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Abstract

Enhancer is a positive regulator for spatiotemporal development in eukaryotes. As a

cluster, super‐enhancer is closely related to cell identity‐ and fate‐determined pro-

cesses. Both of them function tightly depending on their targeted transcription fac-

tors, cofactors, and genes through distal genomic interactions. They have been

recognized as critical components and played positive roles in transcriptional regula-

tory network or factory. Recent advances of next‐generation sequencing have dra-

matically expanded our ability and knowledge to interrogate the molecular

mechanism of enhancer and super‐enhancer for transcription. Here, we review the

history, importance, advances and challenges on enhancer and super‐enhancer field.
This will benefit our understanding of their function mechanism for transcription

underlying precise gene expression.
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1 | TRANSCRIPTION REGULATION IN
EUKARYOTES

DNA is the genetic information storage in cell/organisms. Transcrip-

tion is an intermediate process that synthesizes RNA and then RNA

translates the message into protein to perform a specific biological

function. As the first step, transcription switches on and regulates

gene expression. Therefore, scientists put lots of effort and attention

to the field in the long run. In 1860s, scientists proposed genetic

factor to explain “one gene‐one trait” which was based on Mendel's

pea experiments.1 In 1941, Beadle and Eatum proposed “one gene‐
one enzyme” to explain inborn errors of metabolism.2 In 1957, “one
gene‐one polypeptide” was introduced due to the progress of bio-

chemical genetics.3 In 1958, Crick proposed central dogma which is

often stated as “DNA makes RNA and RNA makes protein” (Fig-

ure 1).4 Central dogma defines the genetic information flow of DNA,

RNA, and protein. It has clarified the role of these three

macromolecules in transcription. Since then, transcription has

become the central field of biologists. In 1970s, “one gene‐multiple

RNAs” hypothesis was proposed due to splicing and other pro-

gresses on molecular biology.5 Meanwhile, transcription has been

recognized as a dynamic process. Scientists divide it into multiple

sub‐processes, mainly including initiation, elongation, and termination

(Figure 2).6 RNA polymerase II (RNAPII) is identified as the core fac-

tor to initiate and regulate gene expression by coordinating with lots

of other factors, including general transcription factors, enhancers,

mediators, cohesions, insulators, and silencers accompanying with

other epigenetic mechanisms.7 In the past decades, next generation

sequencing (NGS) has been innovated into transcription research.8-10

Genome architecture, methylation, acetylation, and other histone

modifications have also been brought into the field, which dramati-

cally extended the view of transcription regulation.10 Among them,

as the vigorous positive factor, enhancer attracts special interests of

scientists.11-13
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2 | ENHANCER IS A POSITIVE REGULATOR
IN TRANSCRIPTION

2.1 | Enhancer is a positive regulator

Enhancer is a short region of DNA that can be bound by proteins (acti-

vators) to activate transcription of a gene.14 It can positively regulate

spatiotemporal gene expression during development through either cis‐
or trans- interaction manner (Figure 3).13,15-17 In 1981, enhancer was

first described as a 72‐bp repeated sequence in simian virus 40 (SV40)

genome, which could increase the ectopic expression of a reporter gene

by ~200‐fold.18,19 In 1983, enhancer was discovered within a mouse

immunoglobulin heavy chain gene in mammals.20 Subsequently, differ-

ent enhancers in various cells and tissues have been reported.14-17

2.2 | Properties of enhancer chromatin

Enhancers activity are usually linked with certain properties of chromatin

(Figure 4). Active enhancers are typically bound with transcription fac-

tors (TFs).21 The flanking of enhancers are commonly marked by histone

modifications such as histone H3 lysine 4 monomethylation (H3K4me1)

and H3K27 acetylation (H3K27ac).22-24 Active enhancers are marked by

both H3K4me1 and H3K27ac, with depletion of histone H3 lysine 4

trimethylation (H3K4me3);22 inactive, poised enhancers are marked only

with H3K4me1.24 In addition, enhancers are typically depleted of nucle-

osomes and sensitive to DNase I digestion.25 Distal enhancers are

brought into close proximity with their target promoters through chro-

matin looping,14 which is facilitated by mediators and cofactors.11,21

Moreover, active enhancer can recruit RNAPII and produce RNAs that

contributes to its function and gene regulation.26,27

2.3 | Enhancer identification

Traditionally, enhancers have been identified based on their ability

to increase transcription by using reporter gene assays.14,18 Trans-

genic reporters are widely used for enhancer identification in animal

models such as nematode, fruit fly, and mouse.14 Traditional trans-

genic reporter assays, for example, those based on luciferase, are

usually low throughput as they could only validate individual enhan-

cer in a relative simple mode.14,18 In the recent years, with the

advent of NGS, high‐throughput computational and experimental

methods have been adapted to predict enhancers.14,28 These are

mainly included in several categories: (a) Computational analysis of

conserved noncoding sequences and TF binding motif29-31; (b) Chro-

matin immunoprecipitation and sequencing (ChIP‐seq)28 for tran-

scription factors,32,33 mediators and cofactors such as P300,34,35 and

histone modifications such as H3K4me1 and H3K27ac23,24; (c) Chro-

matin accessibility assays, including DNase I digestion coupled to

sequencing (DNase‐seq),25,36 formaldehyde‐assisted isolation and

sequencing (FAIRE‐seq),37 and transposase‐accessible chromatin fol-

lowed by sequencing (ATAC‐seq)38; (d) Multiple methods depending

on the detection of enhancer RNAs,28 including global run‐on
sequencing (GRO‐seq),39 precision nuclear run on and sequencing

(PRO‐seq),40 native elongating transcript sequencing (NET‐seq),41

cap‐analysis gene expression (CAGE)42; (e) Methods based on

F IGURE 1 Diagram of central dogma F IGURE 2 Diagram of transcription sub‐processes, including
initiation, elongation and termination

F IGURE 3 A, Enhancers are cis‐regulatory elements that can
increase expression of target genes in cis and trans-acting manner;
(B and C) Enhancer regulate spatiotemporal gene expression
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enhancer‐promoter interactions, including chromosome conformation

capture (3C),43 4C,44 5C,45 Hi‐C,46 and chromatin interaction analysis

by paired‐end tag sequencing (ChIA‐PET)47; (f) Methods of testing

enhancer activity,28 such as massively parallel reporter assays

(MPRAs),48 self‐transcribing active regulatory region sequencing

(STARR‐seq),49 and functional identification of regulatory elements

within accessible chromatin (FIREWACh).50 Currently, enhancers can

be defined by using one or combinations of these methods.

Accordingly, thousands of enhancers in different model animals

such as fruit fly, nematode and mouse, as well as human have been

annotated by different international genome annotation consortia, such

as ENCODE,51 NIH Epigenome Roadmap,36 FANTOM5,42,52 and Blue-

print/IHEC.53 At the same time, enhancer related databases such as

VISTA Enhancer Browser,54 Enhancer Atlas,55 and HEDD56 have been

developed for visualizing and sharing information of enhancers annota-

tions across mammalians. These useful resources provide new insight

into their roles and mechanism of enhancers‐mediated gene regulation.

3 | ROLE AND ADVANCE ON
TRANSCRIPTION RESERCHES

3.1 | H3K4me1 and H3K27ac

H3K4me1 and H3K27ac are commonly used hallmarks to identify

putative genome‐wide enhancers.11,57 H3K4me1 and H3K27ac are

conferred by the mixed lineage leukemia (MLL) family of

methyltransferease (MLL2/3/4) and the CREB‐binding protein (CBP)/

P300 acetyltransfereases, respectively.11,57 Knocking out H3K4

methytransferases MLL3 and MLL4 have resulted in a global loss of

H3K4me1 binding, and subduction of H3K27ac, mediators and RNA-

PII bindings as well.58,59 It has been found that H3K4me1 can facili-

tate recruitment of the cohesion complex to chromatin, which

provides a potential mechanism for MLL3/4 to promote chromatin

interactions between enhancers and promoters.60 In addition, a

recent study has suggested that H3K4me1 might play a fine‐tune
role in enhancer activity by facilitating binding of the BAF complex

and possibly other chromatin regulators.61 Meanwhile, active enhan-

cers in both flies62 and mice63 are not necessarily marked by

H3K27ac, but H3K27ac has been supposed to affect enhancer activ-

ity through destabilizing nucleosomes or recruiting H3K27ac‐binding
proteins.64 All these evidences imply that H3K4me1 and H3K27ac

themselves are not required for enhancer activity.

3.2 | Diverse modes of enhancer action

As time goes by, enhancer has been recognized that it could regulate

gene expression in quite diverse manners, which are summarized as

“multiple enhancers—one target gene” (Figure 4A) and “one enhancer

—multiple target genes” patterns (Figure 4B).65,66 The former pattern

includes addictive, synergistic, hierarchical, and redundant mode. (a)

An additive mode represents that gene transcription is determined by

the superimposed effect of multiple enhancers (Figure 4A‐1). For

F IGURE 4 Modes of enhancer action
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example, the even skipped (eve) gene is expressed in seven pair‐rule
stripes along the length of Drosophila embryo due to five separate

enhancers,16 so as enhancers of α- and β-globin genes in mouse ery-

throid cells,67,68 within the developing limb69; (b) A synergistic mode

proposes that multiple enhancers produce an effect greater than the

sum of their individuals (Figure 4A‐2),70 for example, enhancers near

hunchback and knirps in Drosophila,71 and murine Fgf8 locus72; (c) A

hierarchical logic mode supposes that one or some enhancers can first

activate one gene transcription to a basal level, while these enhancers

could initiate the activity of their nearby enhancers to amplify its

expression (Figure 4A‐3). As an example, a conditional relationship

between two enhancers near the PU.1 locus in mouse myeloid cells70;

(d) A redundancy mode describes that lossing one of gene‐associated
enhancers would not greatly affect its expression pattern due to their

functional redundancy.73 A potential mechanism of this might be a

competition model that two enhancers compete for one target gene,

which could ensure a relative constant gene expression in the case of

one enhancer loss (Figure 4A‐4).73 Enhancer redundancy is a remark-

ably widespread feature in mammalian genome.66,74,75

On the other hand, the solo enhancer is able to regulate multiple

genes (Figure 4B). Two types of competition modes, “winner takes

all” and “we are all winners,” have been proposed to explain this.65

For the first one, only one target gene is activated and expressed in

each cell (Figure 4B‐1). As an example, to ensure unique identity of

neurons, only one olfactory receptor gene or protocadherin gene is

expressed in each cell of its sensory system and brain.76,77 For the

second one, multiple genes are activated and expressed in all cells,

but they are not necessarily expressed at maximum levels (Fig-

ure 4B‐2). This mode can be detectable when the deletion of one

such gene would increase other gene expression,78 or the introduc-

tion of an extra gene copy would decrease other gene expres-

sion.79,80 The interaction of multiple genes expression are switched

by a shared enhancer in one cell is thought to belong this mode.81

3.3 | Enhancer‐promoter interactions

3.3.1 | DNA‐Looping

Enhancer‐promoter interactions can be commonly found to deter-

mine spatiotemporal gene expression pattern in eukaryotes.82,83 This

has been well presented by studies of the globin locus control region

(LCR) and its target gene.84,85 During erythroid development, LCR

activates distinct globin genes in a stage specific manner through

the formation of DNA looping.86 LCR‐β-globin interactions are estab-

lished dependent on gene‐specific transcription factors, including the

hematopoietic‐specific factors GATA1 and FOG1,87 KLF,88 and the

widely expressed factor LDB1.89 The depletion of LDB1 has been

previously reported to disrupt long‐range LCR loop formation, and

thus affect gene transcription.89 There are other examples of specific

gene regulation involving in enhancer‐promoter looping. The Satb1

gene is silent when its promoter does not contact with enhancers in

the brain, whereas it is highly expressed when enhancer‐promoter

looping has been de novo formed in the thymus.90 In the latest

study, a distal enhancer of Sox9 can reverse sex in mouse,91 which

suggests DNA‐Looping could also determine specific traits.

The protein yin and yang (YY1) has been recognized as a struc-

tural mediator of DNA looping in recent study.92 YY1 could globally

mediate enhancer‐promoter interactions by binding to DNA and

facilitate the formation of chromatin loops, probably through its

dimerization.92 In addition, YY1 has been further indicated to posi-

tively regulate transcription by targeting promoters and enhancers to

through the BAF complexes in embryonic stem cells.93

3.3.2 | TADs

Along with the 3D genome architecture, topologically associating

domain (TAD) has been realized as a popular pattern for enhancer

function. TAD is a proposed selfing‐interaction genomic territory,

meaning that DNA sequences physically interact with each other

more frequently within than outside.90 Recent studies have indicated

that TADs might ensure proper physical interactions between pro-

moters and distal enhancers.94 For example, Shh expression is not

affected by changing the distance between Shh gene and its associ-

ated enhancer (ZRS) within TAD.94 Conversely, it has been altered

by inversions disrupting the TAD between them.94

The mechanism leading to the TAD boundary formation have

attracted the study interest of many biologists. TADs are suspected

to be bordered by dimerization of the zinc finger protein CTCF

bound to chromatin.95 Disruption of a conserved CTCF‐cohesion
boundary extends the sub‐TAD of the mouse α-globin gene cluster

to adjacent CTCF‐cohesin‐binding sites.96 This in turn allows α-globin

enhancers to interact with more additional promoters located within

extended sub‐TAD. In addition, a study of the Sox9 locus has

showed that duplication of boundary‐containing regions results in

the formation of a new TAD that is insulated from its neighbors by

the duplicated boundary.97 However, the research field of TAD

remains controversial, more efforts and data will be eager for further

interpreting its mechanism.

3.4 | Enhancer RNAs

Enhancer RNAs (eRNAs) are a new class of long noncoding RNAs syn-

thesized at enhancers,98 which are correlated with enhancer activity

and contribute to gene regulation.98,99 The transcription of enhancer

was first reported in the locus control region (LCR) of the β-globin

gene.100 Subsequently, enhancers have been found to be broadly tran-

scribed.26,101-103 Unlike messenger RNAs (mRNAs), eRNAs are gener-

ally short, non‐coding, bidirectionally transcribed, and their 3′‐end are

not polyadenylated.42,102,104 Meanwhile, they are susceptible to exo-

some‐mediated degradation and express at very low levels.104,105

Recent studies have revealed that eRNAs can be generated through

unidirectional transcription, that are longer and contain a poly A tail.106

eRNAs could promote transcription by facilitating nucleosomes deple-

tion and establishing DNA accessibility.107,108 Moreover, nascent

eRNAs have been found to contribute to the stabilization of TF bind-

ing,109 the recruitment and activation of cofactors,110-113 the release
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of negative elongation factor (NELF) from promoters.114 In addition,

eRNAs have been indicated to play a role in gene regulatory networks

by controlling promoter and enhancer interactions and topology of

higher order chromatin structure.115

4 | SUPER ‐ENHANCER DETERMINES CELL
INDENTITY AND FATE

4.1 | Super‐enhancer is a cluster of enhancers

Super‐enhancer is emerging as cluster of enhancers that is densely

occupied by the master regulators and mediators, which is speculated

to act as switches to determine cell identity and fate.116,117 This

notion was first described as genomic regions with high levels of five

master transcription factors (Oct4, Sox2, Nanog, Klf4, and Esrrb) and

the Mediators in mESCs.117 Subsequent studies have extended the

concept of super‐enhancers as genomic regions densely occupied by

high levels of H3K4me1, H3K27ac, p300 or master transcription fac-

tors in multiple cell types and tissues.116,118 The main identification

procedure has been summarized as five steps (taking H3K27ac as

example, Figure 5): (A) performing H3K27ac ChIP‐seq experiment in

the interested cell types or tissues; (B) mapping H3K27ac ChIP‐seq
data to reference genome; (C) calling peaks using peak calling algo-

rithm, for example, MACS2119; (D) stitching enhancers within 12.5 kb

of each other (performing in ROSE); (E) plotting the ranked stitched

enhancers and the remaining individual enhancers by the total back-

ground‐normalized levels of H3K27ac within the genomic region; a

line with a slope of one tangent to the curve is used as a cutoff to

distinguish super‐enhancers above the point and typical enhancers

below the point of tangency (performing in ROSE).

4.2 | Properties of super‐enhancers

Super‐enhancers differ from typical enhancers in size, transcription

factor density and content, and ability to activate transcription (Fig-

ure 6). In addition, super‐enhancers produce higher level of eRNAs

than typical enhancers,116,117 for example, about 93% of super‐
enhancers and about 30% of intergenic typical enhancers are associ-

ated with eRNAs during toll‐like receptor 4 (TLR4) signaling in

macrophages, respectively.120 Super‐enhancer and its associated

genes are frequently located within a loop connected by two CTCF

sites co‐occupied by cohesion within TADs, as an example, 84% of

super‐enhancers and 48% of typical enhancers are located within

such structures in mESCs, respectively.121 Remarkably, super‐enhan-
cers are capable of maintaining cell identity, determining cell fate,

driving oncogene transcription in cancer cells.118,122

4.2.1 | Maintaining cell identity

A series of studies have indicated that super‐enhancers are cap-

able of maintaining cell identity. In mESCs, both super‐enhancers
and typical enhancers are co‐occupied by master TFs Oct4, Sox2,

and Nanog, which are important for pluripotency; but only super‐
enhancers are densely occupied by TFs KLF and ESrrb, which play

important role in cell identity.117 In the same study, the crucial

role of super‐enhancers in cell identity has been further revealed

by that reduced levels of Oct4 or Mediators cause preferential

loss of expression of super‐enhancer‐associated genes relative to

other genes in mESCs.117 Likewise, key TFs that control cell iden-

tity have been found to bind at super‐enhancer in other differen-

tiated cell types, such as myotubes (MyoD), T helper (Th) cells (T‐
Bet) and macrophages (C/EBPα).117 Subsequently, super‐enhancers
co‐occupied by lineage‐specific factors have been identified in

diverse cell types such as adipocytes, hair follicle stem cells, and

mammary epithelial cells.12,123-126 For example, in the mammary

epithelium, mammary‐specific super‐enhancers have been identifiedF IGURE 5 Identification procedure of super‐enhancers
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with mammary‐enriched transcription factors, such as signal trans-

ducer and activator of transcription 5 (STAT5), glucocorticoid

receptor (GR), E74 like ETS transcription factors 5 (ELF5), and

nuclear factor I B (NFIB).124

In addition, super‐enhancers are correlated with lineage‐specific
transcriptional factors and oncogenes in a broad spectrum of can-

cers, such as neuroblastoma,127 small‐cell lung cancer (SCLC),128

medulloblastoma,129 breast,57 esophageal,130 gastric cancers,131 and

melanoma.132 Moreover, in medulloblastoma, super‐enhancers are

able to distinguish its four main subtypes based on underlying bio-

chemical and genetic signatures, suggesting that super‐enhancers are

correlated with tumor heterogeneity and define cell identity.129 In

addition, studies have revealed that different super‐enhancers have

same target oncogenes in various tumor types, for example, tumor‐
specific super‐enhancer profiles have been found at the MYC and

MYCN loci,127,128 which further indicate the importance of super‐
enhancers on maintaining cell identity.

4.2.2 | Determining cell fate

Analyses of the super‐enhancer dynamics during lineage commitment

of specific cell types have shown that super‐enhancers are remod-

eled during differentiation, having crucial roles in cell fate determina-

tion.123,133,134 Deletion of super‐enhancer constituents at the

Nanog135 or Sox2136 locus in mouse embryonic stem cells reduces

the corresponding target gene expression and impaired some other

key pluripotency genes, resulting in cellular differentiation. In

another example, distinct super‐enhancer landscape and super‐
enhancer‐associated TF network have been identified for mesenchy-

mal and adrenergic cells, and the state of adrenergic cells towards

mesenchymal is associated with the changes of super‐enhancers
landscape.137

4.2.3 | Driving oncogene transcription in cancer
cells

Super‐enhancers have been found to drive the expression of a few

critical oncogenes in several types of tumor cells.122 In Nasopharyn-

geal carcinoma, super‐enhancers are linked to genes important for

oncogenesis including ETV6.138 In Oesophageal squamous cell carci-

noma (OSCC), super‐enhancers are associated with oncogenes

including PAK4, RUNX1, DNAJB1, SREBF2, and YAP1.130 Deletion of

a super‐enhancer reduces the expression of cancer‐related genes

and impairs some oncogenic properties.139 In contrast, duplication of

super‐enhancers leads to overexpression of a key oncogenic tran-

scription factor, which then activates other cancer‐related genes in

squamous cell carcinomas.140 Super‐enhancers can be targeted

through inhibition of chromatin and transcriptional regulators that

disproportionately bound to these regulatory elements super‐enhan-
cers.122 Recent studies have demonstrated that JQ1 (a competitive

inhibitor of BRD4, and a covalent inhibitor of CDKs), selectively kill

cancer cells by inhibiting SE‐driven oncogenic transcription, with

both agents lacking systemic toxic effects in vivo.127,128,141,142

5 | CHALLENGES AND ONGOING STUDIES

As positive transcription regulators, scientists have put lots of efforts

and made significant progress on enhancer and super‐enhancer
related studies. So far, there are still a few challenges remained for

understanding their role and mechanism in gene transcription: (a)

precisely identifying enhancer motif across the genome; (b) validating

vast enhancer candidates identified by ChIP‐seq and other methods;

(c) precisely annotating enhancers to their target genes in genome;

(d) the ambiguous definition and unclear composition of super‐
enhancer.

5.1 | Precision identification of motif

Precisely, identification of motifs is essential for understanding the

enhancer function mechanism and genome constitution. Motif is a

degenerate short (6‐10 bp) DNA sequence pattern that summarizes

the DNA sequence binding preference of a transcription factor.14

Enhancer motifs recruit transcription factors, which in turn enroll

cofactors, and thus activate transcription.14 They are highly linked to

enhancer activities and gene expression.66 The space between motifs

is one of factors contributing to enhancer activities. For example,

the neural plate‐specific Otx-a enhancer in Ciona controls Otx-a

expression in a moderate and proper manner.143 This enhancer con-

tains GATA and ETS DNA sequence motifs.143 A 3 bp insertion

between one set of them has been found to result in a threefold

increase of Otx expression.143 Thus, precisely motifs are important

for understanding enhancers function. However, up to now, the

identified potential enhancer candidates, by various methods such

as ChIP‐seq, bestrow hundreds of base pairs along the genome

(Figure 7).28,34 The conflict size differences between motif and

potential enhancer candidates would result in the difficulty for dis-

secting enhancer, its function and genome annotation.

F IGURE 6 Differences between organization and function of typical enhancers and super‐enhancers
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Scientists have started to put their effort to position motif

precisely. There are several methods developed to identify enhan-

cers at high resolution and low background. For example, ChIP‐
exo, a derivation of ChIP‐seq, has been adapted.144 Compared to

ChIP‐seq, ChIP‐exo includes an additional step of exonuclease

digestion that trims DNA fragments.144 This step allows identifying

putative enhancer candidates at high resolution and low back-

ground noise, and in turn positioning motifs more precisely.144

However, the current ChIP‐exo technique has been applied to lim-

ited cell types. Thus, more efforts are required for developing

new experimental methods and algorithms of enhancer identifica-

tion and motif position in the future.

5.2 | The validation of enhancer activity

Identifying functional enhancers is an important step for understand-

ing their mechanism in gene transcription. Up to now, hundred thou-

sands of putative enhancer candidates have been identified across

human and multiple model animals,23,24 but not all of them are rep-

resentative of functional ones. Indeed, with the data generated by

the ENCODE Project, only a fraction (26%) of enhancer candidates

display enhancer activity with reporter assays.51,145 In addition, the

data in VISTA Enhancer Browser reveals that only 50% of putative

candidate elements exhibit enhancer activity in transgenic mouse (up

to date 23 June 2018). With the development of NGS, several high‐
throughput screening methods, such as MPRA, STARR‐seq and FIRE-

WACh, have been adapted to validate enhancers activity.48-50 These

related methods have greatly improved our ability to validate enhan-

cers activity, but there are still a lot of putative enhancer candidates

have not been functionally tested.23,24 Therefore, enhancers activity

validating remains as a challenge for biologists.

5.3 | The assignment of enhancers to their target
promoters

Enhancer‐promoter interaction is important for gene transcription

and has commonly occurred in eukaryotes. However, their related

information or data in multiple cell types/tissues is still lacking. A few

years ago, enhancers have been typically assigned to their neighbor-

ing promoters based on linear proximity or shared chromatin

states.116 However, enhancers do not always regulate their neigh-

boring genes. A well‐characterized example is that the ZRS enhancer,

which resides in an intron of Lmbr1 (encoding limb region 1 protein),

contributes to the limb bud activation of the Shh gene, which locates

in nearly 1 Mb away.146,147 Sanyal et al148 have found that only 7%

of distal regulatory elements control their closed promoters in

human cell lines. Moreover, Zhang et al149 have found 76% of the

putative enhancers do not interact with their neighboring promoters

in mESCs. Thus, direct approaches for detecting enhancer‐promoter

interactions are required. Several three‐dimensional technologies,

such as 3C,43 4C,44 and 5C,45 Hi‐C46 and ChIA‐PET47 have been

adapted to directly identify physical contacts. However, the available

data of these associations is still far more insufficient. Data accumu-

lation might be an option to solve this, which might need global

efforts to achieve.

5.4 | Definition and composition of super‐
enhancers

Despite of biological effects of super‐enhancers, its definition is

ambiguous and molecular composition is unclear.118 Super‐enhancer
can be termed as enhancer cluster. However, according to its identi-

fication procedure (Figure 5), a few defined super‐enhancers are sin-

gle enhancers, for example, 15% (35 of 231) are proposed as single

in mESCs.117 Most defined super‐enhancers contain several ones,

which are difficult to distinguish their boundaries. Accordingly, these

would be an obstacle for understanding their functional mechanism

in gene transcription. The ambiguous definition and unclear composi-

tion of super‐enhancers would be caused by the current low resolu-

tion methods. The concept indeed fits researcher's need to shrink

the list of regulatory candidates. Therefore, the related studies have

been explosively increased during the last a few years. However, its

ambiguous definition and molecular composition remind us that it is

a long way to uncover their mechanism.F IGURE 7 Scheme of binding site for one TF
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Enhancer and super‐enhancer are positive regulators for gene tran-

scription. Scientists have made great processes on their effect and

mechanism research. Their function is tightly dependent of the

recruitment of transcriptional factors, cofactors, and mediators, as

well as the formation of enhancer‐promoter interactions. Recent

advent of NGS has greatly expanded our knowledge and skill to

explore genome‐wide composition. We review their history, defini-

tion, importance advance and challenge with different aspects. Cur-

rently, precision motif, activity validation, targeted gene, and

molecular mechanism are the central of the field. To achieve these

goals, more efforts on developing new methods and accumulating

data across different cell types/tissues are required. We hope this

essay would be beneficial for further understanding the role and

mechanism of enhancers and super‐enhancers in transcription, as

well as for providing future clues in the field.
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