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Abstract The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime
stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in
operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection
in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more
realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and
4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO
event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO
event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic
sense, of the Northern Hemisphere polar stratosphere.

Plain Language Summary Atmospheric variability in the polar stratosphere, the atmospheric
layer between approximately 10 km and 50 km above the surface, strongly impacts surface climate over the
eastern United States and Eurasia. It is thought that variability in this region can be predicted up to 15 days
in advance. Here we show that knowledge of the state of convection in the tropical Pacific and Indian Ocean
can lead to enhanced predictability up to 4 weeks in advance.

1. Introduction

Variability of the Northern Hemisphere wintertime stratospheric polar vortex can influence tropospheric
weather and climate (Baldwin & Dunkerton, 1999; Limpasuvan et al., 2004; Polvani & Kushner, 2002). An
anomalously weak vortex can lead to the negative phase of the Northern Annular Mode (also known as the
Arctic Oscillation) in the weeks or months following an event (Baldwin & Dunkerton, 2001; Limpasuvan et al.,
2004; Polvani & Waugh, 2004), while an anomalously strong vortex has largely opposite impacts (Limpasuvan
et al., 2005). It is therefore important to understand the time scale over which intraseasonal variability of the
polar vortex can be predicted, in order to lead to more skillful subseasonal forecasts.

Numerical Weather Prediction (NWP) models simulate longer predictability in the stratosphere in compari-
son to that in the troposphere. For example, Jung and Leutbecher (2007) and Zhang et al. (2013) showed that
forecast skill in the NH extratropical stratosphere is roughly twice that of the troposphere for the same fore-
cast lead time. This skill is mostly linked to the ability to represent anomalies in the zonal mean circulation,
even if models are unable to skilfully forecast the planetary waves whose fluxes ultimately drive the zonal
mean circulation.

However, stratospheric predictability is lowest in the leadup to stratospheric sudden warming (SSW) events
when strong pulses of planetary wave activity impinge on the stratosphere, leading to nonlinear interactions
between waves and the mean flow that cause a reversal of the mean flow (Noguchi et al., 2016; Taguchi, 2014).
The predictability of SSW events is generally between 5 and 15 days (Tripathi et al., 2015), no better than that
of tropospheric weather systems. Tripathi et al. (2016) found that the onset of the January 2013 SSW was well
predicted for lead times of up to 10 days in initialized NWP systems, but the predictability was significantly
diminished for lead times of 15 days.

It is well known that tropical diabatic heating associated with the Madden-Julian Oscillation (MJO), the dom-
inant mode of intraseasonal variability in the tropics (Madden & Julian, 1994), excites subtropical planetary
waves via barotropic vorticity perturbations which then propagate poleward (Ferranti et al., 1990; Gill, 1980;
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Lukens et al., 2017; Seo & Son, 2012; Weare et al., 2012). These wave perturbations are known to influ-
ence northern hemispheric weather patterns in the troposphere (Cassou, 2008; Johnson & Feldstein, 2010;
L’Heureux & Higgins, 2008; Lin et al., 2009; Riddle et al., 2013; Yoo et al., 2012).

Recently, Garfinkel et al. (2012, 2014) found that this poleward propagating wave train of the MJO can prop-
agate upward into the stratosphere and modulate stratospheric temperatures. About 10 days after the MJO
passes its phase with enhanced (reduced) convection over the central Pacific (Indian) Ocean (phase 7 as
defined by Wheeler and Hendon (2004)), warm anomalies are established in the polar lower stratosphere.
This warming is driven by constructive interference between the midlatitude circulation anomaly generated
by the anomalous MJO convection and the climatological stationary wave pattern (e.g., Figures 9 and 11 of
Goss et al., 2016). In contrast, anomalous cooling occurs in the stratosphere about 10 days after MJO phase 4,
which has convective anomalies largely of opposite sign to that of phase 7. A similar response was also evi-
dent in the model experiments examined by Garfinkel et al. (2014) and by Kang and Tziperman (2017), and
in the analysis of Liu et al. (2014). Newman and Sardeshmukh (2008) also demonstrated that intraseasonal
variability in tropical heating can affect the stratospheric polar vortex.

The goal of this work is to consider whether models used in operational subseasonal forecasting can capture
this association between the MJO and stratospheric variability and to consider whether this association can
lead to enhanced predictability of stratospheric variability beyond 15 days. We demonstrate that reforecast
ensemble members which simulate deeper convection in the tropical west Pacific/maritime continent shortly
after forecast initiation also simulate a weaker vortex, and in some cases a SSW. We also show that SSW events
preceded by a MJO phase 6/7 event are more predictable than those SSW events not preceded by a MJO
phase 6/7 event.

2. Data and Methods

The association between MJO-related outgoing longwave radiation (OLR) anomalies and stratospheric vari-
ability is examined in models that have contributed to the Subseasonal to Seasonal (S2S) Prediction research
project database (Vitart et al., 2017). As the results of this study are based in large part on analyzing
intraensemble diversity, we examine models which archive at least 11 ensemble members for each refore-
cast. Three models meet these criteria—the Australian Bureau of Meteorology (BoM), the European Centre
for Medium-Range Weather Forecasts (ECMWF), and Météo-France/Centre National de Recherche Meteo-
rologiques (CNRM)—but only the first two are included as the CNRM has made available only two reforecasts
available per month and thus the temporal resolution is not sufficient to fully capture the leadup to spe-
cific SSW events. The ECMWF has made available 11 ensemble members, while BoM has made available 33
(11 from each of 3 model versions). We assume only 11 independent degrees of freedom for each BoM refore-
cast ensemble for reasons discussed in the supporting information. Note that the BoM model has a model top
at 10 hPa.

We focus on those SSW events which were preceded by a phase 6/7 of the MJO as defined by the Real-time
Multivariate (RMM) MJO index (Wheeler & Hendon, 2004). Schwartz and Garfinkel (2017) identify 12 SSW
events (out of 23 since 1979 using the definition of Butler et al. (2014)) as having been preceded by a strong
MJO phase 6 or 7. Of the 12 events identified by Schwartz and Garfinkel (2017), 11 occurred after the start
date for BoM reforecasts and 8 occurred after the start date for ECMWF reforecasts. Here we examine refore-
casts that were initialized at least 2 weeks before each of these 11 BoM cases and 8 ECMWF cases. Section 4
compares the predictability of these SSW with the 10 SSWs that have occurred after the start date for BoM
reforecasts without a preceding MJO phase 6/7 event.

For each SSW event, we go backward in time from the BoM reforecast initialized at least 2 weeks before the
SSW and identify the earliest BoM reforecast that captures qualitatively the relationship between MJO-related
tropical convection and polar stratospheric variability (i.e., integrations with a stronger MJO-related convec-
tion simulate a weaker vortex). MJO-related tropical convection is indexed by OLR in the west Pacific (120∘E to
150∘E, 0–10∘N). We elect to focus on OLR in this region as MJO-related convective anomalies are strong in this
longitude band for MJO phase 6. We focus on convection north of the equator only as we found a stronger
connection to the NH extratropical stratosphere if we limited our focus to convection north of the equator (not
shown). In addition, Schwartz and Garfinkel (2017) found that convective variability in this region precedes
tropospheric anomalies in the subpolar northwest Pacific where anomalies can efficiently lead to construc-
tive or destructive interference with the climatological planetary waves, while convective variability to the
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Table 1
Initialization Dates and Lag at Which We Examine OLR in the West Pacific for Each SSW

BoM ECMWF

SSW date Initialization date OLR lags Initialization date OLR lags

2-Jan-1985 16-Dec-1984 9 to 17

8-Dec-1987 16-Nov-1987 2 to 12

22-Feb-1989 6-Feb-1989 1 to 6

15-Dec-1998 26-Nov-1998 3 to 17 28-Nov-1998 1 to 15

25-Feb-1999 6-Feb-1999 3 to 11 4-Feb-1999 5 to 13

2-Jan-2002 11-Dec-2001 3 to 12 8-Dec-2001 10 to 25

18-Jan-2003 1-Jan-2003 9 to 14 2-Jan-2003 8 to 13

7-Jan-2004 21-Dec-2003 5 to 11 19-Dec-2003 7 to 13

22-Feb-2008 6-Feb-2008 5 to 10 6-Feb-2008 5 to 10

24-Jan-2009 6-Jan-2009 7 to 13 5-Jan-2009 8 to 14

9-Feb-2010 16-Jan-2010 4 to 15 16-Jan-2010 4 to 15

Note. ECMWF reforecasts are not available in the 1980s. For all events except the SSW
on 2 Jan 2002 we select the same calendar dates for both BoM and ECMWF. For this
event the MJO was a strong phase 6/7 (except a brief excursion to phase 8) for nearly
four consecutive weeks (Weickmann & Berry, 2007), and the apparent connection
between this stalled MJO event and the stratosphere appears to operate at different
lags between BoM and ECMWF for reasons beyond the scope of this work.

south of this region or its immediate east (i.e., where the enhanced convection during MJO phase 7 peaks)
has relatively little effect on the subpolar northwest Pacific response. Because of the peculiarities of each MJO
event and differences in the date on which each reforecast was initialized as compared to the start date for
each MJO event, we select OLR at different lags for each reforecast that match the specific MJO event, though
in many cases we shift the start or end date of the period chosen by several days in order to better capture the
connection between convective anomalies and the stratosphere. The forecast initialization date and the lags
chosen for each SSW event are listed in Table 1. We then pick the corresponding reforecast from the ECMWF.

Our next step is to examine 100 hPa heat flux area averaged from 40∘N to 80∘N for zonal wave numbers 1 and
2 lagged 6 days from the period chosen for the west Pacific OLR (e.g., if OLR is examined from day 5 to 10 of a
given reforecast, we examine heat flux from day 11 to 16)—results are similar for a lag of 5 or 7 days. Garfinkel
et al. (2014) showed that positive heat flux anomalies occur simultaneously with phase 7 in the troposphere
and in the 10 days after phase 7 in the stratosphere, motivating our choice of 6 days for our phase 6/7 com-
posite. Note that the heat flux is proportional to the vertical component of the Eliassen-Palm flux and hence
is a proxy for wave activity in the lower stratosphere and subsequent stratospheric variability (e.g., Newman
et al., 2001). Results are slightly weaker if we focus on the total heat flux (i.e., all zonal wave numbers). For some
events the heat flux window extends past the central date for the SSW, and it is well known that heat flux at
100 hPa weakens significantly following SSW events (Limpasuvan et al., 2004) due to internal stratospheric
processes (Holton & Mass, 1976). In order to maintain focus on the stratospheric evolution leading up to the
SSW, these days after the SSW central date are removed from the heat flux composite. We then consider the
polar stratospheric state from 1 day before to 1 day after the observed SSW occurred using two metrics: 70∘N
and poleward area-weighted averaged geopotential height at 10 hPa, and zonal wind at 10 hPa and 60∘N.

3. Importance of West Pacific Convection for Intraensemble Spread

We begin with a case study of the SSW event that occurred on 2 January 2002 (based on zonal wind reversal at
60∘N and 10 hPa in NCEP). This SSW was preceded by a strong MJO event that crossed from phase 5 to phase
6 on 8 December 2001 (as defined by Wheeler and Hendon (2004)) and maintained an RMM amplitude above
1.0 in phases 6 and 7, with a brief excursion to 8, until the SSW. The tropical dynamics associated with this
event, including possible causes of its prolonged period of enhanced west Pacific convection, are discussed
by Weickmann and Berry (2007). The representation of this event in reforecasts initialized on 8 December
2001 from ECMWF is shown in Figure 1. The reforecasts are composited into two groups based on OLR in the
west Pacific (120∘E to 150∘E, 0–10∘N) over day 10 to 25 of the reforecast, in which the three integrations with
the highest OLR values are composited together (green), and the three integrations with the lowest OLR are
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Figure 1. Connection between the MJO and stratospheric circulation in the ECMWF in reforecasts initialized on 8 December 2001. The reforecasts are divided
into three groups based on OLR in the west Pacific (120∘E to 150∘E, 0–10∘N) over days 10 to 25 of the reforecast. The first group is the three integrations with the
highest OLR values (green), the second group is the three integrations with the lowest OLR values (red), and all other integrations are included in the third group.
The evolution of (a) OLR in the west Pacific, (b) zonal wave number 1 + 2 heat flux area averaged from 40∘N to 80∘N, (c) zonal wind at 10 hPa, 60∘N, and (d) polar
cap height area weighted from 70∘N and poleward at 10 hPa. Black lines in Figures 1c and 1d are for the Modern-Era Retrospective Analysis for Research and
Application (MERRA) reanalysis. Individual integrations are shown with thin lines, and a thick blue line denotes the ensemble mean for all integrations initialized
on 8 December 2001. A thin vertical blue line indicates the day of the SSW using National Centers for Environmental Prediction (NCEP) data.

composited together (red). Integrations without large deviations in OLR are not included in either group, and
results are not sensitive to compositing the, for example, two or four most extreme integrations. Figure 1a
shows the composite evolution of outgoing longwave radiation (OLR) for the month after initialization for
these integrations, and the ensemble-mean evolution is shown in blue. These groups of integrations show
different upward propagating wave flux entering the stratosphere (Figure 1b), which is proportional to the
northward sensible heat flux: Heat fluxes from lag 10 to lag 25 days are larger for those integrations with
lower OLR. The enhanced wave flux modulates stratospheric winds and geopotential height approximately
5 days later. Figure 1c shows that zonal winds at 10 hPa and 60∘N are weaker (i.e., relatively easterly) in the
experiments with low OLR (enhanced convection) in the west Pacific as compared to the high OLR composite.
Similar sensitivity is also seen in Figure 1d: Polar cap heights are higher in the reforecasts with lower OLR in
the west Pacific. Two of the ensemble members simulate a SSW for an initialization date 26 days before the
actual SSW, and both of these belong to the composite of integrations with the lowest OLR (more convection)
in the west Pacific (thin red lines).

A similar analysis has been performed for the other SSW events listed in Table 1, and figures comparable to
Figure 1 but for four of these case studies (22 February 1989 and 15 December 1998 for BoM and 7 January
2004 and 9 February 2010 for ECMWF) are shown in the supporting information.

Figures 2 and 3 summarize the results across all case studies. Figure 2 suggests that the MJO can be used
to inform a probabilistic forecast of stratospheric variability. Figure 2 (top row) shows a probability distribu-
tion function (PDF) of 100 hPa heat flux lagged by 6 days constructed separately for those integrations with
enhanced and reduced convection in the west Pacific. In both models, integrations with enhanced convec-
tion are followed by enhanced heat fluxes at 100 hPa, and the difference between the two PDFs is statistically
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Figure 2. The probability distribution function of the extratropical stratospheric state following anomalous convection
in the west Pacific. A green line indicates the 3 (12) integrations with the highest OLR values in the west Pacific in
ECMWF (BoM), while a red line indicates the 3 (12) integrations with the lowest OLR values in the west Pacific in
ECMWF (BOM), for each event listed in Table 1. (top row) Midlatitude zonal wave number 1 + 2 heat flux entering
the stratosphere lagged 5 days after the convective anomalies, (middle row) zonal wind at 10 hPa, 60∘N on the 3 days
surrounding the SSW central date, and (bottom row) polar cap height area weighted from 70∘N and poleward at
10 hPa on the 3 days surrounding the SSW central date. Each panel lists the p value for the difference between the
two PDFs using a Kolmogorov-Smirnov test.

significant using a Kolmogorov-Smirnov test. Similar results are obtained for both zonal wind at 10 hPa,
60∘N (middle row) and polar cap geopotential height (bottom row), and in all cases the PDFs are signifi-
cantly different from each other. Hence, it is clear that anomalies in tropical convection lead stratospheric
variability, with integrations simulating enhanced west Pacific convection also simulating more realistic
stratospheric variability.

A second way to summarize the results across all case studies is shown in Figure 3. For each reforecast date, we
compute the correlation between OLR in the west Pacific and 100 hPa heat flux lagged 6 days across all 33 (for
BoM) or 11 integrations (for ECMWF). We display the correlation for each integration in Figure 3a. The lagged
correlations are negative for nearly all SSW events, whereby integrations with lower OLR are associated with
stronger 100 hPa midlatitude heat flux. (Note that BoM fails to capture the relationship between convection
and the very strong SSW on 24 January 2009 for a start date of 6 January. It does succeed in capturing the rela-
tionship for a start date of 11 January, though in this paper we intentionally focus on reforecasts initialized at
least 2 weeks before the SSW). While the correlations for individual SSW events are not statistically significant
likely due to the limited sample size, the correlation across all SSW events is statistically significant at the 95%
level (indicated with a large black “x” in Figure 3).

Figure 3b considers the correlation between OLR variability and zonal wind at 10 hPa, 60∘N on the 3 days
surrounding the observed SSW. As for heat flux, there is a close relationship between MJO-related convection
and stratospheric variability. Figure 3c shows that this relationship is present for polar cap geopotential height
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Figure 3. Summary of the relationship between MJO and SSW for all reforecasts considered by this paper. Correlation
across all integrations between OLR in the west Pacific and (a, b) 100 hPa zonal wave number 1 + 2 heat flux lagged
6 days; (c, d) zonal wind at 10 hPa, 60∘N on the 3 days surrounding the observed SSW; (e, f ) polar cap geopotential
height at 10 hPa. Gray shading indicates the region in which results are not statistically significant for assuming 11
independent degrees of freedom for each reforecast ensemble (as discussed in the supporting information). The black x
represents the correlation across all events.

at 10 hPa as well. Similar results are evident for the ECMWF reforecasts as well: Reforecasts in which OLR is lower
over the west Pacific subsequently simulate a weaker stratospheric vortex. While this effect is not statistically
significant for individual SSW events, it is statistically significant over the entire composite of events. The net
effect is that tropical convection leads to NH polar stratospheric variability.

4. Enhanced Predictability for SSW Preceded by a Strong MJO

Thus far we have shown that intraensemble variability in convection explains a significant fraction of the
ensemble spread in vortex state. We now consider a related question: Are SSW that were preceded by phase
6/7 of the MJO more predictable at ∼20 day leads than those SSW without any preceding MJO activity? To
answer this question, we compare predictability in the extratropical circulation for the SSW considered thus
far in BoM to extratropical variability in the BoM reforecasts for SSW events that were not preceded by a phase
6/7 MJO event (listed in Table 1 of Schwartz and Garfinkel (2017)). We only include SSW events that occurred
after 1981 (i.e., the start date for BoM reforecasts). For SSW preceded by a phase 6/7 MJO event we choose the
initialization dates listed in Table 1: The mean initialization date is 19.8 days. For SSW not preceded by a phase
6/7 MJO event, we choose reforecasts initialized 18 and 22 days before the SSW in order to focus on similar
lags, and the mean initialization date is 19.3 days.
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and Garfinkel (2017). Only SSW events which occurred after 1981 are included, which leads to 10 SSW events not
preceded by phase 6/7 of the MJO (black) and 11 SSW events preceded by phase 6/7 of the MJO (blue): (a) 500 hPa
zonal wave number 1 + 2 heat flux 6 days after initialization to 3 days before the SSW central date; (b) as in Figure 4a but
for 100 hPa wave number 1 + 2 heat flux; (c) the change in zonal wind at 10 hPa, 60∘N between the 3 days surrounding
the observed SSW and days 1 to 5 of the reforecast; (d) as in Figure 4c but for geopotential height at 10 hPa area
weighted from 70∘N and poleward. Each panel lists the p value for the difference between the two PDFs using a
Kolmogorov-Smirnov test.
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Figure 4a compares the probability distribution function of 500 hPa zonal wave number 1+2 heat flux 6 days
after initialization to 3 days before the SSW central date (results are not sensitive to the precise time period
chosen). Tropospheric planetary wave activity is significantly stronger for SSW events that were preceded
by phase 6/7 of the MJO as compared to those SSW events without phase 6/7 of the MJO. This significant
difference in tropospheric planetary waves extends into the stratosphere (Figure 4b). Figure 4c shows the PDF
of the change in zonal wind at 10 hPa, 60∘N between the 3 days surrounding the observed SSW and days 1 to
5 of the reforecast; the vortex weakens in more than 85% of the reforecasts initialized ∼20 days before SSW
events that were preceded by phase 6/7 of the MJO. In contrast, only 60% of the reforecasts of SSW without
phase 6/7 of the MJO show weakening of the vortex. Similar results are evident for polar cap geopotential
height at 10 hPa (Figure 4d). The difference in the PDFs in all four panels of Figure 4 is highly statistically
significant. Overall, SSW events that were preceded by phase 6/7 of the MJO are more predictable at ∼20 day
leads as compared to SSW events not preceded by phase 6/7 of the MJO.

5. Summary

Stratospheric variability has important implications for surface climate (Baldwin & Dunkerton, 1999;
Limpasuvan et al., 2004; Polvani & Kushner, 2002), and hence, it is crucial to understand the time scale over
which stratospheric variability can be predicted. Here we have examined whether tropical convective anoma-
lies associated with the MJO modulate stratospheric variability in operational subseasonal forecasting models,
and to consider the duration over which this association can potentially lead to enhanced predictability of
stratospheric variability at least in a probabilistic sense. For two different operational models and for nearly all
SSW events, reforecasts which maintain anomalously strong MJO-related convection simulate more realistic
stratospheric variability up to 4 weeks later. Furthermore, stratospheric variability is more predictable for SSW
events that were preceded by a phase 6/7 MJO event as compared to SSW events not preceded by a strong
MJO event.

It is interesting to note that the BoM model has a model top at 10 hPa yet is still capable of capturing the
relationship between the MJO and SSWs (as in the low-top model considered by Garfinkel et al. (2014)).
However, the BoM model struggles to capture SSW (cf. Figure 2), similar to the low-top models contributed to
the Coupled Model Intercomparison Project phase 5 (Charlton-Perez et al., 2013). Furthermore, we note that
in Figure 4, the BoM model captures weakening of the vortex over the 20 day period preceding a SSW even
for SSW events not preceded by a strong MJO, though the weakening is significantly larger for SSW that were
preceded by a strong MJO. This suggests that weakening of the stratospheric vortex may be predictable in a
probabilistic sense even without anomalous MJO conditions.

We note the caveat that while reforecasts with strong MJO-related convection simulate stratospheric variabil-
ity closer to reality, the reforecasts examined in this study generally do not simulate an SSW: Only the tail of
the probability distribution function for enhanced convection in Figure 2c extends to negative zonal wind
values at 10 hPa, 60∘N. Second, we have not yet addressed whether knowledge of a developing MJO actually
contributes skill toward forecasting a SSW, though we plan to explore this question for future work. However,
results of this work, combined with that of Garfinkel et al. (2012), Liu et al. (2014), and Garfinkel et al. (2014),
suggest the potential for predictability of SSW events at least in a probabilistic sense up to 4 weeks in advance
given that the evolution of the MJO can be predicted with some skill up to a few weeks (Marshall et al., 2016;
Vitart, 2017).
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