g., Henderson
et al., 2005; Barton et al., 2006; Orban de Xivry et al., 2008).
It is only recently that several studies have raised this issue in
proposing quantitative measurement of visual scenes (Over et al.,
2006) or data-driven approaches that allowmaking an a posteriori
definition of visual targets in a scene (Caldara and Miellet, 2011;
Falck-Ytter et al., 2013b; Yi et al., 2014).

Altogether, the various methodologies thus far implemented
in the study of typical facial screening – i.e., the type of
stimuli, type of task, participant age, the ROIs delineated –
makes it difficult to actually define the strategies involved in
visual face scanning. The aim of this paper was (1), to propose
a data-driven approach that allows defining a posteriori the
spatial locality of fixation clusters based on spatial statistical
methods, using a Dirichlet tessellation, to avoid a subjective
definition of ROIs by the experimenter; this was conducted
by additionally normalizing all images and data to a single
space, and (2) to address developmental and pathological
aspects of face scanning in healthy children and adults using
this data-driven approach and to compare the performances
of children and adults with ASDs in the same free viewing
task.
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Materials and Methods

Subjects

Fifty four subjects divided into four groups were included in
the study (Table 1). The groups consisted of: (1) typical adult
(TD-A); (2) typically developing children (TD-C); (3) adults
with autism spectrum disorders (ASD-A); (4) children with
autism spectrum disorders (ASD-C). Individuals with Asperger’s
syndrome or high functioning autism were all recruited from the
Bordeaux Autism Resource Centre. They were diagnosed with
ASD by two child psychiatrists according to DSM-IV-TR criteria
(American Psychiatric Association, 2000), Autism Diagnostic
Interview-Revised (ADI-R) and Autism Diagnostic Observation
Schedule (ADOS, Module 3 for younger adolescents and Module
4 for older adolescents and adults) criteria. The intelligence
quotient (IQ) was evaluated for subjects with ASD only, using
the Wechsler Intelligence Scale for Children-Fourth Edition
(WISC IV) and the WAIS for the adult sample. No individual
subject had a full IQ lower than 85. All subjects had normal
or corrected vision, and no history of neurological disorders.
Ocular dominance was determined for each subject by using the
Dolman’ hole in the card test (Pointer, 2001; Ehrenstein et al.,
2005; Rice et al., 2008; Hernandez et al., 2009). The characteristics
for all groups are detailed in Table 1. Adult subjects gave their
written informed consent and parental permission was obtained

TABLE 1 | Subject profiles.

TD-A TD-C ASD-A ASD-C

N subjects (M/F) 12/1 11/3 12/1 11/3

Mean age, years (SD) 25.4 (3.9) 11.6 (2.2) 23.8 (3.6) 11.3 (2.1)

Verbal intelligence
quotient (IQ) (SD) (WISC
IV for Children sample
et WAIS for adult
sample)

NA NA 107.2
(18)

94.5 (17)

Non-Verbal IQ (SD)
(WISC IV for Children
sample et WAIS for
adult sample)

NA NA 102.1
(15)

89.8 (11)

Right ocular
dominance, N subjects

9 (69%) 10 (71%) 10 (77%) 9 (64%)

Autism Diagnostic
Interview-Revised
(ADI-R), Social
interaction (SD)

NA NA 16.5 (2.5) 17.1
(5.07)

Autism Diagnostic
Observation Schedule
(ADOS) Total

NA NA 7 (4.5) 8.6 (3)

ADOS, Social
Interaction (SD)

5 (2.5) 6.2 (2.3)

ADOS, Communication
(SD)

2.3 (2.1) 2.6 (1.2)

ADOS, Restricted
Repetitive Behavior

0.8 (0.8) 1.1 (1.3)

Abbreviations as in previous figure legends. There was no significant difference
between groups for ocular dominace (Khi-squarred = 1.35, df = 3, p = 0.72).
F, female; M, Male. Mean values ± SEM.

for each child, and the protocol in accordance with ethical guide-
lines was approved by the ethical research committee (Comité de
Protection des Personnes Bordeaux A CPP N◦ 100038-80).

Procedure
Figure 1A presents schematically the experimental protocol.
Each photograph was presented for 5 s and separated with a
black screen for 500 ms. A white cross indicated the starting
point of fixation between pictures in the central start position of
the screen (Althoff and Cohen, 1999). This presentation duration
was chosen to avoid overloading the visual pathway (Books et al.,
1986; Hernandez et al., 2009).

Two series of 20 color pictures were presented to participants.
The presentation of landscape and social scenes also reduced loss
of attention and made the task more entertaining. A 2 min pause
was made between the presentation of the two series to limit
disengagement from the visual stimuli and loss of attention. The
two series included 22 neutral unknown faces (11 male children
aged between 8 and 16 years, six images of adult males and five
of adult females) and 18 images that did not include neutral faces
(four pictures of landscapes and 14 of scenes containing people).
The order of presentation of the two series was randomized
between participants. The pictures were presented on a 15′
monitor viewed from a distance of 60 cm. Photographs of neutral
faces positioned centrally in front of a white wall (Figure 1)
were originally taken of laboratory colleagues, their children, and
relatives from a frontal view and chosen from a pool of 50 pictures
in which distinguishing marks were absent. Participants were
requested to look only at the images and they were unfamiliar
with the presented faces.

Eye tracking was performed using a remote R6 system
(ASL, Bedford, MA, USA) that was operated according to ASL
guidelines. A nine point calibration was conducted with each
participant at the start of the experiment using the calibration
card provided by ASL (Figure 2C1). Thereafter, each subject was
requested to stare at each point of the calibration card and the
associated fixations were recorded (Figure 2C1). At the end of
the session, we checked that the calibration had not varied by
presenting again the 9 point calibratio Arizpe Arizpe Arizpe n
test card and recording associated fixations. Data were collected
with the dedicated ASL software.

Analysis
Prior to any data processing, we performed a visual inspection
of individual raw data traces as those presented in Figure 1B,
which provides characteristic data examples of the fixation
patterns for a typical adult (Figure 1B1) and an ASD
child. Off-line analysis was subsequently performed using
homemade software developed with Matlab (Mathworks,
Natick, MA, USA). To obtain comparable data from the
various photographs, we performed a spatial normalization
of the presented faces using several anatomical landmarks
as references (Figure 2A1). These included the two pupils,
the tip of the nose, the lip commissures and the ear tragus,
which together allowed the construction of a prototypic face
by homothetic normalization (Figure 2A2). We analyzed
visual fixation (Figure 2B) defined as the point-of-regard
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FIGURE 1 | Experimental task and recording methodology. (A) Sequence
of the different displays presented during the task. The task was sequentially
incremented by presentation of up 20 different photographs (here shown only

for the four first slides). (B) Fixations and visual trajectories for a typical adult
subject (B1) note the stereotyped triangular pattern of fixation and a child with
ASD (B2). Each blue point corresponds to a single fixation.

FIGURE 2 | Spatial normalization of stimulus faces. (A1) For each
face the following anatomical landmarks were identified: the two pupils,
tip of the nose, lip commissures, and the ear tragus. (A2) Example
of a normalized prototypic face. (B) Face resulting from the average
of 22 stimulus faces. The colored dots (one color per face) represent

the fixations performed by a single typical subject for each stimulus
face presented. (C) Fixations on the calibration map. (C1) Each
subject had to stare at the various targets. Each color dot
corresponds to one subject. (C2) Statistically significant clusters of
fixation (red tiles) detected using Dirichlet tessellation.
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when looking at the stationary target. A fixation was
calculated as the mean X and Y eye position coordinates
measured over 100 ms during which the eye did not move
through a visual angle of more than 1◦, according to ASL
recommendations.

For all faces presented, the associated recorded fixations
were similarly homothetically re-sampled in order to match the
prototypic face (Figure 2B). The analyzed parameters were: (1)
the number of fixations; (2) the total fixation time; (3) the latency
of the first fixation within a specific area; (4) fixation duration.
Time when fixations were not recorded included blinks, saccades,
and time spent looking away from the screen.

Spatial Statistics
We tested the presence of statistically significant clusters of
fixations by using the Dirichlet (or Voronoi) tessellation method,
a measure to detect spatial clustering. For a given fixation point
p in a geometric pattern X, a polygon is drawn to create a cell
around each point. The cell represents the area in space that is
closer to that fixation point than to any other point of X (Okabe
et al., 1992; Duyckaerts and Godefroy, 2000). Thus, for points in
clusters, the closer the points the more the polygons are small.
Statistically significant clusters were identified by comparing
Dirichlet cell sizes from the actual data to cell areas obtained
from surrogate data sets in which point coordinates from the
original data set were spatially randomized using the quadrature
resample command. Because the logarithm of polygon sizes
from surrogate data sets approximated a normal distribution,
estimates of the 95% confidence interval (CI) for log polygon sizes
from randomized distributions were obtained from 10 surrogate
data sets. Points associated with a contiguous Dirichlet polygon
obtained from the actual data points whose logarithmically
transformed size was smaller than the 95% CI of the surrogate
data set polygon sizes were considered constituents of statistically
significant clusters. All analyses were performed using MatLab.
Figure 2C illustrates the procedure, using the calibration map as
an example. In this case, adult subjects were requested to look
successively at the various spots (numbered 1–9, Figure 2C1)
on the screen. The Dirichlet based clusterization (Figure 2C2),
revealed that gaze was mainly centered on the spots, although
subjects could occasionally view some other part of the image or
in the vicinity of each spot. As indicated above, for each subject
two fixation data sets from the calibration map were acquired,
at the beginning and at the end of the experiment, in order to
validate our experimental measurements.

Statistical analyses were performed using IBM SPSS Statistics
software (IBM Corporation, USA). Unless otherwise specified,
values are given as mean ± SE of the mean (M ± SEM) and were
considered to be significantly different at p < 0.05. Comparisons
among groups and ROI for each variable were performed using
non-parametric Kruskal–Wallis H test (as described by Laerd
statistics, London, UK) as all data set values were not normally
distributed. Subsequent post hoc analysis were performed using
Dunn’s procedure with a Bonferroni correction for multiple
comparisons. Adjusted p-values and effect size (r) are presented.
Occasionally the p value was so small that it was expressed as
p < 0.001. Correlations were made with Pearson’s test.

Results

Overall Characteristics of Visual Scanning
We first performed a global analysis of all fixations on the 22
neutral unknown faces, in the four groups. One-way ANOVA
analysis revealed that the typical adult group differed significantly
from the TD-C and the two ASD groups for all selected variables
(Table 2). There was no significant difference between groups
in terms of fixation duration (p = 0.49). Kruskal–Wallis test
indicated that there were differences between groups in the
number of fixations, H(3) = 53, p < 0.001, r = 0.05. Typical
adults performed a higher number of fixations than ASD-A
(p < 0.001) and ASD-C (p < 0.001) but not TD-C (p = 0.059) as
revealed by post hoc analysis. Kruskal–Wallis test also indicated
that there were differences between groups in the total time spent
at viewing the photographs, H(3)= 110, p< 0.001, r = 0.1. TD-A
spent significantly more time at fixating the photographs than
the three other groups (p < 0.001 for all pairwise comparisons).
Kruskal–Wallis test indicated that there were differences between
groups in the delay to first fixations, H(3) = 62, p < 0.001,
r = 0.06. The delay to the first fixation was significantly lower
in typical adults than in other groups (p < 0.001 for all pairwise
comparisons). The total fixation time, which depended on the
individual fixation durations, was positively correlated with the
number of fixations, Pearson’s r(1089) = 0.52, p < 0.001.
Therefore, for subsequent analyses, we considered only the time
spent in a given area. We also calculated the proportion of time
spent viewing a face in comparison with the total time spent
viewing a picture (last lines, Table 2). The two groups with ASD
spent less time scrutinizing faces than typical adults.

A Data-Driven Approach: Comparison between
“a Priori” versus “a Posteriori” Methodology
One main goal of this study was to test the validity of a data-
driven approach to analyzing all four groups. We therefore
compared the two methods by using data collected from typical
adult subjects presented with 22 non-familiar faces. The overall
fixations on the prototypic face (see Materials and Methods)
are presented in Figure 3A1. In the first analytical procedure,
termed “a priori,” ROIs were defined in accordance with previous

TABLE 2 | Fixation parameters for all four groups.

TD-A TD-C ASD-A ASD-C

N subjects 13 14 13 14

Fixation duration,
ms (SD)

0.32 (0.00) 0.32 (0.01) 0.3 (0.00) 0.34 (0.02)

Number of fixations 13.8 (0.2)∗ 12.7 (0.3) 12 (0.2) 11.7 (0.2)

Delay to first
fixation, s (SD)

0.05 (0.00)∗ 0.13 (0.02) 0.1 (0.02) 0.13 (0.01)

Total time spent on
photograph, s (SD)

4.8 (0.02)∗ 4.4 (0.06) 4.4 (0.05) 4.3 (0.05)

% time on face vs
image

85%∗ 78% 80% 73%

Mean values ± SEM. *indicates a significant variation. Abbreviations as in previous
figure legends.
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FIGURE 3 | Comparison between a priori and a posteriori methods.
(A,A1) Prototypic face with superimposed fixations performed by tested
typical adults (N = 13 subjects) for all neutral non-familiar faces (N = 22
presented faces). Each colored dot corresponds to one subject. The
regions of interests (ROIs) were centered on core features (eyes, mouth).
(A2) From the pattern of superimposed fixations presented in (A1),

statistically significant clusters of fixation (red tiles) were detected using
Dirichlet tessellation. Large ROIs, not centered on core features (see yellow
spots) were circumscribed. (B) Bar graphs presenting the mean number of
fixations (B1) and the mean delay to the first fixation (B2) per subject in
the four ROIs. M, mouth; LE, left eye; RE, right eye. ∗ indicates a
significant variation.

studies (Arizpe et al., 2012), that investigated the gaze pattern of
face recognition. We defined five ROIs centered on anatomical
landmarks: RE, LE, mouth (M), face (F), and out of face (OF),
from the observer’s perspective, and the fixations in each ROI
were then analyzed. The second analysis procedure, termed “a
posteriori”, was based on the fixation clusters resulting from
the Dirichlet tessellation method (Figure 3A2). In this case,
the face was divided into three large ROIs that were named
RE, LE, and mouth (M), corresponding to the core features
(Yarbus, 1967). In this procedure, there was not a direct link
between the ROIs and anatomical landmarks that were no longer
points of reference. Interestingly, in accounting only for fixations
that were encompassed in statistically significant clusters (red
tiles Figure 3A2), the fixation distribution pattern for each ROI
was revealed. The barycenter for each ROI (yellow dots) was
clearly located below the eye pupils and the mouth whereas the
barycenter for the whole face was located in the right infraorbital
zone (green dot). Kruskal–Wallis test indicated that there were
differences between zones for both the a posteriori [number of
fixations: H(2) = 276, p < 0.001, r = 0.33; delay of first fixation
: H(2) = 240, p < 0.001, r = 0.33] and the a priori methods
[number of fixations: H(2) = 103, p < 0.001, r = 0.12; delay
of first fixation : H(2) = 59, p < 0.001, r = 0.09]. Post hoc

analysis indicated that when considering the face, more fixations
were taken into account by the a priori method (p < 0.001;
Figure 3B1). Indeed, many of the fixations performed by the
subjects were not significantly clustered on the three ROIs of
interest, i.e., the RE, LE, and mouth. Nevertheless, although a
substantial number of non-significant fixations was eliminated
by the a posteriori analysis overall, it revealed differences that
were not apparent with the a priorimethod. With the data-driven
approach, the number of fixations was significantly higher on the
RE versus the mouth and LE (p < 0.001; compare bar graph
in Figure 3B1). The a posteriori analysis also provided more
information on the pattern of fixations since in this condition,
statistically significant differences were also observed between
zones that could not be revealed with the a priori method.
(Figure 3B1) and the fixation delay was longer for the mouth
versus the two eyes (p < 0.001; Figure 3B2). In the subsequent
analysis therefore we will only use the a posteriori data-driven
approach.

Developmental and Pathological Aspects of
Face Scanning: Importance of the Eye Region
Using the a posteriori data-driven approach we addressed the role
of the eye region (i.e., including both LE and RE) by comparing

Frontiers in Psychology | www.frontiersin.org 6 July 2015 | Volume 6 | Article 989

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Amestoy et al. Face visual scanning in autism

the time spent on this area compared to the mouth and face
(Figure 4). Kruskal–Wallis test indicated that for all four groups
there were significant differences for the time spent in each ROI
[TD-A, H(2) = 536, p < 0.001, r = 0.5; ASD-A, H(2) = 344,
p < 0.001, r = 0.2; TD-C, H(2) = 296, p < 0.001, r = 0.33;
TD-A, H(2) = 234, p < 0.001, r = 0.26]. Kruskal–Wallis test also
indicated that there was significant differences between groups
for the time spent on the eye region [H(3) = 213, p < 0.001,
r = 0.2] and the mouth region [H(2) = 296, p < 0.001, r = 0.07].
Post hoc analysis indicated that typical adults spent more time
on the mouth region than the three other groups (TD-A versus
TD-C, p < 0.001; TD-A versus ASD-A, p < 0.001; TD-A versus
ASD-C, p < 0.001). TD-C also spent significantly more time on
the eyes than ASD children (p = 0.017). Altogether, these data
indicate that individuals with ASD favor focusing on the eye
region as typically developing subjects.

Correlation analysis on the whole ASD population (adults
and children) was performed to check if social impairment
measured by the underscore of social reciprocal interactions from
ADI-R and ADOS could be related to the eye tracking data
(lower reciprocal social interaction scores on the ADI-R indicate
less impairment; higher scores on the ADOS indicate more
impairment). We found that the time spent on the eye region
was negatively correlated with this ADI-R/RSI [Reciprocal Social
Interaction sub scale; Pearson’s r(27)= 0.45, p< 0.02], indicating
that the individuals with ASD who had the lowest score for
reciprocal social interaction anomalies looked at the eye region
for a longer time. Furthermore, the time spent on the mouth
region was correlated with the global score of ADOS [Pearson’s
r(27) = 0.4, p = 0.039], which indicated that ASD individuals
with the highest score for social interactions and communication
impairment also looked at the mouth region for longer. Other
variables, i.e., verbal IQ and age, were not significantly correlated
to any eye tracking data.

FIGURE 4 | Comparison for the four groups of total time spent on the
eyes and mouth. TD-A, typical adult; TD-C, typically developing children;
ADL/ASD, adults with autism spectrum disorders; ASD-C, children with ASD.
Stars on the graph indicate significance between groups for each ROI as for
all four groups the time spent in each ROI was significantly different (see text).
∗ indicates a significant variation.

Determination of Face Scanning Strategy in
Typical versus ASD Subjects
The face exploration strategy was also assessed using the a
posteriori method of the present study (see Figures 2 and 3).
The graphs in Figure 5 present the values for the various
parameters analyzed in each ROI. The same data values were
either categorized by group to allow direct comparison within
groups or by ROIs to allow intergroup comparisons.

As shown in Figure 5A1, typical adults spent significantly
more time on the RE than either the LE or the mouth (Kruskal–
Wallis H test; TD-A: RE > LE > M; H(2) = 274, p < 0.001,
r = 0.35). Subjects from the TD-C group also spent significantly
longer looking at the RE than the mouth or the LE [TD-C :
RE > M = LE; H(2) = 202, p < 0.001, r = 0.32], as did both
adults with ASD [ASD-A: RE > M > LE; H(2) = 308, p < 0.001,
r = 0.25] and children with ASD [ASD-C: RE > M = LE;
H(2)= 244, p< 0.001, r = 0.38]. Kruskal–Wallis test and post hoc
analysis also showed that typical adults spent significantly more
time on each ROI than TD-C and ASD subjects [Figure 5A2; RE:
H(3) = 7 3, p < 0.001, r = 0.06; LE : H(3) = 230, p < 0.001,
r = 0.25; MH(3) = 47, p < 0.001, r = 0.04]. TD-C group subjects
spent significantly more time on the LE than ASD-C (p < 0.001)
and ASD-A (p = 0.009) but not on the RE (p = 1).

To further decipher the face exploration strategy we
investigated the temporal pattern of fixation sequences for the
various ROIs by considering the delay to the first fixation in
each region (Figure 5B). Kruskal–Wallis test showed that typical
adults scanned the three ROIs sequentially in the following order
: RE–LE-M, H(2) = 240, p < 0.001, r = 0.33. Adults with ASD
also first looked at the RE, H(2) = 308, p < 0.001, r = 0.25, but
they subsequently switched either to mouth or the LE (LE versus
M, p < 0.055): RE-M/LE. TD-C subjects first looked at the RE
H(2) = 101, p < 0.001, r = 0.2, then indifferently the RE or the
mouth (LE versus M, p = 1): RE–LE/M. Children with ASD also
first looked at the RE, H(2) = 80, p < 0.001, r = 0.17, but they
then switched arbitrarily to the mouth or the LE RE-LE/M, (LE
versus M, p = 1).

Kruskal–Wallis test indicated that the scanning strategy
presented significant differences between groups for the right
and LE [Figure 5B2; RE: H(68) = 33, p < 0.001, r = 0.06; LE:
H(3) = 50, p < 0.001, r = 0.07] but not for the mouth (p = 0.55).
Post hoc analysis indicated that the RE and LE first fixation delays
were significantly shorter in the TD-A group than in the three
other groups (Figure 5B2, RE: p < 0.001; LE: p < 0.001). Our
data on the face scanning strategies employed by the four groups
are summarized in Figure 5C. The time spent on each ROI is
correlated to its drawn outline size and the number besides each
ROI indicates the temporal pattern of first fixation.

Discussion

Methodological Considerations
One major pitfall, common to most eye tracking studies is the
a priori definition of the visual targets (Henderson et al., 2005;
Barton et al., 2006; Over et al., 2006). It is only recently that
interest has turned to a posteriorimapping of visual scenes (Over
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FIGURE 5 | Characteristics of visual fixations in the four groups.
(A) mean total time spent on fixation: TD-A (LE > RE > M p < 0.01);
TD-C [LE > (M = RE) p < 0.01]; ADL/ASD (LE > M > RE p < 0.01);
ASD-C (LE > M > RE p < 0.01). (B) Delay to first fixation in TD-A was
shorter than in TD-C or both ADS groups. (C) Summary schematic

comparing data for the four groups. The size of each area is proportional
to the mean total fixation time and the number beside each area
indicates the sequence of fixation. TD-A, typical adult; TD-C, typically
developing children; ASD-A, adults with ASD; ASD-C, children with ASD.
M, mouth; LE, left eye; RE, right eye. ∗ indicates a significant variation.

et al., 2006; Caldara and Miellet, 2011; Falck-Ytter et al., 2013b;
Yi et al., 2014) to avoid the subjective definition of ROIs which
could potentially explain the absence of consistent findings across
studies and compromise the ability to replicate findings (Caldara
and Miellet, 2011). In the present study, we have incorporated
both spatial normalization to create a prototypic face (Saether
et al., 2009) and statistical spatial analysis of fixation distribution
to identify significant functional visual targets. The accuracy of
our method for identifying significant clusters is demonstrated in
Figure 2C, where subjects were requested to look at the targets
of the calibration map. In this case, it was clearly apparent
that only the fixation clusters of relevant interest were retained.
Furthermore, to avoid restrictive analysis, the face was subdivided
into three large ROIs, each of which included one of the core
features previously established as visual targets (Yarbus, 1967). In
comparison with the a priori method (Figure 3), it was clearly
evident that this approach provided more significant insights

from the same data. To date there is no specific reason for
favoring use of a particular method such as that presented here,
rather than one based on methodologies used in functional
magnetic resonance imaging. In the future, however, it would
be relevant to test whether comparable results can be extracted
from the same data since, although extremely powerful, the iMap
method still requires an experimenter adjusted variable (Gaussian
kernel) to characterize the visual information according to the
specific hypothesis in question (Caldara and Miellet, 2011).

One issue in developmental studies is to ensure that the
reported differences are not due to age specific features such as
attention control or task understanding. In the present study,
we hypothesized that the use of a free viewing task to measure
the spontaneous behavior of our participants would limit the
impact of the instructions given to the participants, as for
example compared to instructions provided when a specific task
(recognition task, gender task. . .) is achieved.
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An analysis of total fixation time (Table 2) showed that all
groups, with the exception of typical adults, did not exhibit
significantly different values, suggesting that there was not a
disengagement of general attention for the task in the ASD
population during the present free viewing task. This is in
agreement with a previous study that found no difference
between free-viewing and task-directed conditions (Pelphrey
et al., 2002). However, the static stimuli used here, although also
suitable for standardizing analysis, are limited in not being as
ecological as dynamic stimuli (Klin et al., 2002b; Ponnet et al.,
2004).

Strategies of Visual Fixations
In the present study, spatial statistical analysis has allowed
a significant definition of the fixation pattern of human face
exploration to be made. Our results confirm the structural
importance of inner core features and the presence of a
sequential routine of fixation in typical adults. Surprisingly,
although the temporal pattern is related to the classical “face
information triangle,” i.e., the eyes and mouth, the precise
spatial location of these targets does not match the points of
interest that are usually reported, i.e., around the pupil, nose,
or mouth. In fact, the barycenters of the ROIs established by
our a posteriori analysis are delocalized downward (Figure 3).
These results are in accordance with recent findings indicating
that in typical adults during a recognition task, the preferred
landing positions for the first two fixations is beside the eye
rather than being centered on the pupil (Hsiao and Cottrell,
2008; Yi et al., 2014). This infraorbital region (see green dot
Figure 3) has been suggested to play a crucial role as a center
of gravity that from the first glance maximizes the capture of
information (Saether et al., 2009). Our results support recent
findings by van Belle et al. (2010) since we find that the
typical mature pattern of fixations on faces starts at a specific
point: below the RE (from the observer’s perspective) before
switching to the LE and then to the mouth. In children, a
comparable specific region, beyond the eyes, has also been
identified using either bubble methods (Spezio et al., 2007b;
Wang et al., 2011) or eye tracking in free viewing or in
recognition tasks (Hernandez et al., 2009; Yi et al., 2014). The
eye avoidance hypothesis (Tanaka and Sung, 2013) provides
a plausible explanation of face recognition deficits where
individuals with ASD may avoid the eye region because it
is perceived as socially threatening. Our results support this
hypothesis in both populations (typical and ASD groups): direct
eye contact may elicit an automatic avoidance response in
humans.

Despite an extensive use of eye tracking in adults in the field
of face scanning, this technique has so far been underutilized
in research with typical children or adolescents (Karatekin,
2007). To our knowledge, only two developmental studies have
examined eye movements during face perception and compared
child and adult scanning strategies (Marcus, 2005; Schwarzer
et al., 2005). Until now, however, there is no available data that
focuses on the pattern of fixation in typical development with
static neutral face stimuli in free viewing tasks. As shown in
Figure 5, the typical adult sequential order of fixation between the

three ROIs is neither found in typical children nor in individuals
with ASD. Children (typical or with ASD) most frequently start
looking at the RE, but subsequently they indifferently look at the
LE or the mouth. Since all four sub-groups were tested under
the same conditions and methodology, it therefore becomes
possible to draw strong conclusions about the specificity of
the scan pathway in individuals with ASD compared to typical
subjects.

Our results indicate that a different scanpath is employed by
TD-A compared to the three other groups. This scanning strategy
includes an automatic routine with an alternate visual scan first
on the RE then the LE and finally the mouth. In accordance
with previous results, therefore, attention is first focused on the
eyes, which play a central role in the recognition process and to
infer others’ intention (Walker-Smith et al., 1977; Davies et al.,
1994; Vuilleumier, 2005; Tanaka and Sung, 2013). By anchoring
gaze on this infraorbital region, one perceives the entire face and
uses it for face identification (Saether et al., 2009). Our results
also provide insights into the development of face processing.
The developmental process progressively brings subject behavior
toward an optimized strategy in order to capture as quickly
as possible the maximum of information. Our observations
therefore indicate that while first looking predominantly at the
RE, young and ASD subjects indifferently look at the mouth and
LE. The observation of such a behavior is in agreement with the
results of Barton et al. (2006), who tested the effect of “expertise”
by presenting inverted faces that do not access an orientation-
dependent face-expert processor, and reported that it elicited a
less predictable scan structure.

Developmental and Pathological Aspects of
Face Scanning
Comparing face scanning strategies between the groups indicated
that typical children exhibit a distinct immature pattern (relative
to typical adults) in which there is no specificity in the temporal
sequence of fixation and the length of time spent in fixating the
LE or mouth (Figure 5). These two features could be therefore
considered as indicators of a developmental scanning strategy
process, and would in turn be consistent with recent studies
proposing that attention to mouth is related to language onset
(Hunnius and Geuze, 2004; Young et al., 2009; Nakano et al.,
2010).

Regardless of the detailed temporal features of scanning
strategy, all four groups studied here paid attention to the same
ROIs, and few fixations occurred significantly outside of these
areas. Surprisingly, however, we found that both adults and
children with ASD adopt a face scanning strategy similar to
that of typical children (Figure 5, Table 2), although the ASD
groups differed from their age-matched group regarding the
total fixation duration on both eyes (Figure 5). Our findings
are consistent with other reports that analyzed the eye region
by combining fixations for the two eyes (Jones et al., 2008;
Hernandez et al., 2009; Bal et al., 2010; Nakano et al., 2010;
Yi et al., 2013) but they also extend these previous results by
separating the total time spent on each eye and finding that the
two ASD groups significantly spent much less time on the LE. The
time spent on the RE did not differentiate the two child groups.
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One possible explanation is that subjects with ASD do not
develop an automatic pattern because their atypical processing
and/or diminished expertise during childhood do not “drive”
visual processing toward a stereotyped pattern as expressed
by typical adults. During typical development, humans are
socially motivated to be attentive to faces, obliging them to
precociously extract relevant information (Senju and Johnson,
2009a,b). In contrast, a social motivation deficit, as encountered
in individuals with ASD, may lead to face underexposure and to
a disruption in development of the brain systems dedicated to
processing faces in a typical pattern (van der Geest et al., 2002;
Best et al., 2010). This idea is strengthened by the correlation
between social interaction scores and the time spent on the
eyes in individuals with autism. However, our results are not
in favor of the excess eye/diminished mouth gaze fixation
hypothesis proposed in recent studies (Fletcher-Watson et al.,
2009; Best et al., 2010; Falkmer et al., 2011), suggesting that
the mouth is more likely to be a facial characteristic whose
relevance varies according to emotional expression in face
exploration, or to movement related to speech (Corden et al.,

2008; Hernandez et al., 2009; Norbury et al., 2009; Nakano et al.,
2010).

Conclusion

We propose here a simple method that allows spatial
normalization of face stimuli and a statistical data-driven method
of extracting eye tracking information. A main strength of
the present study is that for the first time, a study based on
an a posteriori data-based approach was employed for face
scanning in a variety of different sub-groups, thereby allowing
distinguishing factors that depend on developmental versus
pathological processes to be readily deciphered. Based on the
present results, the patterns of fixation for static faces that mature
from childhood to adulthood in typical subjects are not found in
adults with ASD. The atypical patterns found after developmental
progression and experience in ASD groups appear to remain
blocked in an immature state that cannot be differentiated from
typical developmental child patterns of fixation.
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