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Nonequilibrium processes during solidification can lead to kinetic
stabilization of metastable crystal phases. A general frame-
work for predicting the solidification conditions that lead to
metastable-phase growth is developed and applied to a model
face-centered cubic (fcc) metal that undergoes phase transitions
to the body-centered cubic (bcc) as well as the hexagonal close-
packed phases at high temperatures and pressures. Large-scale
molecular dynamics simulations of ultrarapid freezing show that
bcc nucleates and grows well outside of the region of its thermo-
dynamic stability. An extensive study of crystal–liquid equilibria
confirms that at any given pressure, there is a multitude of
metastable solid phases that can coexist with the liquid phase.
We define for every crystal phase, a solid cluster in liquid (SCL)
basin, which contains all solid clusters of that phase coexist-
ing with the liquid. A rigorous methodology is developed that
allows for practical calculations of nucleation rates into arbi-
trary SCL basins from the undercooled melt. It is demonstrated
that at large undercoolings, phase selections made during the
nucleation stage can be undone by kinetic instabilities amid
the growth stage. On these bases, a solidification–kinetic phase
diagram is drawn for the model fcc system that delimits the con-
ditions for macroscopic grains of metastable bcc phase to grow
from the melt. We conclude with a study of unconventional
interfacial kinetics at special interfaces, which can bring about
heterogeneous multiphase crystal growth. A first-order interfacial
phase transformation accompanied by a growth-mode transition
is examined.

phase transitions | kinetic stabilization | metastability | solidification |
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The idea of polymorphism of solid nuclei during crystalliza-
tion dates back to Ostwald (1). It results from a lack of

explicit correlation between the bulk free energies of different
crystal phases and their respective interfacial free energies with
the liquid. It is thus expected that the early stages of nucle-
ation are likely to be dominated by the crystal phase with the
smallest solid–melt interfacial free energy and the later stages
by the equilibrium bulk phase (2). It has been recognized that
classical nucleation theory (CNT) and density-functional theory
(3), as well as phase-field models (4), need to be generalized
to account for structural phase transformations of the grow-
ing nuclei as the ratio of the interface to the bulk regions
changes. This so-called two-step nucleation has been observed
experimentally in rapidly quenched metals (5), as well as block
copolymer solutions (6, 7) and charged colloidal particles (8,
9), where metastable body-centered cubic (bcc) phase clusters
are reported to occur before final crystallization into the face-
centered cubic (fcc) phase takes place. A more dramatic outcome
at large undercooling is that of nucleation of metastable solid
phases that can under suitable circumstances, grow to macro-
scopic sizes. A large body of literature has grown over the past
several decades in which rapid solidification of mainly metals
and alloys, at cooling rates on the order of 104 to 105 K, has
been studied in containerless experiments through electromag-
netic/electrostatic levitation techniques (10–14), where strong
undercooling is achieved by avoiding heterogenous nucleation.

Through X-ray diffraction of the freely suspended droplets, the
dynamics of crystal nucleation during solidification have been
investigated. As a result, solidification of diverse crystalline
phases such as fcc, bcc, icosahedral, and quasicrystalline has
been observed, and emergence of metastable phases, often in
the bcc structure, in sufficiently undercooled liquids has been
demonstrated. Through application of CNT, the undercooling
necessary for metastable-phase growth has been rationalized.
It is conjectured that phase selection takes place in the nucle-
ation stage; the phase emerging is one with the smallest critical
nucleation barrier. Consequently, models for solid–liquid inter-
facial free energies of different crystal phases have been derived
from these experiments. Nevertheless, controversies remain
when nucleation of metastable phases cannot be explained
based on their interfacial free energies. Instead, the likely cul-
prit is suspected to be preferential nucleation at the droplet
surfaces (13).

Recent powerful advances in dynamic shock/ramp compres-
sion techniques (15–23) have been able to achieve melting and
solidification at rates that can exceed rapid cooling techniques
described above. Hence, extreme undercoolings can be achieved
in these experiments, and therefore, the limits of the current
theories of phase transformation kinetics can be tested. These
laboratory experiments are currently at the forefront of unrav-
eling fundamental insights into the kinetics of solidification at
extreme conditions. Freezing under such conditions is believed
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to play a major role in determining the structure of the planetary
cores, which in turn, is responsible for many important properties
(e.g., whether a planet can support a magnetic dynamo). It is thus
essential to develop capabilities for predicting metastable-phase
formation under these nonequilibrium conditions.

From a theoretical standpoint, the preference for nucleation
of the bcc and the icosahedral phases from the undercooled liq-
uid was first predicted decades ago through Landau expansion in
density fluctuations near the liquid phase (24). The observation
of two-step nucleation in molecular dynamics (MD) simulations
was initially inconclusive (25–28). The majority of attempts failed
to demonstrate any convincing signature of intermediate phases
during nucleation. The breakthrough came through the work
of ten Wolde et al. (29, 30), where they performed umbrella
sampling (31) simulations using the bond-orientational order
parameter Q6 (32, 33) to induce crystallization at moderate
undercoolings. They thus observed nucleation of predominantly
bcc crystallites that would transform to fcc in their cores while
the interface regions remained bcc. This finding was later repro-
duced by classical density-functional theory (34). Subsequently,
it was observed that when varying both pressure and undercool-
ing, one could make the bcc precritical crystallites grow to large
sizes (35, 36).

In the following, we derive from atomistic first principles the
kinetic maps of the crystal phases that are stabilized by nonequi-
librium processes during solidification. For this purpose, we gen-
eralize the CNT and challenge the assumption that the precritical
nucleation stage is solely responsible for crystal phase selection
during freezing. Hence, rather than studying the intricacies of
multistage nucleation and its effects on the rate of solidifica-
tion (37–40), we focus on the product phases that result from
liquid–solid transformation kinetics and derive kinetic phase
boundaries. The latter specifies the undercooling conditions, in
the neighborhood of which multiple crystal phases are likely
to grow from the melt. Near these boundaries, the postcritical
stage can play a big role in promoting or impeding the growth
of competing crystal phases. Hence, in contrast to thermody-
namic phase boundaries that are straightforward consequences
of thermodynamic rules that can never be violated given enough
time, kinetic phase maps are mere guidelines for high-probability
events and depend on the particular experimental context being
considered. Nevertheless, metastable-phase maps are crucial for
understanding solidification near the triple points of the thermo-
dynamic phase diagram, where the liquid phase coexists with two
solid phases.

CNT describes solidification in the language of canonical
transition-state theory. It uses as the reaction coordinate the
size of the solid cluster that nucleates inside the melt. It relies
on separation of timescales involving two distinct processes:
activation of critical nuclei and growth of postcritical solid clus-
ters. The critical nucleus is the transition state that separates
the liquid and the solid basins of attraction. The rate of solid-
phase nucleation is dictated by the flux of trajectories through
the critical nucleus. It is assumed that the solid-phase nuclei
grow slowly enough that they can be considered near equilib-
rium at all times. A consequence of this is that the sizes of
the critical nuclei can be put in one to one correspondence
with the undercooling temperature. Furthermore, solid clusters
can be stabilized within the melt by constraining volume and
energy fluctuations through change of statistical ensemble, from
open (e.g., isothermal–isobaric) to closed (e.g., microcanoni-
cal). This has been successfully utilized in computer simulations
and has allowed the study of equilibrium shapes and sizes of
solid clusters in liquid, as well as their coexistence tempera-
tures (41). Through the Gibbs–Thomson (GT) condition, this
information has been used to extract solid–liquid interfacial free
energies under the assumption of negligible anisotropy (41–43).
Later in this paper, we will formulate a rigorous foundation for

this approach and as a result, present a general algorithm for
conveniently calculating accurate interfacial free energies that
incorporate interfacial anisotropy as well as finite cluster-size
curvature effects.

Let us now examine the phase space of the undercooled liq-
uid by carving it into distinct subspaces, each containing all
of the configurations of solid clusters of a particular phase φ,
coexisting with the liquid phase. We refer to each such region
as the φ-SCL (solid cluster in liquid) basin. The relative rates
of nucleation of solids belonging to two different basins φ1

and φ2 are proportional to exp(−∆G/kBT ), where ∆G is the
Gibbs free energy difference between the critical nuclei of the
two phases at the undercooling temperature T . ∆G has con-
tributions from free energies of both the bulk solids as well
as the solid–liquid interfaces. Hence, it is easy to see that at
large-enough undercooling, when the critical nuclei are rela-
tively small, the interfacial free energy may favor nucleation of
the phase that is not the thermodynamically stable bulk phase.
However, during the growth stage, the thermodynamic driv-
ing force for transformation to the thermodynamic equilibrium
phase increases. It is thus imperative to identify under what con-
ditions the thus nucleated metastable-phase clusters can grow to
form micrometer-sized grains without transforming to the ther-
modynamically stable phase. For this purpose, we define the
metastable solid cluster in liquid (MSCL) subspace, which is the
collection of microstates that are weakly connected to other SCL
basins. More precisely, nuclei that belong to the MSCL subspace
do not undergo solid–solid transformations during their growth
stage, which for a micrometer-sized grain and a typical interface
velocity of 10 m/s, is on the submicrosecond timescale.

It is important to note that while the definition of the SCL
basin as a collection of microstates is quite straightforward, the
same is not true for the MSCL subspace. Metastability is the sta-
tistical property of the dynamic trajectories associated with the
microstates. This problem can be tackled by noting that large
metastable-phase solid clusters transform to equilibrium through
activated nucleation processes in their interiors similar to the
mechanism in the bulk. Hence, while the thermodynamic driv-
ing force as well as the number of nucleation sites for solid–solid
transformation increases with the size of the growing clusters,
the rate of nucleation of the equilibrium solid phase may in fact
decrease due to rising activation barrier. The latter comes about
because of increasing misfit strain energy of equilibrium-phase
inclusions inside growing metastable-phase clusters. The exis-
tence and extent of the region of long-lived metastable-phase
solid clusters in liquid that constitute the core of the MSCL sub-
space can be determined effectively through the closed ensemble
technique mentioned above, by which critical nuclei of different
sizes are stabilized.

With its core region identified, the boundary of an MSCL
subspace can be delineated through direct canonical MD sim-
ulations of small solid–cluster seeds. This procedure relies on
subdivision of each SCL basin into a contiguous MSCL domain
and a transient region that connects it to other basins. Tra-
jectories that are initiated by nucleation of critical solid clus-
ters inside the MSCL subspace overwhelmingly grow to large
sizes without structural transformation. Those initiated in the
transient regions have a finite chance of crossing over into
other SCL basins. This is analogous to transition path sam-
pling, where trajectories initiated near the saddle points of
the potential energy landscape are equally likely to decay into
one or the other of the basins of attraction connected to it.
We find that phase transformations of the critical nuclei initi-
ated in the transient regions proceed through far from equi-
librium processes involving cross-nucleation of the new phase
at the crystal–liquid interfaces. It is important to note that
the identification of the transient region boundaries does not
rely upon CNT (or any of its assumptions therein) and thus,
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provides a general procedure for the construction of kinetic
phase maps.

As a consequence of the above topology of the phase space
of the undercooled liquid, as well as the one to one correspon-
dence between the sizes of the critical nuclei and undercooling
temperature, we can construct solidification–kinetic phase maps
of the principal solid phases that grow out of the melt under
different temperature and pressure conditions. In what follows,
we outline a practical framework based on a combination of
nonequilibrium MD simulations (44), free energy integrations,
and multiphase equilibrium simulations, through which thermo-
dynamic as well as kinetic phase diagrams can be constructed.
This methodology is applied to a model Cu system described
by a short-range semiempirical interatomic potential (45). It
exhibits a rather complex phase diagram, shown in Fig. 1, with
several solid phases present along the melt line. In the follow-
ing, we develop the methodology to construct the kinetic phase
map shown in Fig. 5, where the conditions under which freez-
ing is dominated by the metastable–bcc phase are delineated.
It is quite noteworthy how large the region of metastable-phase
growth can be. We conclude this paper with an in-depth study
of hexagonal close-packed (hcp) clusters in coexistence with the
melt, demonstrating their unusual interface structures and phase
transformations accompanied by growth-mode transitions. On
this basis, a mechanism for interface-driven metastable-phase
growth is presented.

Thermodynamic Phase Diagram
Fig. 1 shows the temperature–pressure phase diagram of the
embedded atom method (EAM) model–Cu system. The melt
line Tm(P) has been obtained from two-phase (solid–liquid)
coexistence simulations in the isobaric–isoenthalpic (NPH)
ensemble (46–49). Details are described in SI Appendix. It is
found that the equilibrium solid phase at Tm is fcc for pressures
P < 71.6 GPa, hcp in the interval 71.6<P < 85 GPa, and bcc
for P > 85 GPa. The phase diagram contains two triple points:
one at 71.6 GPa and 3,320 K, where fcc, hcp, and liquid coex-
ist, and one at 85 GPa and 3,598 K, where hcp, bcc, and liquid
coexist. A third three-phase coexistence point exists at 79.5 GPa
and 3,478 K, but it does not appear in the phase diagram shown

Fig. 1. Thermodynamic and ultrafast kinetic phase diagram. The black lines
delineate the solid–liquid and solid–solid (bcc–hcp and fcc–hcp, respectively)
coexistence curves. The colored filled circles show the temperature at which
nucleation of solid from the melt was observed in direct MD simulations.
The color indicates the dominant solid phase, with blue equal to bcc and
green equal to close packed (fcc and/or hcp). In the pressure range 40 to 70
GPa, both phases are observed. The relative green to blue content of each
symbol qualitatively depicts the prevalence of the bcc to the close-packed
phases.

in Fig. 1 because it falls inside the stability range of the hcp
phase. At this pressure, the hcp phase melts at the slightly higher
temperature of 3,487 K.

The solid–solid coexistence lines shown in Fig. 1 are drawn
via integration of their slopes, given by the Clausius–Clapeyron
relation, starting from the respective triple points. A detailed
discussion of these calculations, as well as the latent heats and
volumes of melting, is in SI Appendix.

Phase Map of Ultrarapid Solidification
In contrast to the thermodynamic melt line, which delineates
the boundary between the liquid and solid phases in the limit of
infinitely slow change of thermodynamic variables, we explore in
this section the maximal effect of kinetics, by determining the start
temperature THS for freezing with vanishing nucleation barrier.
We have measured THS(P) through nonequilibrium molecular-
dynamics (NEMD) simulations of ultrarapid cooling at a rate
of 100 K/ns (Fig. 1). We have tracked the solid-phase evolution
during these NEMD simulations using the adaptive cutoff com-
mon neighbor analysis (a-CNA) (50–52) method, which allows for
identification of the hcp, as well as the fcc and the bcc phases.
Fig. 1 depicts by color the solid phases observed at each pressure,
with blue depicting the bcc phase and green depicting the close-
packed fcc/hcp phases. At 80 GPa and above, pure bcc nucleation
is observed, and the bcc nuclei grow and dominate the simula-
tion box. Similarly, at pressures below 40 GPa, pure fcc nucleation
is observed, and the close-packed nuclei grow and dominate the
simulation box. In the pressure region between 40 and 70 GPa,
polymorphic solidification takes place in the simulations. The
difference in the observed polymorphic evolution kinetics as pres-
sure is increased from 40 to 70 GPa is quite noteworthy. At 40
GPa, small bcc as well as close-packed (fcc/hcp) nuclei are formed,
but the bcc nuclei quickly transform to close-packed phases and
vanish. At 60 GPa, pure bcc nuclei do form and grow. How-
ever, transformation to close-packed phases during growth is also
observed (Fig. 2). In this scenario, at first, small bcc nuclei form.
During their growth stage, at or near the bcc solid–liquid inter-
face, transformation to close-packed phases occurs, which starts
competing with the original bcc phase as the nucleus grows.

It should be noted that THS at all pressures is clearly outside
the region of thermodynamic stability of the bcc phase. Nev-
ertheless, at pressures 80 GPa and above, not only nucleation
occurs in the bcc phase, but the bcc nuclei grow to fill the simula-
tion box. Hence, the solidification process kinetically stabilizes
the metastable bcc phase. At pressures below 80 GPa, mixed
close-packed and bcc nucleation as well as bcc to close-packed
transformation of the growing nuclei can be observed. Hence, the
NEMD simulations provide proof for polymorphic solidification
kinetics near the triple point of the phase diagram. In the follow-
ing, we analyze the physical origin of this phenomenon and dis-
cuss the conditions for growth of macroscopic-sized metastable
bcc crystals, observable in laboratory experiments.

SCL Basins and Thermodynamics of Multiphase Metastable
Equilibria
In this section, we discuss the prevalence of solid–liquid
metastable equilibria. Multiphase simulations in the NPH
ensemble constitute an effective tool for exploring the cores of
the MSCL subspaces. Fig. 3 show examples of compact solid-
phase nuclei that coexist with the liquid in the pressure range 20
to 100 GPa. They range from single-phase bcc, fcc, or hcp clus-
ters to multiphase mixed fcc/hcp nuclei. These basins are distinct
and weakly coupled to each other. It should be noted that the
bulk bcc phase becomes thermodynamically stable above 85 GPa.
Nevertheless, bcc clusters containing at least several thousand
particles can be found stable in MD simulations with durations
in the range of 5 to 10 ns, down to 20 GPa. This indicates that
phase transformation of these clusters is clearly an activated
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Fig. 2. A snapshot of an NEMD simulation during solidification at 60 GPa.
Particles have been classified as belonging to different crystal phases via
the a-CNA method (50–52): bcc (blue), fcc (green), and hcp (red). Particles
identified as liquid have been removed.

process with a substantial barrier, which only increases with clus-
ter size since nucleation of a new solid phase involves misfit strain
that is easier to accommodate in smaller clusters interfacing
the isotropic liquid. Hence, these solid–liquid equilibria consti-
tute the core regions of their respective MSCL subspaces. It
should however be noted that most shallow SCL basins may lack
metastable subspaces. As is laid out in some detail in SI Appendix,

we have not been able to stabilize mixed bcc/close-packed
clusters in coexistence with the melt.

The study of metastable-phase cluster–liquid equilibria
(Fig. 3) reveals many surprising structural features. For instance,
in contrast to previous works in Lennard–Jones systems (29,
30, 36), where the fcc clusters were found to interface the liq-
uid through a bcc shell, negligible structural heterogeneities are
found at the solid–liquid interfaces for either fcc or bcc clusters in
this study. However, when examining the hcp clusters (Fig. 3C),
we find that the hcp-(0001) facets interface the liquid through
a shell of fcc-(111) layers. This amounts to a shift in the stack-
ing of the close-packed layers of hcp clusters, in favor of the fcc
symmetry, in the vicinity of the melt. It is shown in SI Appendix
that the energy cost associated with the change in stacking of the
solid layers is an order of magnitude smaller than the fcc–liquid
interfacial free energy. Later in this paper, we discuss a kinetic
mechanism that drives the growth of metastable–fcc phase at
(0001)-hcp–liquid interfaces at all temperatures below the fcc
melting point. This behavior is quite at odds with the other hcp–
liquid interface orientations. It lends credence to the unusual
hcp–liquid interface structure, seen in Fig. 3C, as well as the
existence of distinct MSCL basins of multiphase solid clusters
composed of mixed fcc/hcp stackings (see Fig. 3D).

We conclude this section by pointing out that the existence
of a multitude of MSCL basins demands that we quantify their
relative thermodynamic stabilities or in other words, their phase
space volumes. In the next section, we derive a rigorous and sur-
prisingly general and convenient framework for extracting free
energies of solid–liquid metastable equilibria from macroscopic
observables extracted from equilibrium two-phase simulations,
utilizing the one to one correspondence between the sizes and
the coexistence temperatures of equilibrium solid clusters in

Fig. 3. A–D show four different crystal-phase clusters that can coexist in metastable equilibria with the liquid phase. Color coding is based on phase
designation of each particle through the a-CNA method: fcc (green), bcc (blue), and hcp (red).
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the melt. It makes no assumption regarding the equilibrium
shapes of the crystalline nuclei or the complexity of their crys-
tal structures. Later in this paper, the power of this methodology
is demonstrated by applying it to computer simulations of the
fcc and the bcc-phase MSCLs of the EAM–Cu model. Con-
sequently, the relative prevalence of these phases during the
different stages of the nucleation and the growth processes is
quantified. Furthermore, the validity of several standard phe-
nomenological rules that are commonly used to analyze kinetics
of solidification in experiments is discussed.

Solid–Liquid Systems Thermodynamics. In the following, we
describe a general and convenient methodology for directly
extracting interfacial thermodynamic parameters from expecta-
tion values of macroscopic observables in computer or real-world
experiments. We start by constructing the thermodynamic poten-
tial of a two-phase solid–liquid system at equilibrium in a closed
ensemble (e.g., NPH) containing Nsys particles at overall pres-
sure P and enthalpy Hsys. We propose a subdivision of this system
into a region of bulk solid surrounded by bulk liquid and sep-
arated by an interfacial region. This system is equilibrated at
a uniform temperature T , which is controlled by the ensem-
ble enthalpy Hsys. The thermodynamic potential can thus be
written as

GSL(T ,P) = min
NS

[
NSG

b
S (T ,P) +NLG

b
L(T ,P) + γI (NS,T ,P)

]
,

[1]

where NS and NL are the numbers of the solid and the liquid
particles, respectively; Gb

S and Gb
L are the bulk single-phase solid

and liquid free energies, respectively; and γI is the interfacial
free energy integrated over the interface area. While GSL(T ,P)
is the property of a real physical system, its subdivision into parts
is not unique. It is convenient to choose the interface to be an
infinitely thin boundary with no associated volume and contain-
ing no particles. In this way, NS and NL can be determined from
the conditions

NS +NL =Nsys, [2]
NSvS(T ,P) +NLvL(T ,P) =Vsys, [3]

where vS and vL are the bulk liquid- and solid-specific volumes,
respectively, and Vsys is the system’s volume. The above equa-
tions are particularly useful for extracting the average cluster size
in MD simulations of solid–liquid equilibria, as will be described
later in this paper.

It is profitable to express the interfacial free energy γI as

γI (NS,P ,T ) = (NS)
2
3 γGT(T ,P)κ(NS,T ,P), [4]

where γGT is the interfacial free energy of a fictitious unit cluster
(i.e., one containing only one solid particle) in the so-called GT
limit and κ(NS,T ,P) is introduced to incorporate finite cluster-
size curvature effects beyond the GT approximation. In this limit,
the interfacial free energy integrated over the cluster surface
area can be expressed in spherical coordinates as

γGT(T ,P) =

∫
γ∞ (n̂(Ω);T ,P)R2(Ω;T ,P)dΩ. [5]

Above, n̂(Ω) is the crystal surface normal of the interface ele-
ment at Ω, and γ∞(n̂;T ,P) is its interfacial free energy density
if it were extended in all directions. The equilibrium shape of this
cluster Req(Ω) is obtained by minimization of Eq. 5 with respect
to R(Ω) under the constraint that the cluster volume is vS. This
is an accurate physical description of large clusters. The equilib-
rium shape in the GT limit can be solved for analytically (53),
with the Wulff construction as solution. For our purposes, the

most important feature of Eq. 5 is that its equilibrium shape is
independent of cluster size, and hence, γGT has the desirable
property that it does not explicitly depend on NS. It is important
to note that this does not require Req(Ω) to be conserved when
system is undercooled. The GT equilibrium shape can change
when γ∞ changes with temperature. Nevertheless, from varia-
tional point of view, γGT is only a function of temperature and
pressure.

In contrast, for smaller clusters, the interfacial free energy
density becomes a nonlocal functional of the crystal plane ori-
entations n̂ in the neighborhood of each surface element. In
the simplest cases, there will be functional dependence on
∇n̂ to account for cluster surface curvature. This is the ori-
gin of the curvature coefficient κ, introduced in Eq. 4, and
its explicit dependence on cluster size NS. For large clusters,
κ(NS→∞,T ,P) = 1.

The equilibrium/critical cluster size N c
S can now be obtained

by minimizing the thermodynamic potential G with respect
to NS:

N c
S (T ,P) =−2

3

Tm

∆Hm

γI
∆T

(
1 +

3

2
N c

S
∂ log κ

∂NS

)
, [6]

where ∆Hm is the latent heat and ∆T =T −Tm is the degree
of undercooling from the melting temperature Tm , and we have
used the relation

Gb
S (T ,P)−Gb

L(T ,P) =
∆Hm

Tm
∆T , [7]

which is correct to first order in expansion about Tm . Note that
Eq. 6 establishes a direct relationship between the observables
NS and ∆T through the total interfacial free energy γI and the
curvature coefficient κ. The latter can be neglected for large
clusters, as the following Taylor expansion can be made:

κ(NS� 1) = 1 +
κ(1)

(NS)
1
3

+ . . . . [8]

The above implies that ∂ log κ
∂NS

in Eq. 6 can be neglected for large
clusters. Furthermore, the combination of Eqs. 6 and 8 consti-
tutes a rigorous formalism for determination of the interfacial
free energy beyond the GT limit, incorporating the effect of
temperature and pressure as well as finite cluster sizes.

In this section, we have thus devised a general framework for
direct extraction of interfacial free energy per atom from exper-
imental measurements of a system’s volume, temperature, and
pressure by using Eqs. 2, 3, and 6. No severe assumptions or
uncontrolled approximations are made, and the framework can
be generalized to multicomponent as well as multiphase solid
nuclei. Furthermore, finite-sized curvature effects beyond the
GT limit can also be accounted for. Finally, it is worth noting
that for systems where the specific volumes of solid and liq-
uid phases are nearly indistinguishable, the condition of zero
interface volume (Eq. 3) can be replaced by a more appropri-
ate order parameter, such as energy or bond-orientational order.
Nonetheless, for most systems, the simplest order parameters for
distinguishing the solid from the liquid phase will be adequate.

Phenomenological Models. When studying rapid solidification
experiments for the purpose of identifying the conditions that
lead to kinetics-driven phase selections, in contrast to predictions
based on equilibrium thermodynamics, it is essential to have
accurate models of multiphase thermodynamics. One of the most
important developments in this regard is Turnbull’s phenomeno-
logical rule (54) for solid–liquid interfacial free energies, which
he showed to hold for a diverse collection of materials (mainly
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metals). This rule can be generalized to an exact ansatz, at least
in the GT limit, as follows:

γI = (αε−Tασ)
∆Hm

v
2/3
S

A
sphere
I . [9]

Above, Asphere
I denotes the interfacial area of an equisized spher-

ical cluster, ∆Hm is the latent heat of solidification, vS is the
specific volume of the solid at temperature T , and αε and ασ
are dimensionless quantities that incorporate all temperature
dependence as well as shape effects beyond that of a sphere. The
conventional Turnbull coefficient is α(Tm) =αε−Tmασ .

Turnbull’s remarkable rule conjectures that the solid–liquid
interfacial tension scales as the difference in heat content of the
solid and the liquid phases at the melting point. As a result,
the dimensionless Turnbull coefficient α(Tm) is expected to be
nearly independent of material chemistry. However, Turnbull
found from experimentally inferred nucleation rates that for most
metals, α(Tm)≈ 0.45, while for nonmetals, α(Tm)≈ 0.32 (54).
Furthermore, variation of about 20% was predicted theoretically
between the Turnbull coefficients of the fcc and the bcc crystal
phases based on a polytetrahedral structural model of a liquid in
contact with a rigid solid (55–57). It should be noted that extract-
ing homogeneous nucleation rates from experiments is a daunting
task, as solidification in most cases is driven by heterogeneous pro-
cesses, and error bars are usually very large. It is thus desirable to
use computer experiments to quantitatively study this conjecture.

The temperature dependence of the Turnbull coefficient, to
first order in deviation from the melting point, is determined
by the entropic contribution ασ . Nelson and Spaepen (58) have
argued that the origin of the solid–liquid interfacial tension is
mainly entropic, whereupon they proposed the so-called negen-
tropic model according to which the interfacial tension is all
entropic (i.e., αε = 0). Since γI must necessarily be positive,
this entails a negative interfacial entropy, thereof the name
negentropic. The negentropic model in combination with Turn-
bull’s rule has been widely used to analyze rapid solidification
experiments (10).

Validation by Computer Experiments. We now show that while
Turnbull coefficients α(Tm ,P) have distinct values for different

phases, such as bcc and fcc, they are nearly constant over a wide
range of pressures in a typical metal. Furthermore, by explicit cal-
culations of the interfacial energy αε, we calculate the entropic
contribution to the interfacial free energy and demonstrate the
accuracy of the negentropic model.

In order to calculate the Turnbull coefficients of the fcc and
the bcc phases, we have conducted careful calculations of fcc–
liquid and bcc–liquid equilibria in the pressure range from 60 to
100 GPa. For these studies, cubic simulation boxes, containing in
excess of 13 million atoms, have been utilized. At each pressure,
three two-phase systems at different Hsys are equilibrated for 8 ns
each using NPH MD simulations with a time step of 2 fs, and
the coexistence temperatures Tc and the systems’ volumes Vsys
are recorded. The coexistence temperatures Tc range from 30 to
60 K undercooling below Tm . The measured values of Tc and
Vsys are inserted into Eqs. 2 and 3 to obtain NS, which in turn,
is used in Eq. 6 to obtain the interfacial free energy γI (Tc ,P).
The latter is further used in Eq. 9 for evaluation of α(Tc ,P),
with A

sphere
I = (36π)1/3 (NSvS)2/3. At each pressure, the calcu-

lated α(Tc ,P) are fitted to a linear temperature dependence,
which is used to estimate α(Tm ,P).

Fig. 4A shows α(Tm) in the pressure range from 60 to 100
GPa for both the bcc and the fcc phases. To within the statisti-
cal accuracy of our calculations, α(Tm ,P) for both phases can
be considered nearly pressure independent, with αfcc(Tm ,P)≈
0.54 and αfcc(Tm ,P)≈ 0.465. While this result confirms that the
Turnbull coefficient of the fcc phase exceeds that of the bcc
phase, their ratio of about 1.16 is significantly smaller than was
found in ref. 59; Sun et al. (59) calculated the Turnbull coef-
ficients of fcc and bcc iron using different empirical potential
models and found αfcc to be in the range from 0.5 to 0.55 in
agreement with this work, but they found αbcc to be in the range
from 0.29 to 0.36, which is significantly smaller, leading to a
ratio in excess of 1.5. Our result, however, is in closer agree-
ment with the calculated relative Turnbull coefficients of the fcc
and the bcc phases according to the polytetrahedral structural
model of the liquid (55–57), as well as particle systems interact-
ing via inverse power law potentials (60, 61). We thus conclude
that the value of the Turnbull coefficient for a crystal phase
can be quite sensitive to particle interactions. Nevertheless,
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Fig. 4. (A) Calculated Turnbull coefficients for the
fcc and the bcc phases as a function of pressure.
(B) Ratio of the interfacial energy αε to the inter-
facial free energy α(Tm) of the fcc and the bcc
phases as a function of pressure. (C) Ratio of the
latent heats of the fcc and the bcc phases as a
function of pressure. (D) Comparison of two differ-
ent algorithms (gauges) for extracting cluster radii
from MD simulations. The filled circles are bcc-cluster
radii extracted from two-phase simulations at dif-
ferent temperatures and pressures ranging from
60 to 100 GPa. The open squares are fcc-cluster
radii extracted from two-phase simulations at dif-
ferent temperatures and pressures ranging from 60
to 100 GPa.
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we find the pressure dependence of the Turnbull coefficient to
be weak, in agreement with a recent study of flat fcc–liquid
interfaces (62).

It should be noted that the preferential nucleation of the bcc
phase at large undercoolings is driven by the interfacial free
energy, which depends both on the relative Turnbull coeffi-
cients as well as the relative latent heats of the bcc and the fcc
phases. The latter are shown in Fig. 4C, where it is observed
that ∆H fcc

m >∆H bcc
m . Their ratio is, however, strongly pressure

dependent. It is reduced from 1.37 at ambient pressure to 1.12
at 100 GPa. Nevertheless, at all pressures the larger latent heat
and the larger Turnbull coefficient of the fcc phase contribute to
γfcc >γbcc.

In order to discuss the temperature dependence of the Turn-
bull coefficient, we calculate the energetic contribution αε as
follows:

αε
∆Hm

v
2/3
S

A
sphere
I =Hsys−N c

S H
b
S − (N −N c

S )H b
L , [10]

where H b
S and H b

L are the bulk enthalpies of the solid and the liq-
uid phases. Fig. 4B shows the ratio αε

α(Tm )
for both the fcc and the

bcc phases in the pressure range from 60 to 100 GPa. Clearly, the
energetic part of α is very small, which validates the negentropic
model for a typical metal. Also note that the bcc–liquid inter-
facial energy is negative and smaller than the fcc–liquid energy.
The negative interfacial energy poses no conceptual problems, as
it is much smaller in magnitude than the interfacial entropy. As
a result, the interfacial free energy stays positive. It should fur-
ther be noted that a prior study of flat solid–liquid interfaces of
the Lennard–Jones system found that the entropic content of the
interfacial free energy can vary significantly between interface
orientations as well as densities (63). Hence, the validity of the
negentropic model may be system dependent and hence, should
be considered on a case by case basis.

We conclude this section by exploring different gauges for
determining the cluster size NS. We have until now only used
the zero-volume gauge, which assumes the interface is infinitely
thin. This gauge is convenient to use and applicable to any mul-
tiphase system with the coexisting phases having distinct specific
volumes. In order to reduce the statistical error, elaborate order
parameters have been devised in the literature that allow for
accurate characterization the solid region within the liquid in
two-phase systems. We have used one such method, described
previously in ref. 41, as an alternative to the zero-volume gauge
for determining NS. In this method, the phase character of each
particle is first determined by the a-CNA (50–52). Next, a coor-
dination filter based on a radial distribution function is applied
to remove atoms not belonging to the solid cluster. Finally, an
effective radius for the cluster is determined by identifying its
surface through Voronoi analysis. Fig. 4D shows the comparison
between the radii RS calculated in this way and those calculated
using the zero-volume gauge and the relation RS =

(
3
4π

NSvS
)
1/3.

The figure shows effective cluster radii extracted from a number
of two-phase simulations of bcc- and fcc-phase clusters coexist-
ing with liquid at different pressures and temperatures. Overall
agreement is quite impressive. It is, however, interesting to note
that the agreement between the two methods for the bcc clus-
ter radii is clearly better than for the fcc ones. Furthermore,
the common neighbor analysis seems to slightly underestimate
the effective radii of the fcc-phase clusters compared with the
zero-volume gauge. It is important to reiterate that the abso-
lute value of the interfacial free energy is subject to the chosen
gauge. The only gauge-invariant physical observables are the
total system’s free energy, enthalpy, temperature, pressure, and
volume. Therefore, it is important to use a consistent gauge
when, for example, comparing the free energies of fcc- and bcc-

phase nuclei coexisting with the liquid phase at a particular
temperature and pressure.

Metastable–Solid Phase Diagrams
We are now ready to develop a general strategy for predicting
kinetic stabilization of metastable crystal phases during solidi-
fication. For this purpose, we need to 1) quantify the relative
phase stabilities of critical nuclei as a function of undercooling
and 2) determine for each phase the extent of the MSCL basin
or in other words, the range of solid-phase cluster sizes that can
be considered metastable. In this way, we can predict the rate of
transition from homogeneous undercooled liquid into any partic-
ular MSCL basin as a function of undercooling. As a result, we
can identify the conditions that lead to metastable-phase growth
by recognizing that whenever solidification occurs on a timescale
shorter than the rate of transition out of an MSCL basin, the
critical nuclei that belong to this basin are likely to grow to large
sizes. To demonstrate the efficacy of this procedure, we apply it
in the following two sections to the problem of metastable bcc-
phase growth from the melt at pressures below 85 GPa, where
one of the close-packed phases (fcc or hcp) is thermodynamically
stable below the melting temperature (Fig. 1). It should be noted
that in the vicinity of the hcp–fcc thermodynamic phase bound-
ary (Fig. 1), stacking-fault free energies become so small that
solidification into pure fcc or hcp phase becomes improbable. We
conclude this paper with a discussion of intricacies arising from
unusual structural features of hcp–liquid interfaces that promote
mixed hcp/fcc-phase growth.

Solid–Nucleation-Phase Boundaries. In this section, we describe
the procedure for determining the undercooling temperature
T ∗(P), below which the nucleation rate of the metastable bcc
phase exceeds those of the fcc and the hcp phases of EAM–Cu.
Above this temperature, nucleation is dominated by the close-
packed phases (fcc, hcp, or a combination thereof) and below
it, by the bcc phase. Within the CNT, the rate of nucleation of
critical solid clusters at temperature Tc is

JS(Tc) =

√
∆G

′′
S (Tc)

2πkBTc
(N c

S (Tc))2/3
τ

vL
exp

(
−∆GS(Tc)

kBTc

)
.

[11]

Above, ∆GS is the excess free energy of a critical solid nucleus
coexisting with the melt at temperature Tc , and ∆G

′′
S is its curva-

ture with respect to cluster size fluctuations. ∆GS can be defined
in terms of the quantities in Eq. 1: ∆GS =GSL−NsysG

b
L, which

were numerically determined in previous sections. τ denotes the
rate of attachment from the liquid to a unit area of the solid
cluster, and vL is the specific volume of the liquid.

Eq. 11 allows the nucleation-phase boundary T ∗(P) to be
determined by solving two equations: J bcc

S (T ∗fcc) = J fcc
S (T ∗fcc) and

J bcc
S (T ∗hcp) = J

hcp
S (T ∗hcp). Hence, the phase boundary T ∗(P) at

any given pressure is the smaller of the two solutions T ∗fcc and
T ∗hcp of the equations

G
cp
SL(T ∗cp)−Gbcc

SL (T ∗cp) =
kBT

∗
cp

2
log

[
∆H

cp
m α

cp

∆H bcc
m αbcc

(
τ cp

τ bcc

)2]
,

[12]

where T ∗cp represents either of the two temperatures T ∗fcc or T ∗hcp.
We have solved the above equations by making two assump-
tions: 1) τ cp≈ τ bcc and 2) αhcp≈αfcc. These are both reasonable
assumptions. Assumption 1 is good since the rate of attachment
is mainly a property of the liquid. If desired, it can be calcu-
lated from size fluctuations of the critical clusters as described in
refs. 64 and 65. We have found this unnecessary in the present
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context because we have found that neglecting the right-hand
side of Eq. 12 altogether only leads to a slight rise in T ∗(P).
This increase is largest at low pressures. At 20 GPa, it amounts
to 0.7 K, while at 40 GPa, it is reduced to only 0.25 K. Assump-
tion 2 is reasonable due to the similarity of the two close-packed
phases both structurally and energetically. In the pressure range
of interest (around 70 GPa), we find that the latent heats of melt-
ing of the hcp and the fcc phases differ by only 2%, while that of
the bcc phase is 20% smaller. Furthermore, their respective equi-
librium shapes shown in Fig. 3 A and C suggest that αhcp >αfcc.
This assertion is based on two observations: 1) the equilibrium
shapes of fcc clusters in the melt are nearly spherical, from which
it can be concluded that the fcc–liquid interfacial free energy
only depends weakly on fcc crystal plane orientations, and 2) the
equilibrium shapes of hcp clusters in the melt exhibit hcp-(0001)
facets that interface the liquid through a shell of fcc-(111) layers.
This implies that the liquid–fcc interfaces are favored relative to
liquid–hcp ones and thus, have lower free energies.

Eq. 12 and its solutions are discussed in detail in SI
Appendix. The resulting phase boundary T ∗(P), separating the
temperature–pressure regions where bcc nucleation dominates
[T <T ∗(P)] from those where fcc or hcp nucleation prevails
[T >T ∗(P)], is shown in Fig. 5. At pressures P < 71.9 GPa,
T ∗(P) (green line) is the nucleation phase boundary between
the bcc and the fcc phases, and at P > 71.9 GPa (red line), it con-
stitutes the boundary between the bcc- and the hcp-phase critical
nuclei. Whenever a critical nucleus belongs to an MSCL basin, it
is expected to be long lived. It can thus grow to large sizes and
be observed during solidification and likely even after the phase
transformation has completed. In the next section, we determine
the extent of the bcc–MSCL basin upon very strong undercooling
by studying the kinetic stability of postcritical bcc nuclei.

Before ending this section, we remark on the fcc–hcp–bcc crit-
ical nucleation triple point at P = 71.9 GPa and T ∗= 3,263 K.

Fig. 5. A solidification–kinetic phase map. The top and bottom solid lines
bound the region where solidification can take place. The four lines in order
from top to bottom are 1) the thermodynamic melt line Tm, with the green
part depicting liquid/fcc-phase boundary and the red part depicting liq-
uid/hcp; 2) the boundary T∗, where the CNT rate of bcc nucleation equals
the fcc rate (green part) or the hcp rate (red part) with a critical nucleation
bcc–hcp–fcc triple point at P = 71.9 GPa and T = 3,263 K; 3) the boundary
Tu, below which the postcritical bcc nuclei become unstable and transform
to fcc (green part) and mixed fcc/hcp (brown part); and 4) the boundary THS,
below which the liquid phase becomes unstable and crystallization occurs
with vanishing nucleation barrier and thus, can be observed in MD sim-
ulations. The colors depict the observed crystal phase in the simulations:
fcc: green; mixed fcc/hcp: brown; and bcc: blue. The solid parts of the T∗

and Tu lines bound the region, where the bcc phase is nucleated inside the
bcc–MSCL subspace.

The line connecting this point in Fig. 5 to the bulk thermody-
namic fcc–hcp–liquid triple point at P = 71.6 GPa and Tm =
3,320 K is the boundary that separates the temperature–pressure
regions where nucleation (according to the CNT) is dominated
by the fcc phase from those where the hcp phase is most favored.
However, we expect kinetic factors beyond those considered
in this section to promote mixed fcc/hcp solidification at T >
T ∗(P) within at least a 10-GPa-wide pressure window about the
thermodynamic triple point at P = 71.6 GPa, due to diminish-
ing energy cost of stacking faults. At first sight, this may seem
only marginally relevant to solidification kinetics and have lit-
tle effect on the liquid–solid interfacial kinetics. However, we
will show in a later section that in regions where the CNT pre-
dicts hcp-dominated nucleation and growth, the liquid interface
with special hcp plane orientations can in fact promote fcc-phase
growth by a kinetic mechanism.

Kinetic Phase Stabilities of Postcritical Nuclei. In the previous sec-
tion, we computed the phase line T ∗(P), below which critical
nucleation is dominated by the bcc phase. In this section, we
determine the conditions for the bcc postcritical nuclei to grow to
large sizes without transforming to other solid phases. Hence, we
quantify the temperature–pressure region within which critical
nucleation occurs inside the bcc–MSCL subspace. The weak cou-
pling of the MSCL subspace to other basins guarantees growth
of postcritical nuclei without solid–solid transformation. In con-
trast, the transient regions of the SCL basins contain postcritical
clusters that may undergo structural instabilities. The extent
of the transient subspace can be studied straightforwardly via
NEMD simulations in the isobaric–isothermal (NPT) ensemble
by 1) preparing atomistic configurations of critical solid-phase
clusters embedded in the melt at different undercooling tem-
peratures, 2) initiating dynamic trajectories from these config-
urations, and 3) characterizing the evolution of their solid-phase
content as the solid clusters grow. The approach we have cho-
sen to pursue for accomplishing the above tasks is detailed in SI
Appendix. We have carefully applied this procedure to examining
the kinetic stability of postcritical bcc nuclei at pressures 20, 30,
40, and 60 GPa. Our aim has been to identify the undercooling
temperatures Tu(P), below which the growing bcc nuclei trans-
form to fcc/hcp phases. In other words, the critical nuclei smaller
than Nu do not belong to the bcc–MSCL basin, as they readily
transform to fcc/hcp when growing. The result is shown in Fig. 5,
where the Tu(P) line is green below 40 GPa and brown below
80 GPa. This coloring is intended to convey the fact that at tem-
peratures below Tu , in the green pressure region the unstable bcc
nuclei are observed to transform to close-packed structures dom-
inated by the fcc phase (SI Appendix, Fig. S9), while in the brown
region, multiphase fcc/hcp clusters are observed (SI Appendix,
Fig. S7). Of course, there is no sharp boundary between the two
regions, and the hcp content of the multiphase region rises with
increasing pressure. At 80 GPa, Tu and THS coincide, and solid-
ification at all undercoolings is found to be dominated by the bcc
phase. This has been proven by direct NEMD simulations, which
consistently show bcc nucleation and stable growth at P ≥ 80
GPa under ultrarapid cooling conditions.

It is beneficial here to discuss in some detail the physical
meaning of the temperatures Tu(P). They designate the low-
est undercooling at which all of the computationally prepared
bcc nuclei that could grow under this condition grow without
transforming to other solid phases. This does not exclude that
at lower temperatures, there may exist bcc clusters that can grow
without transformation to close-packed phases. This rather con-
servative measure of metastability is justified if we seek to predict
the conditions for experimental observations of macroscopic-
sized solid phases. For this purpose, it should be recognized
that our computer experiments are quite limited in their
representation of the perturbations that can occur in realistic
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Fig. 6. Temperature dependence of the mobility of two different hcp–liquid
planar interfaces with orientations (0001) and (1120) at pressure P = 80 GPa
and Tm = 3,497 K. The calculations are performed in periodic slab geometries,
with dimensions specified in SI Appendix. The (0001) interface kinetics is par-
titioned into three temperature regimes. 1) T < 3,489 K (green solid line with
filled circles): The liquid phase transforms to the fcc phase, which grows on the
hcp substrate. 2) 3,489≤ T ≤ 3,503 K (green dashed line with open circles): No
steady-state interface motion is observed. The hcp substrate interfaces the liq-
uid through a film of fluctuating fcc clusters. 3) T ≥ 3,503 K (red solid line with
filled circles): The hcp slab melts at steady rate.

experiments. Nevertheless, examination of the ultrarapid solid-
ification snapshot at 60 GPa, shown in Fig. 2, confirms the
formation of bcc nuclei at the start of solidification, some of
which transform to close-packed phases during early growth,
with the close-packed content increasing with time.

It is instructive to briefly discuss the states at the boundary
between the bcc–MSCL domain and the transient region. SI
Appendix, Fig. S9 shows an example of a solid critical cluster
at 30 GPa on the verge of dynamic stability. It contains about
Nu ≈ 200 particles identified by a-CNA to mainly have bcc sym-
metry. This cluster was obtained by slowly shrinking a metastable
bcc cluster in the NPH ensemble. When growing this cluster at
1,860 K in the NPT ensemble, it transitions to the fcc phase, while
at 1,863 K, it grows to large sizes as bcc. This result is repro-
ducible from different initial configurations, demonstrating the
boundary of the bcc–MSCL subspace. It should be noted that
the critical clusters at large undercoolings are far from compact
and spherical, and their kinetics cannot be described within the
CNT framework, which is better suited for the slower kinetics at
small undercoolings.

We conclude this section by pointing out that here we have
only scratched the surface of a vast phenomenology pertaining
to kinetic stability of solid clusters growing within undercooled
liquids. We have touched upon the growing bcc clusters in EAM–
Cu, which transform to fcc at large undercoolings. This instability
is conventionally expected to be due to the vibrational instability
of the bulk bcc phase under these conditions. However, we show
in SI Appendix that far from equilibrium conditions caused by
fast interface kinetics can drive solid–solid phase transformations
in growing clusters with stable bulk phonons. This mechanism
is explicitly nonequilibrium and interface driven, and it cannot
be explained by the dynamical structural properties of the bulk
crystal phase alone.

Extraneous-Phase Interface Layers: Interfacial Phase
Transformations Coupled to Growth-Mode Transitions
Hitherto in this paper, we have discussed kinetic stabilization
of metastable single-phase bcc solid at significant undercooling.
This is the expected regime based on Ostwald’s step rule, which

suggests that small solid clusters in liquid can prefer phases other
than the bulk equilibrium phase, due to their interfaces with the
melt contributing substantially to their stability. As an example,
the line representing T ∗(P) in Fig. 5 depicts the minimal under-
cooling required for nucleation of metastable–bcc phase from
the melt for the model Cu system of this study. In this analysis,
the interface assumes a passive role. As described earlier in this
paper, it suffices to consider the interface as a dividing surface
occupying no space and containing no particles, only contribut-
ing to the overall free energy of solid nuclei immersed in the
melt. This is reasonable as long as the internal structure of the
solid–liquid interface can be neglected.

However, the observation of hcp nuclei with heterogeneous
interface structures (Fig. 3C) is suggestive of the existence of
such phenomenology that cannot be explained via the above
approach. In particular, Fig. 3C shows that the (0001)-hcp planes
interface the liquid via an fcc shell. This can be rationalized by
the observation that the stacking fault free energy is an order of
magnitude smaller than the solid–liquid interfacial free energy
(SI Appendix).

The observation of a shell structure is not new. In fact, in the
earliest computational studies (29) of the Lennard–Jones system,
the fcc nuclei were found to be coated by bcc layers at their inter-
faces with the melt. To our knowledge, the ramifications of this
unusual interfacial structure for the kinetics of solidification have
not been explored in the literature. As mentioned earlier, we
have not been able to observe such bcc shell structures in any
of our systems, which suggests that the energy cost of fcc–bcc
interfaces must be relatively high in our systems. However, the
fcc shell structure at the interface of hcp-(0,001) planes with the
melt offers an opportunity to study its unusual features.

Unusual internal structures of solid–liquid interfaces in finite-
sized nuclei (e.g., Fig. 3C) inevitably bring forth the question of
whether such atomic arrangements are dependent on the interfa-
cial curvature. If so, structural transformations are to be expected
at the interfaces of the growing solid nuclei. This is undoubtably
a noteworthy phenomenon with possible deep ramifications for
crystal growth kinetics. If not the case, the shell structure should
appear even in the flat interface limit. In the following, we
present an in-depth study of this limit by two-phase simulations
of periodic slab geometries for two interface orientations, hcp-
(0,001) and hcp-(1,120), in the neighborhood of the melting
point Tm = 3,497 K at 80 GPa, where hcp is the bulk equilibrium
phase (Fig. 1). Based on our previous discussions of Fig. 3C, the
hcp-(0001) interface with the liquid should be in the fcc phase,
contrary to the hcp-(1120) interface that stays isostructural with
the bulk phase (SI Appendix, Fig. S11). A systematic study of the
dynamic properties of these solid–liquid configurations at small
undercooling and superheating reveals the remarkable result
shown in Fig. 6. It depicts the velocity of each interface as a func-
tion of temperature in the vicinity of Tm ; positive sign of the
velocity indicates growing liquid phase, and negative sign implies
solid-phase growth. In the narrow range of temperatures stud-
ied in Fig. 6, about 1% deviation from Tm , linear response is
expected. This is clearly observed for the hcp-(1120) interface
mobility in Fig. 6. Note that due to the relatively small latent
heat of the EAM–Cu system (i.e., ∆H /kBTm ≈ 1), which is typi-
cal of simple metals, the interface is atomically rough, and crystal
growth is dominated by rates of attachment and detachment of
atoms to the crystal surfaces that are controlled by liquid diffu-
sivity, often only thermal velocity, and the latent heat (66). The
available sites for attachment on the rough interfaces are large,
commonly assumed to be about 1/4 of all of the sites, so-called
repeatable step sites (67).

In contrast, the (0001) interface velocity has strongly non-
linear temperature dependence. In particular, in the interval
∆a = (3,489, 3,503) K, interface mobility vanishes on the
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Fig. 7. (A) The blue curve depicts the number of fcc particles in the sys-
tem that mainly reside near the (0001)-hcp–liquid interfaces, and the black
curve shows the interface widths Wint as a function of temperature. (B) Time
evolution of an NPT MD simulation at T = 3,505 K, initiated from an (0001)-
hcp–liquid equilibrium slab configuration at T = 3,500 K. The blue line shows
the evolution of the number of fcc particles, while the black line represents
for the same simulation the displacements of the (0001)-hcp–liquid interfaces
as a function of time, derived from the size fluctuations of the simulation box.
The symmetry character of the particles have been identified via the common-
neighbor analysis using a cut-off radius of 2.875 Å. (C) The distribution density
function D(η̇). The blue curves depict the distribution functions of the phase I
atomically rough interfaces with relatively small OPF gradients, and the black
curves show the sharp phase II interfaces with much higher OPF gradients. The
dashed lines have been obtained by averaging over the first and the last 2,000
time steps of the simulation shown in B.

simulation timescale exceeding 10 ns (dashed green line in
Fig. 6). Outside of this interval, interface motion is observed to
be normal, diffusive, and linearly changing with temperature

variations. Above 3,503 K, the hcp phase shrinks smoothly at a
speed proportional to the superheating, as shown in Fig. 6 as
well as in SI Appendix, Fig. S13. Below 3,489 K, the interface
region is solid fcc and grows steadily at a speed proportional to
the undercooling from the fcc melting point at 3,489 K (Fig. 6
and SI Appendix, Fig. S14).

Fig. 7A explains the sudden dynamical arrest of the (0001)
interface, observed at 3,503 K in Fig. 6, by invoking a first-
order structural-phase transformation at the interface. The order
parameter for this transformation is the fcc content of the inter-
face. Above 3,503 K, the concentration of the fcc particles at
the interface is dilute, which we designate as phase I. It under-
goes a discontinuous jump at 3,503 K, transitioning to phase
II, in which larger fcc clusters form and dissolve (SI Appendix,
Fig. S12). While the rate of attachment to the fcc sites on the
underlying hcp substrate is high, the clusters cannot become crit-
ical as long as the temperature is above the fcc melting point of
3,489 K. Further cooling toward the latter temperature causes
the fcc content at the interface to steadily rise. As shown in
SI Appendix, Fig. S11, the thicknesses of fcc-containing films at
the interface are smallest near the transition temperature (≈
3,503 K) and increase upon cooling. Below 3,489 K, metastable
fcc phase grows on the (0001) interface.

An important feature of first-order phase transformations is
the presence of hysteresis, which implies that metastable phases
exist in the vicinity of the transformation temperature. This is
confirmed by NPT MD simulations at T = 3,503 K, which can
equilibrate in either phase I or II depending on initiation. In con-
trast, Fig. 7B clearly demonstrates that phase II is unstable at
3,505 K. It shows the time evolution of the fcc population at the
interface in an NPT MD simulation starting from a configuration
in phase II (large fcc content) generated at 3,500 K. During the
course of the simulation, the fcc clusters dissolve, and the inter-
facial structure transforms to phase I (SI Appendix, Fig. S15).
Similarly, we find that phase I is unstable at 3,501.5 K. Hence,
the hysteresis window is at most 2 GPa.

Fig. 7B also records the motion of the interface with time.
The intimate coupling of the interfacial structure to its dynam-
ics is clearly evidenced in this figure. The fcc shell at the
interface seems to constitute a protective shield for the hcp sub-
strate, which starts dissolving at around 7,000 ps, when the fcc
population has dwindled.

In order to explain the coupling mechanism between interfa-
cial structure and its dynamics, we study the atomic roughness
of the hcp–liquid interfaces at different temperatures. It corre-
lates strongly with the width of an interface, which in turn, can be
quantified by the extent of the region, where an order parameter
field (OPF) exhibits large gradients. In the following, we outline a
rigorous method for measuring interfacial thickness from atom-
istic simulations. As a result, we prove that hcp–liquid interfaces
undergo an atomically diffuse to sharp transition concurrent with
the structural transformation from phase I to phase II. Con-
sequently, the growth mode changes abruptly from continuous
(fast) to layer by layer with high nucleation barrier.

We choose as the order parameter the fraction of the particles
in a volume element that are designated via the common-
neighbor analysis as hcp. Let η(z ) be the OPF along the hcp-
(0001) plane normal, and define the OPF gradient η̇(z ) as the
derivative of this function. It is now straightforward to define
and calculate the distribution of OPF gradients from the simula-
tions. For this purpose, it is convenient to work with normalized
OPF gradients: η̇(z ) = η̇(z )/η̇max, where η̇max = ηhcp/∆zhcp, with
ηhcp being the value of the order parameter in bulk hcp solid
and ∆zhcp being the interlayer spacing of the hcp-(0001) planes.
The physical representation of η̇max is a maximally sharp inter-
face, with a bulk solid layer next to a liquid layer with negligible
order. We can now define the distribution density function D(η̇)
in the interval 0< η̇ < 1, normalized by the relation
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∫ 1

0

D(η̇) d η̇=
Lslab

∆zhcp
, [13]

where Lslab is the length of the simulation box along the (0001)
plane normal. D(η̇) d η̇ is the number of layers with OPF gra-
dients in a d η̇ window around η̇. The hcp–liquid interface layer
thickness can now be calculated as

Wint =
1

2

∫ 1

η̇min

D(η̇) d η̇. [14]

The factor 1/2 above stems from the necessary presence of two
interfaces in any periodic supercell, and η̇min is obtained from the
equation

1

2

∫ 1

η̇min

D(η̇) η̇ d η̇= 1−
ηliq

ηhcp
. [15]

The left-hand side of the above equation integrates over all of
the intermediate layers (i.e., interfacial region) that are required
to transition from the highest order parameter value ηhcp in the
bulk solid to the lowest one in the liquid. It derives from two
considerations: 1) the interfacial region is confined to the spec-
tral domain with the highest OPF gradients, and 2) the interface
is sandwiched between the solid region with the order parameter
ηhcp and the liquid region with the order parameter ηliq. In our
systems, ηliq/ηhcp≈ 0.0004 and thus, is negligible.

The result of the above analysis is shown in Fig. 7A, where
a discontinuous drop in hcp–liquid interface thickness Wint is
observed upon phase transformation. Fig. 7C shows the density
functions D(η̇) for a few interfaces belonging to the two differ-
ent phases. It is clear that upon transformation from phase I to
phase II, the interface becomes smooth and planar and grows
layer by layer through two-dimensional nucleation with large
activation barrier so that the interfacial motion halts within the
computational time scale of this study.

We conclude this section by noting that the structural
anisotropy of the hcp phase gives rise to heterogenous growth
patterns. In particular, in the system studied here, a growing
hcp cluster always contains smooth (0001) facets, on which only
metastable fcc phase can grow (Fig. 3C). At the same time, other
hcp–liquid interface orientations behave normally and promote
the growth of the hcp phase. Hence, interfacial kinetics can drive
the growth of multiphase nuclei. This explains the prevalence of
mixed fcc–hcp clusters in the pressure range from 60 to 80 GPa
(Fig. 3D).

Discussion
In this paper, we have conducted an in-depth study of the kinetic
processes during solidification that stabilize crystal phases that
are not thermodynamically stable in the bulk. At the nucleation
stage, these phases are stabilized by their relatively low interfa-
cial free energies. Additionally, at the growth stage, the kinetic
barrier to structural transformation is high and therefore, makes
any transition to the thermodynamic ground state improbable.
This happens most prominently near the triple points of the
phase diagram. By constructing a polymorphic nucleation the-
ory from atomistic first principles and by conducting a rigorous
study of the kinetic stability of postcritical nuclei during their
growth stage, we have successfully managed to devise a rational
framework for characterizing and quantifying the conditions for
nucleation and growth of metastable crystal phases during solid-
ification. As a result, in addition to the regular thermodynamic
phase diagram, we also construct a kinetic phase diagram that
delineates the temperature–pressure regions where metastable
phases are favored to grow from the melt.

As a proof of concept, we have applied the above method-
ology to an atomistic system described by a model EAM–Cu

interatomic potential. We thus construct a metastable phase
map complementing the thermodynamic phase diagram of this
system (Fig. 5). It is quite sobering to observe the significant
extent of the metastable region. It is bounded from above by
the solid-nucleation phase boundary T ∗(P) and from below
by Tu(P), under which the growing bcc nuclei become kinet-
ically unstable. The procedure adopted in this paper assumes
near-equilibrium critical nuclei, whose thermodynamic as well
as kinetic stabilities are investigated. However, no simplifying
assumptions regarding their shapes or structures are made. No
doubt, more sophisticated studies of the nonequilibrium kinet-
ics during nucleation are necessary to determine the domain of
validity of the assumption of near-equilibrium nuclei (68).

It should be noted that kinetic phase maps are not uni-
versal. They depend on the kinetic mechanism that is being
considered. Conventionally, kinetic stabilization of metastable
phases has been discussed as a result of phase selection during
the nucleation stage described within the CNT. In this picture,
thermodynamic driving forces govern the phase of a critical
nucleus, which according to the CNT, grows to large sizes no fail.
In this way, kinetic phase diagrams can be drawn and be inter-
preted just like thermodynamic phase diagrams. In this paper,
we have generalized this idea by including kinetics in a restric-
tive way as to preserve the notion of a phase diagram. For this
purpose, we have introduced the concept of SCL basins and
their MSCL subspaces, defined as subdomains of the former that
are weakly connected to other SCL basins. Hence, nucleation
from the undercooled liquid into a particular MSCL subspace
with near certainty is guaranteed to evolve without further phase
transformations. The real power of this idea lies in the real-
ization that MSCL subspaces contain all of the large clusters
since the barrier to nucleation of solid–solid transformations only
increases with cluster size. Hence, if critical nucleation occurs
in the transient region of the SCL basin, unless kinetic instabili-
ties occur within a short time after, the nucleus inevitably grows
large enough to transition to the MSCL subspace. Hence, ther-
modynamic conditions that lead to nucleation into the MSCL
subspace can be easily identified by exclusion of all those that
lead to a finite number of clusters undergoing kinetic instabilities
amid their early growths.

While the above is quite a reasonable guiding principle for
construction of solidification–kinetic phase diagrams, it is too
restrictive and sweeps all real complexities aside by excluding
them from the MSCL subspaces. This shortcoming becomes
apparent after the growth of metastable fcc in competition with
an anisotropic crystal phase such as hcp is considered. In this
case, the solid–liquid interface cannot be treated as uniform.
Rather, there are special interfaces, whose behaviors are radi-
cally different from others. These interfaces can have complex
structures distinct from the bulk of the solid clusters and can
undergo phase transformations, which in turn, induce sharp tran-
sitions in the growth kinetics of competing crystal phases in their
neighborhoods. Due to this explicit role of interfacial structure
and dynamics, different crystal orientations may promote growth
of disparate crystal phases. As a result, the fundamental notion
of the kinetic phase boundary as an infinitely thin dividing sur-
face in analogy with the thermodynamic phase boundary must be
abandoned and generalized.

Materials and Methods
In this paper, we have presented results of a series of large-scale MD sim-
ulations using the LAMMPS code (44) and the EAM interatomic potential
for Cu metal, as constructed by Mishin et al. (45). This model represents the
bulk physical properties of Cu quite well at ambient condition. While it is not
fitted to high-pressure ab initio data, it constitutes a reasonable model for
atomic interactions in a generic close-packed metal under pressure. When not
otherwise specified, simulations were performed with a 1-fs time step. Visual-
ization and analysis of simulation snapshots were carried out using the OVITO

Sadigh et al.
Metastable–solid phase diagrams derived from polymorphic solidification kinetics

PNAS | 11 of 12
https://doi.org/10.1073/pnas.2017809118

https://doi.org/10.1073/pnas.2017809118


program package (69). Solid-phase designation of each particle has been
done via a-CNA (50–52). Particles are colored according to their phase
designation: fcc phase (green), bcc phase (blue), and the hcp phase (red).

Data Availability. All study data are included in the article and/or SI
Appendix.
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13. O. Shuleshova, W. Löser, D. Holland-Moritz, D. M. Herlach, J. Eckert, Solidification and
melting of high-temperature materials: In situ observations by synchrotron radiation.
J. Mater. Sci. 47, 4497–4513 (2012).

14. S. Klein, D. Holland-Moritz, D. M. Herlach, Crystal nucleation in undercooled liquid
zirconium. Phys. Rev. B 80, 212202 (2009).

15. P. C. Myint, J. Belof, Rapid freezing of water under dynamic compression. J. Phys.
Condens. Matter 30, 233002 (2018).

16. D. Charbonneau et al., A super-earth transiting a nearby low-mass star. Nature 462,
891–894 (2009).

17. D. H. Dolan, Y. M. Gupta, Time-dependent freezing of water under dynamic
compression. Chem. Phys. Lett. 374, 608–612 (2003).

18. D. H. Dolan, Y. M. Gupta, Nanosecond freezing of water under multiple shock wave
compression: Optical transmission and imaging measurements. J. Chem. Phys. 121,
9050–9057 (2004).

19. D. H. Dolan, M. D. Knudson, C. A. Hall, C. Deeney, A metastable limit for compressed
liquid water. Nat. Phys. 3, 339–342 (2007).

20. M. Bastea, S. Bastea, J. E. Reaugh, D. B. Reisman, Freezing kinetics in overcompressed
water. Phys. Rev. B 75, 172104 (2007).

21. S. J. P. Stafford, D. J. Chapman, S. N. Bland, D. E. Eakins, Observations on the
nucleation of ice VII in compressed water. AIP Conf. Proc. 1793, 13005 (2017).

22. A. E. Gleason et al., Compression freezing kinetics of water to ice VII. Phys. Rev. Lett.
119, 025701 (2017).

23. P. C. Myint et al., Nanosecond freezing of water at high pressures: Nucleation and
growth near the metastability limit. Phys. Rev. Lett. 121, 155701 (2018).

24. S. Alexander, J. P. McTague, Should all crystals Be bcc? Landau theory of solidification
and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978).

25. M. J. Mandell, J. P. McTague, A. Rahman, Crystal nucleation in a three-dimensional
Lennard-Jones system. II. Nucleation kinetics for 256 and 500 particles. J. Chem. Phys.
66, 3070–3075 (1977).

26. S. Nose, F. Yonezawa, Isothermal-isobaric computer simulations of melting and
crystallization of a Lennard-Jones system. J. Chem. Phys. 84, 1803–1814 (1986).

27. J. Yang, H. Gould, W. Klein, Molecular-dynamics investigation of deeply quenched
liquids. Phys. Rev. Lett. 60, 2665 (1988).

28. W. C. Swope, H. C. Andersen, 106-Particle molecular-dynamics study of homogeneous
nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042–7054 (1990).

29. P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, Numerical evidence for bcc ordering
at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

30. P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, Numerical calculation of the rate
of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem.
Phys. 104, 9932–9947 (1996).

31. G. M. Torrie, J. P. Valleau, Monte Carlo free energy estimates using non-Boltzmann
sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28,
578–581 (1974).

32. P. J. Steinhardt, D. R. Nelson, M. Ronchetti, Bond-orientational order in liquids and
glasses. Phys. Rev. B 28, 784–805 (1983).

33. J. S. van Duijneveldt, D. Frenkel, Computer simulation study of free energy barriers in
crystal nucleation. J. Chem. Phys. 96, 4655–4688 (1992).

34. Y. C. Shen, D. W. Oxtoby, Bcc symmetry in the crystal-melt interface of Lennard-Jones
fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585–3588
(1996).

35. D. Moroni, P. R. ten Wolde, P. G. Bolhuis, Interplay between structure and size in a
critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).

36. C. Desgranges, J. Delhommelle, Controlling polymorphism during the crystallization
of an atomic fluid. Phys. Rev. Lett. 98, 235502 (2007).

37. Y. Huang, J. Wang, Z. Wang, J. Li, C. Guo, Y. Guo, Y. Yang, Existence and forming
mechanism of metastable phase in crystallization. Comput. Mater. Sci. 122, 167–176
(2016).

38. B. Groh, B. Mulder, Why all crystals need not be bcc: Symmetry breaking at the liquid-
solid transition revisited. Phys. Rev. E 59, 5613–5620 (1999).

39. S. Pan, S. Feng, J. Qiao, W. Wang, J. Qin, Crystallization pathways of liquid-bcc
transition for a model iron by fast quenching. Sci. Rep. 5, 16956 (2015).

40. M. Santra, R. S. Singh, B. Bagchi, Nucleation of a stable solid from melt in the pres-
ence of multiple metastable intermediate phases: Wetting, Ostwald’s step rule, and
vanishing polymorphs. J. Phys. Chem. B 117, 13154–13163 (2013).

41. L. A. Zepeda-Ruiz, B. Sadigh, A. A. Chernov, T. Haxhimali, A. Samanta, T. Oppelstrup,
S. Hamel, L. X. Benedict, J. L. Belof, Extraction of effective solid-liquid interfacial free
energies for full 3D solid crystallites from equilibrium MD simulations. J. Chem. Phys.
147, 194704 (2017).

42. X.-M. Bai, M. Li, Calculation of solid-liquid interfacial free energy: A classical
nucleation theory based approach. J. Chem. Phys. 124, 124707 (2006).

43. J. R. Espinosa, C. Vega, C. Valeriani, E. Sanz, Seeding approach to crystal nucleation.
J. Chem. Phys. 144, 034501 (2016).

44. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput.
Phys. 117, 1–19 (1995).

45. Y. Mishin, M. J. Mehl, D. A. Papaconstantapoulos, A. F. Voter, J. Kress, Structural sta-
bility and lattice defects in copper: Ab initio, tight-binding, and embedded-atom
calculations. Phys. Rev. B 63, 224106 (2001).

46. G. J. Martyna, D. J. Tobias, M. L. Klein, Constant pressure molecular dynamics
algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

47. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular
dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

48. M. E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A. L. Jochim, G. J. Martyna, A Liouville-
operator derived measure-preserving integrator for molecular dynamics simulations in
the isothermal-isobaric ensemble. J. Phys. Math. Gen. 39, 5629–5651 (2006).

49. W. Shinoda, M. Shiga, M. Mikami, Rapid estimation of elastic constants by molecular
dynamics simulation under constant stress. Phys. Rev. B 69, 134103 (2004).

50. D. Faken, H. Jonsson, Systematic analysis of local atomic structure combined with 3D
computer graphics. Comput. Mater. Sci. 2, 279–286 (1994).

51. J. D. Honeycutt, H. C. Andersen, Molecular dynamics study of melting and freezing of
small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987).

52. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the
open visualization tool. Model. Simulat. Mater. Sci. Eng. 18, 015012 (2010).

53. L. D. Landau, E. M. Lifshitz, Statistical Physics (Butterworth-Heinemann, ed. 3, 1980),
vol. 5.

54. D. Turnbull, Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028
(1950).

55. F. Spaepen, A structural model for the solid-liquid interface in monatomic systems.
Acta Metall. 23, 729 (1975).

56. F. Spaepen, R. B. Meyer, The surface tension in a structural model for the solid-liquid
interface scripta. Met. Mater. 10, 257–263 (1976).

57. C. V. Thompson, “Crystal formation in easy glass-forming metallic alloys,” PhD thesis,
Harvard University, Cambridge, MA (1979).

58. D. R. Nelson, F. Spaepen, “Polytetrahedral order in condensed matter” in Solid State
Physics, H. Ehrenreich, D. Turnbull, Eds. (Academic Press, New York, NY, 1989), vol. 42,
1–90.

59. D. Y. Sun, M. Asta, J. J. Hoyt, M. I. Mendelev, D. J. Srolovitz, Crystal-melt interfacial
free energies in metals: Fcc versus bcc. Phys. Rev. B 69, 020102(R) (2004).

60. B. Laird, R. L. Davidchack, Direct calculation of the crystal-melt interfacial free energy
via molecular dynamics computer simulation. J. Phys. Chem. B 109, 17802–17812 (2005).

61. R. L. Davidchack, B. B. Laird, Crystal structure and interaction dependence of the
crystal-melt interfacial free energy. Phys. Rev. Lett. 94, 086102 (2005).

62. A. Samanta, J. Belof, The thermodynamics of a liquid-solid interface at extreme
conditions: A model close-packed system up to 100 GPa. J. Chem. Phys. 149, 124703 (2018).

63. B. Laird, R. L. Davidchack, Y. Yang, M. Asta, Determination of the solid-liquid inter-
facial free energy along a coexistence line by Gibbs-Cahn integration. J. Chem. Phys.
131, 114110 (2009).

64. S. Auer, D. Frenkel, Numerical prediction of absolute crystallization rates in hard-
sphere colloids. J. Chem. Phys. 120, 3015–3029 (2001).

65. E. Sanz et al., Homogeneous ice nucleation at moderate supercooling from molecular
simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013).

66. K. A. Jackson, Current concepts in crystal growth from the melt. Prog. Solid State
Chem. 4, 53–80 (1967).

67. K. A. Jackson, The interface kinetics of crystal growth processes. Interface Sci. 10,
159–169 (2002).

68. T. Kawasaki, H. Tanaka, Formation of a crystal nucleus from liquid. Proc. Natl. Acad.
Sci. U.S.A. 107, 14036–14041 (2010).

69. A. Stukowski, Structure identification methods for atomistic simulations of crystalline
materials. Model. Simulat. Mater. Sci. Eng. 20, 045021 (2012).

12 of 12 | PNAS
https://doi.org/10.1073/pnas.2017809118

Sadigh et al.
Metastable–solid phase diagrams derived from polymorphic solidification kinetics

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017809118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017809118/-/DCSupplemental
https://doi.org/10.1073/pnas.2017809118

