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ABSTRACT

Motivation: In recent years stable isotopic labeling has become
a standard approach for quantitative proteomic analyses. Among
the many available isotopic labeling strategies, metabolic labeling
is attractive for the excellent internal control it provides. However,
analysis of data from metabolic labeling experiments can be
complicated because the spacing between labeled and unlabeled
forms of each peptide depends on its sequence, and is thus variable
from analyte to analyte. As a result, one generally needs to know the
sequence of a peptide to identify its matching isotopic distributions
in an automated fashion. In some experimental situations it would
be necessary or desirable to match pairs of labeled and unlabeled
peaks from peptides of unknown sequence. This article addresses
this largely overlooked problem in the analysis of quantitative mass
spectrometry data by presenting an algorithm that not only identifies
isotopic distributions within a mass spectrum, but also annotates
matches between natural abundance light isotopic distributions
and their metabolically labeled counterparts. This algorithm is
designed in two stages: first we annotate the isotopic peaks
using a modified version of the IDM algorithm described last year;
then we use a probabilistic classifier that is supplemented by
dynamic programming to find the metabolically labeled matched
isotopic pairs. Such a method is needed for high-throughput
quantitative proteomic / metabolomic experiments measured via
mass spectrometry.
Results: The primary result of this article is that the dynamic
programming approach performs well given perfect isotopic
distribution annotations. Our algorithm achieves a true positive
rate of 99% and a false positive rate of 1% using perfect
isotopic distribution annotations. When the isotopic distributions
are annotated given ‘expert’ selected peaks, the same algorithm
gets a true positive rate of 77% and a false positive rate of 1%.
Finally, when annotating using machine selected peaks, which may
contain noise, the dynamic programming algorithm gives a true
positive rate of 36% and a false positive rate of 1%. It is important
to mention that these rates arise from the requirement of exact
annotations of both the light and heavy isotopic distributions. In
our evaluations, a match is considered ‘entirely incorrect’ if it is
missing even one peak or containing an extraneous peak. If we only
require that the ‘monoisotopic’ peaks exist within the two matched
distributions, our algorithm obtains a positive rate of 45% and a
false positive rate of 1% on the ‘machine’ selected data. Changes
to the algorithm’s scoring function and training example generation
improves our ‘monoisotopic’ peak score true positive rate to 65%
while obtaining a false positive rate of 2%. All results were obtained
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within 10-fold cross-validation of 41 mass spectra with a mass-to-
charge range of 800–4000 m/z. There are a total of 713 isotopic
distributions and 255 matched isotopic pairs that are hand-annotated
for this study.
Availability: Programs are available via http://www.cs.wisc.edu/
∼mcilwain/IDM/
Contact: mcilwain@cs.wisc.edu

1 INTRODUCTION
In recent years a variety of technological advances have fueled
the development of proteomics as an important component of
systems biology. Proteomics can be defined as the high-throughput
study of global patterns of protein expression and post-translational
modifications in biological systems. Fundamentally, proteomics
experiments involve two distinct experimental goals: identification
of peptides and proteins and comparison of their abundances
across multiple samples. In recent years the central technology
for this work has been liquid chromatography coupled with mass
spectrometry (LC-MS), which can be used to address both of these
issues. Identification of peptides via tandem mass spectrometry
has become routine thanks to a variety of algorithms that identify
peptide amino acid sequences from mass spectrometry data
(Sadygov et al., 2004).

Considerable effort has also been devoted to the development
of automated experimental strategies to extract quantitative
information from mass spectra in high-throughput proteomics and
metabolomics experiments. While a variety of approaches have been
developed, use of isotopic labeling techniques has been especially
widespread in the proteomics field (Domon and Aebersold, 2006).
Though the nature of the isotopic label differs, all isotopic labeling
approaches are intended to compare abundances of particular
analytes within pairs or sets of samples. During an experiment
these samples are each labeled, one with a ‘light’ isotope and the
other a ‘heavy’ isotope. After mixing these differentially labeled
samples, relative quantitative information is obtained by comparing
the intensity ratios between the ‘heavy’ and ‘light’ isotopic peaks of
the compound.

A wide variety of isotopic labeling strategies have been developed
that differ in the nature of the isotopic label used as well as the
way in which that label is introduced into each sample. Examples
include iTRAQ and ICAT, as well as metabolic labeling (Babnigg
and Giometti, 2003; Beynon and Pratt, 2005; Choe et al., 2005;
DeSouza et al., 2005; Flory et al., 2002; Guina et al., 2003; Gygi
et al., 1999; Han et al., 2001; Hardt et al., 2005; Krijsveld et al.,
2003; Ranish et al., 2003; Ross et al., 2004; Shiio et al., 2002,
2003; von Haller et al., 2003a,b). The iTRAQ and ICAT strategies
involve isotopically labeled reagents that are introduced chemically
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onto each molecule during sample preparation. Metabolic labeling,
however, involves replacing existing atoms with a heavy isotope in
an organism’s diet (e.g. replace all 14N’s with 15N’s) through normal
growth and development.

For those organisms that can be efficiently grown on isotopically
enriched food or media, metabolic labeling can be especially useful
because it allows samples to be combined for all stages in sample
preparation, from tissue extraction through mass spectrometric
analysis. Thus it provides internal control for all steps in the
experiment. However, analysis of metabolic labeling data can be
complicated compared to other isotopic labeling strategies. Unlike
techniques such as ICAT that typically produce a fixed mass
difference between labeled and unlabeled forms of each peptide,
the mass difference between labeled and unlabeled forms of each
peptide depends on the chemical formula of each particular peptide
and thus varies considerably from analyte to analyte. Thus, without
knowing the sequence of a peptide, it can be difficult to match its
light and heavy distributions. Ultimately, quantification of unknown
peptides in an automated fashion via metabolic labeling can be
problematic.

When applying metabolic labeling in practice, researchers have
dealt with the issue of variable spacing by first identifying peptides
based on their MS/MS sequencing patterns and later quantifying
only those peptides that were confidently identified. However, if
light and heavy pairs could be matched for unknown peptides,
this approach could be useful in multiple ways. First, if light and
heavy pairs were matched prior to MS/MS database searching, then
their spacing would provide an additional sequence constraint (i.e.
number of nitrogens) that could be used to improve the quality of
the resulting peptide identifications (Hegeman et al., 2007; Nelson
et al., 2007; Pratt et al., 2002; Snijders et al., 2005; Zhong et al.,
2004). Additionally, the ability to quantify unknown peptides via
metabolic labeling would be especially useful for instruments such
as Time of Flight (TOF)–TOF mass spectrometers that can decouple
MS and MS/MS data collection. Using these instruments, MS data
could be collected alone and analyzed to identify peptide pairs that
show significant differences in abundance. These particular pairs
could then be targeted for subsequent MS/MS sequencing, allowing
specific characterization of peptides whose abundance differs among
the two samples. For these reasons we are most interested in
developing an algorithm that can automatically identify pairs of
heavy and light distributions within metabolic labeling datasets.

We describe a method that will take an isotopic map given from
our previous algorithm (McIlwain et al., 2007) and annotate the
light–heavy matched pairs. To accomplish this, we again use a
dynamic programming approach based upon work from Craven et al.
(2000) which predicts operons within a DNA sequence from the
Escherichia coli K-12 genome. Their algorithm employs dynamic
programming, building upon using a naïve Bayes model that predicts
the probability of an operon given the data. Using expert-constructed
peak lists from the spectra, we show that the dynamic programming
map algorithm achieves a competitive true positive/false positive
rate when compared to the classifier used to score matched isotopic
distributions. We run our algorithm using peak lists annotated in
three ways: (1) the expert supplies the correct isotopic annotations,
(2) the expert supplies the correct unannotated peaks and (3) machine
selected peaks. For the last two methods, we use our isotopic
distribution annotation algorithm from last year to provide the
isotopic distribution annotations.

Our algorithm takes as input a peak list and its isotopic
distribution annotations. This allows us to try other isotopic
annotation algorithms easily. The results suggest that improving
or trying different isotope distribution annotation programs should
improve our method’s matching performance.

We show an algorithm that assumes that we only match an isotopic
distribution to the previous distribution in the list, i.e. 1-step look-
back. We then generalize our algorithm to perform n-step look-back
and show that a 3-step look-back gives the best performance. Finally,
we modify our algorithm’s example generation and scoring function
for the isotopic distribution and matched isotopic pairs to improve
our results with the ‘machine’ selected peak case.

2 APPROACH
Using probabilities from features of distributions such as isotope
probabilities, the mass-to-charge (m/z) or mass difference between
the two matched isotopic distributions, and the shapes of the two
distributions, we can construct a naïve Bayesian model, illustrated in
Figure 1, to estimate the probability that two proposed distributions
of peaks constitute a matched pair of isotopic distributions. By ‘a
matched isotopic pair’ we mean both that (1) both distributions arise
from the same molecular compound, but have a difference in their
14N/15N isotopic enrichment and (2) no other peaks from the same
compound are in the spectrum. We can estimate the parameters
(probabilities) of the naïve Bayes model using either the literature
or training data, i.e. some annotated spectra. In our work, we choose
to estimate the parameters from hand-annotated spectra.

Given a probability for each potential matched isotopic
distribution pair, we would like to map all of the annotated isotopic
distributions of a mass spectrum into their corresponding matched
pairs. We take the score of any isotopic distribution to be the log
(base 2) probability of the match to which it is mapped, and we
take the score of a map to be the sum of the match scores. We
also introduce a penalty term (γp) for not matching the isotope to a
previous one.

We now describe in detail our 1-step look-back matching
algorithm. In the dynamic programming approach, we use the
distribution probabilities from the Bayes net to calculate G(i, j),
where G(i, j) is the probability that the light isotopic distribution,
i is matched to the heavy distribution j. M(j) denotes the optimal
match map, or sequence of matched isotopic distributions up to
distribution j. For successive values of j, we calculate the states
for leaving the isotope j unmatched, or matching to the previous
isotope. In order to make sure we do not overlap matches, we need

Fig. 1. Example naïve Bayes model for estimating isotopic match
distribution probabilities.
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to keep track of the state of the previous isotope. So now MXY (j)(X =
{P,A,N},Y ={P,A}) has three possible states:

• MAA(j)—both the current and previous isotopic distributions
are available

• MPA(j)—the current distribution is unmatched, but the previous
is matched to its previous

• MNP(j)—the current is matched to the previous isotopic
distribution

So the substates are:

• A—Unmatched or Available

• N—Matched to next isotope

• P—Matched to previous isotope

The overall score for M(j) is given by the following equations:

MAA(0)=−∞, (1)

MPA(0)=−∞, (2)

MNP(0)=0, (3)

0≤γp ≤1, (4)

MAA(j)=maxX=A,P(MXA(j−1)+log2(γp)) (5)

MPA(j)=MNP +log2(γp) (6)

MNP(j)=maxX=A,P(MXA(j−1)+G(j−1, j)) (7)

For each j, we record the previous substate that the current substate
came from. At the end of the run, we calculate the state with the best
score as our ending state and now are able to recover the optimal
match map based upon the recorded substates from the MXY (j)’s.

The run-time of the algorithm is linear in the number of isotopic
distributions, n, in the spectrum. Unfortunately, there are cases where
the matches can overlap such as in Figure 2. Cases such as these
can be handled by modifying the algorithm for a 2-step or 3-step
look-back algorithm. Actually, we are able to do an n-step look
back generally by calculating the required substates and transition
equations.

For each look-back step we need to keep track of an extra previous
isotopic distribution. We also need to introduce extra substates that
signify a match between the n-th step isotopes. For example a 2-step
look back has five possible substates.

• Q—Matched to previous–previous isotope

• P—Matched to previous isotope

• A—Unmatched or Available

• N—Matched to next isotope

• M—Matched to next–next isotope

Fig. 2. Example of annotated mass spectrum. The red color corresponds to
noise peaks. The distributions of the same color are the light–heavy matched
pair.

The M for a 2-step is MXYZ , where

• X is the state of the previous–previous isotope with possible
substates are Q, P, A, N and M.

• Y is the state of the previous isotopes with possible substates
of Q, P, A and N.

• Z is the state of the current isotope with possible substates of
Q, P and N.

The valid substates are determined by enforcing these two rules:
(1) an isotopic distribution cannot be matched to two different
isotopic groups and (2) M and N are appropriately matched to Q
and P, respectively. For a 2-step algorithm this gives 11 possible
states for M: MAAA, MQAA, MPAA, MNPA, MQQA, MAQA, MQNP ,
MPNP , MANP , MMQQ and MMAQ.

Once the possible states are determined, we now generate the
allowed transitions to from one state to another to derive the M
equations. For 2-step, there are three possible options for each state,
(1) leave unmatched, (2) match to previous isotope and (3) match to
previous–previous isotope. For the initial MXYZ (0) states, we set
a value of 0 for any state that has X, Y and Z unavailable for
matching and −∞ for the rest. For the 2-step look back, the resulting
equations are:

MAAA(0)=−∞, (8)

MQAA(0)=−∞, (9)

MPAA(0)=−∞, (10)

MNPA(0)=−∞, (11)

MQQA(0)=−∞, (12)

MAQA(0)=−∞, (13)

MQNP(0)=0, (14)

MPNP(0)=0, (15)

MANP(0)=−∞, (16)

MMQQ(0)=0, (17)

MMAQ(0)=−∞, (18)

MAAA(j)=maxX=Q,P,A(MXAA(j−1)+log2(γp)) (19)

MQAA(j)=maxX=Q,A(MXQA(j−1)+log2(γp)) (20)

MPAA(j)=MNPA(j−1)+log2(γp) (21)

MNPA(j)=maxX=Q,P,A(MXNP(j−1)+log2(γp)) (22)

MQQA(j)=MMQQ(j−1)+log2(γp) (23)
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Table 1. Number of states and equations for number of look backs used in
the dynamic programming algorithm

Look back States Equations

1 3 5
2 11 21
3 49 105
4 257 599
5 1539 3831

MAQA(j)=MMAQ(j−1)+log2(γp) (24)

MQNP(j)=maxX=A,Q(MXQA(j−1)+G(j−1, j)) (25)

MPNP(j)=MNPA(j−1)+G(j−1, j) (26)

MANP(j)=MXAA(j−1)+G(j−1, j) (27)

MMQQ(j)=MMAQ(j−1)+G(j−2, j) (28)

MMAQ(j)=maxX=Q,P,A(MXAA(j−1)+G(j−2, j)) (29)

This process produces the n-step look-back dynamic programming
algorithms. Unfortunately, the number of states and equations
increase exponentially with the number of look-back steps (Table 1).
Our results show, however, that the benefits of the look back
are reduced beyond three steps. This is likely because the
separation between pairs of matching distributions is limited due
to restrictions on sizes and elemental compositions for tryptic
peptides. Furthermore, though our data come from characterization
of a complex Arabidopsis protein digest, all spectra were collected
during an extended LC-MALDI separation that greatly reduced
sample complexity in any single spectrum. At this level of
separation, the likelihood of finding more than two identifiable
isotopic distributions between a pair of heavy and light distributions
in a single spectrum is small. The optimal number of look-back steps
could vary, depending on the nature of the sample and the extent of
fractionation prior to analysis.

We now derive the time complexity and prove optimality of our
algorithm starting with the following theorem.

Theorem 1. Given a sequence of isotopic distributions, such
that no more than k−1 distributions can intervene between any
matching pair, the algorithm runs in time O(k!n) and returns an
optimal (maximum scoring) map of the spectrum into matched pairs
of distributions.

Proof. We sketch the proof here, beginning with runtime. Match
scores for all pairs of distributions within k-places of one another can
be precomputed in time O(nk) and accessed in constant time through
a hash table. The dynamic programming algorithm then proceeds by
considering progressively longer prefixes of the sequence of isotopic
distributions from 1 to n. Each time it adds a distribution, it computes
a map and a score for every possible ‘k-place ending’, that is, every
possible match status for the last k isotopic distributions in this
prefix. There are fewer than (k−1)! such endings [to be precise,
(k−1)(k−3)(k−5)]. When adding the next distribution, say m, each
possible k-place ending can arise from at most k possible k-place
endings for the map of the first m−1 distributions, via a unique
extension, or unique choice of match partner for the mth distribution.

Computing the score for any one of these extensions can be done
in constant time, given the earlier precomputation of match scores.
Therefore, adding a single distribution can be done in time O(k!), so
the entire algorithm runs in time O(k!n).

For correctness (optimality), we actually prove the following
stronger result: for each possible k-place ending of the map, the
algorithm computes the optimal map having that k-place ending. The
proof is by induction on the total number of isotopic distributions
in the spectrum. For the base case, suppose the spectrum has
at most k total isotopic distributions. The algorithm computes
the score for every possible map of up to k-distributions and
returns the maximum. For the inductive portion of the proof,
consider a spectrum having m+1 isotopic distributions. For sake
of contradiction, suppose that for some k-place ending there exists
a map with a better score than the one returned by the algorithm.
Because both maps end the same way, the better map must have
a better prefix, that is, must begin with a better map for the first
m−k distributions. But because that prefix is also consistent with
the k-place ending of the map returned by the algorithm, by the
inductive hypothesis we know this prefix was also available to the
algorithm, so it would have used this same prefix. �

2.1 Naïve Bayes model
We use a naïve Bayes model to calculate the matched isotopic pair
probabilities. The features utilized by the model encode data about
isotopic probabilities, the number of labels affected, the shapes, and
m/z differences between the monoisotopic peaks of the matched
isotopic distributions. The remainder of this section describes these
in more detail.

The naïve Bayes model assumes these features are independent of
one another given the class (true isotopic pair or not an isotopic pair).
Even when this assumption is violated, naïve Bayes models often
work better in practice than more complicated Bayesian models
because the conditional independence assumption means the model
needs to estimate fewer parameters from the data, often resulting in
better parameter estimates.

2.2 Isotopic distribution probabilities
We use the naïve Bayes classifier used previously (McIlwain et al.,
2007) to generate features that assign a probability of an isotopic
distribution to the light and heavy isotopic distributions. We also
generate a feature that is the product of these two probabilities.

2.3 Number of labels
Using the monoisotopic masses between the matched pairs, we
calculate the expected number of 15N labels using the formula:

Nlabels = (MassH −MassL)/Masslabel (30)

Where the masslabel =1.0078 in our case. We create features that are
the real value, the rounded integer value and the squared difference
between the calculated integer and real value. We also generate
features that are a ratio of these three original features over the
estimated mass. We calculate the difference between the numbers of
labels (nitrogens) determined from the previous equation versus that
of the ‘averagine’ molecule of the light mass (Senko et al., 1995).

Because our dataset is a mixture of normal peptides and their
15N isotopic labeled pairs, identifying the monoisotopic masses is
not as straightforward as it might initially seem. When peptides
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contain all atoms at their natural abundances, the monoisotopic
peak corresponds to the peak resulting from only a single isotope
from each atom. This occurs when each atom is present exclusively
in its lowest mass isotope (1H, 12C, 16O, 14N and 32S), so the
monoisotopic peak is that peak in each natural abundance envelope
with the lowest m/z value. When an 15N-label is introduced, the
situation is more complicated: 15N-labeled peptides do not contain
a true monoisotopic peak because every peak in the distribution can
result from different combinations of labeled isotopes. However, as
nearly complete 15N enrichment is reached, the isotopic envelope of
each labeled peptide assumes a similar shape to its natural abundance
counterpart, but shifted by 1 Da for each heavy isotope in the
peptide. For our purposes, we will consider the heavy monoisotopic
peak to be the peak within the labeled distribution that results
predominantly from 1H, 12C, 16O, 15N and 32S, by analogy with its
natural abundance form. Using the m/z values of these monoisotopic
peaks along with the estimated charge state, we can estimate several
features previously discussed relating to the number of labeled atoms
in the peptide sequence.

2.4 Shape probabilities features
For shape, we mean the relative intensity patterns of the peak
distributions. We use the shape classifier as in our previous work that
uses an array of weighted nearest neighbor classifiers that are trained
based upon the ratios of the peaks relative to the highest peak within
the proposed isotopic distribution. We also derive a feature that
distinguishes between the light and heavy intensity patterns using the
probability from a classifier [(Nearest neighbor, Linear and Radial
SVMs and Probabilistic Trees (J48)] that gives best area under the
precision (APR) recall curve. We realize that another shape method
that could be used is to calculate exact isotopic distributions using
a method such as Mercury using averagine molecular compounds
around the mass of the observed isotopic distribution (Rockwood
et al., 1996; Rockwood and Haimi, 2006; Senko et al., 1995). In
the future we would like to see if using the ‘averagine’ isotopic
distribution shapes as a feature in the isotopic distribution and
the matched pair annotation algorithms further improves upon our
current results (Horn et al., 2000).

2.5 Mass-to-charge and mass differences
We generate features that calculate the m/z and mass differences
between the light and heavy monoisotopic peaks. We also create
features that are the ratio of the difference over the light m/z and
mass, respectively.

2.6 Overall classification
We build a naïve Bayes classifier using these features as previously
discussed, binning features to optimize their APR curve from the
training data (Davis and Goadrich, 2006; McIlwain et al., 2007).
We also introduce two rules into the classifier that state if (1) the
calculated charge state between the two pairs are different or (2) if the
calculated number of nitrogens is below the value of a 2+0.00613∗
masslightmonoisotope or above 2+0.0256∗masslightmonoisotope, then
return a score 0.0, i.e. −∞ for log probability. These limits
are estimated from the nitrogen/mass density of a peptide of all
tryptophan (min) or all arginine (max). The log of the probability
is used for the G(i, j). Using a naïve Bayes model, we can assign
probabilities to the importance of each of these features for

determining the overall probabilities for the G(i,j) matrix. We then
can build the M(j) matrix from Equations (1–7) to yield the isotopic
distribution match map.

3 METHODS
The mass spectra used for training and testing of our algorithms were
obtained from LC-MALDI analysis of a 1:1 mixture of unlabeled and
metabolically labeled Arabidopsis proteins. Briefly, Arabidopsis seedlings
were grown in liquid culture containing either natural abundance or
15N-labeled MS salts, as described previously (Huttlin et al., 2007; Nelson
et al., 2007). Labeled and unlabeled plants were combined at a 1:1 ratio
based on plant weight at harvest, prior to subcellular fractionation and
tryptic digestion of cytosolic proteins. Peptides were separated via nano-
scale reversed phase chromatography using an Agilent 1100 nano-HPLC
and spotted onto MALDI plates (1050 spots collected over 210 min) using
an Agilent fraction collector equipped with MALDI target adapters.

Mass spectrometry analysis was performed using an Applied Biosystems
4800 TOF–TOF. Each MS spectrum was internally calibrated using a
singly charged ACTH peptide (m/z 2465.199) which was introduced into
each sample during MALDI spotting. Spectra were processed into peak
lists using those following centroiding and noise threshold parameters:
minimum signal-to-noise ratio: 5; local noise window width: 250 m/z
and minimum peak width at FWHM (bins): 2.7. Peak lists were
exported from the instrument database using the freely distributed program
T2DExtractor2.0 developed by Takis Papoulias at the University of Michigan
(www.proteomecommons.org).

Spectra were selected randomly for analysis from throughout the LC
gradient, providing spectra of varying complexity. Peaks from each spectrum
were grouped into isotopic distributions through visual inspection and
isotopic distributions from labeled and unlabeled forms of the same peptide
were matched. A total of 41 spectra containing 713 distributions and 255
pairs were used in this analysis.

We generate examples for each spectrum by matching each isotope with
every other isotope within the spectrum. This generates n(n−1)/2 examples.
Positive examples are those matched pairs that are actually matched whereas
the negative examples are the pairs that are actually unmatched. For the
expert and machine selected peak experiments (Section 1), we also perturb
the isotopic distributions as in our previous work of the actual isotopic
matches to generate examples. In this case negative examples are those that
are missing the monoisotopic peak in either isotope of the match, and the
rest as positive examples.

We build our naïve Bayes model using a training set built from the features
generated as described previously. To score the generated isotopic match
map, we use three different metrics. We call them the absolute match,
monoisotopic match, and monoisotopic fine match scores. The absolute
metric is the exact match with all of the isotopic peaks from both the light
and heavy distributions. The second metric measures whether the match
contains the correct monoisotopic peaks. The third metric requires matching
the correct monoisotopic peak and gives further credit for finding additional
peaks that belong to the matched isotopic pair. For each score, we define
the four quadrants of a contingency table, or confusion matrix. From these
confusion matrices, we can calculate performance points.

Absolute match scores: This is the most stringent score, in that it requires
that all of the peaks within the matched isotopic pairs are found and having no
extraneous peaks. We utilize an absolute score method yielding the following
counts for a confusion matrix.

• True positive—exact match appears in the map.

• True negative—mismatch does not appear in the map.

• False positive—mismatch appears within the map.

• False negative—exact match does not appear within the map.
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Table 2. Statistical results of classifier and dynamic programming
algorithms using expert annotated isotopes (see Section 3 for the distinction
between the scores)

Recall Precision F1 FPR

Absolute match
Classifier 86 ± 6 83 ± 8 84 ± 6 0.7 ± 0.3
3-Step look back 99 ± 2 83 ± 7 90 ± 4 0.7 ± 0.3

Monoisotopic match
Classifier 86 ± 6 83 ± 8 84 ± 6 0.7 ± 0.3
3-Step look back 99 ± 2 83 ± 7 90 ± 4 0.7 ± 0.3

Monoisotopic fine match
Classifier 87 ± 5 88 ± 7 87 ± 5 38 ± 19
3-Step look back 99 ± 1 86 ± 6 92 ± 4 49 ± 14

Monoisotopic match scores: The absolute score counts an isotopic matched
pair annotation wrong even if it misses one peak or includes one extraneous
peak (for example a noise peak). Nevertheless, a mostly correct match is often
very useful as feature for machine learning or in approaches to quantitative
mass spectrometry. This score provides the bare minimum requirement of
correctly matching the monoisotopic peaks of the match:

• True positive—match correctly contains the monoisotopic peaks of the
light and heavy isotopes.

• True negative—mismatch between two monoisotopic peaks not found
in the map.

• False positive—mismatch of the monoisotopic peaks of the light and
heavy between two distributions found in the map.

• False negative—actual matched monoisotopic peaks not found within
the map.

Monoisotopic fine match scores: The previous is the bare-minimum
requirement for annotation. However, we would like to give more credit
if more peaks within the paired isotopic distributions are found. Therefore,
we introduce a third metric, which gives credit per peak if it is within the
match that has the correct monoisotopic peaks found.

• True positive—peak belongs to the matched pair, and is predicted in a
distribution that has the monoisotopic peaks appropriately matched

• True negative—peak is not in a match and is not found in a matched
isotopic distribution.

• False positive—peak does not belong to an isotopic distribution and
is predicted as in a distribution or is in an isotopic distribution that is
incorrectly matched by their monoisotopic peaks.

• False negative—peak belongs to a matched isotopic pair but not found
within the map.

3.1 Training and validation
To compare the dynamic programming algorithm against the classifier, we
devise a greedy algorithm based upon the classifier probabilities. In this
algorithm, we calculate the probabilities for all possible isotopic distribution
pairs. We then iteratively annotate pairs in order of highest probability,
making sure that no isotopic distribution is assigned to more than one pair.
We also threshold the probability at which further pairs are added.

We train the classifier, perfect, expert peak-picked and machine peak-
picked algorithms using simplex with an array of values for γp (0-1.0 step
0.1). We optimize γp by maximizing the monoisotope fine match F1-score
for the training spectra. We perform 10-fold cross-validation by spectrum,
calculating the F1-score points and 95% confidence intervals for the three
metrics described previously. We train the isotopic distribution annotation
algorithm on each fold as well.

Table 3. Statistical results of classifier and dynamic programming
algorithms using expert selected peaks (see Section 3 for the distinction
between the scores)

Recall Precision F1 FPR

Absolute match
Classifier 70 ± 6 67 ± 9 68 ± 7 1 ± 0.3
3-Step look back 77 ± 5 68 ± 9 72 ± 7 1 ± 0.3

Monoisotopic match
Classifier 81 ± 5 77 ± 7 79 ± 5 0.9 ± 0.3
3-Step look back 91 ± 3 81 ± 8 86 ± 5 0.8 ± 0.3

Monoisotopic fine match
Classifier 81 ± 4 86 ± 7 83 ± 3 40 ± 17
3-Step look back 89 ± 2 86 ± 7 87 ± 4 44 ± 15

We modify the isotope distribution annotation algorithm’s generation of
the possible isotopic peak groups from an exhaustive search to look for ‘valid’
isotopic peak groups. By ‘valid’, we mean that the peaks are evenly spaced
in their m/z values (within a tolerance of 150 p.p.m.), having a calculated
charge state within 1–3 and having more than one peak.

For the expert selected peaks, we use a linear SVM to estimate the
probabilities and a search bound of 10. For the machine selected data, we use
the naïve Bayes algorithm as described in our previous paper. We also tune
the noise algorithm using simplex with a grid of initial values (noise penalty
0-1.0 step 0.1, noise threshold 0-1.0 step 0.1) and using search bounds of
8–12. We optimize monoisotope fine isotope F1-score for the training spectra.

Monoisotopic fine scores: This metric improves upon the monoisotopic
score described last year. We assign credit to a peak if it is annotated with
a distribution that contains the correct mono-isotopic peak. This is a peak-
based metric.

• True positive—peak is actually in an isotopic distribution and predicted
as in the distribution with the correct monoisotopic peak.

• True negative—peak is actually not in an isotopic distribution and not
predicted as in an isotopic distribution.

• False positive—peak is actually not in an isotopic distribution but
predicted as in an isotopic distribution.

• False negative—peak is actually in an isotopic distribution but not
predicted in an isotopic distribution or peak is in a distribution that
contains the incorrect monoisotopic peak.

4 RESULTS AND DISCUSSION
The statistical results for the expert isotope annotated, expert peak
selected and machine selected are in Tables 2–4, respectively. The
F1-scores are displayed in Figures 3–5, respectively. Looking at
the isotope annotation algorithm’s scores in Table 5, an improved
isotopic distribution map is needed in order to ensure a good match
map. We could also improve results by making the isotope match
algorithm more ‘tolerant’ of the isotope annotation algorithm’s
mistakes. We now present our changes to the algorithm that address
these issues. Recently, we have made some changes to the isotopic
match pair annotation algorithm that significantly improves upon
the F1-score for the monoisotopic match and the monoisotopic
fine match scores. This improvement as shown in Table 6 is due
to changes to our method of example generation and using a
regression function in place of the classifier for both the isotopic
group and isotopic matched pairs annotation algorithms. These
results are based upon the machine-selected peaks using the dynamic
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Table 4. Statistical results of classifier and dynamic programming
algorithms using machine selected peaks (see Section 3 for the distinction
between the scores)

Recall Precision F1 FPR

Absolute match
Classifier 35 ± 4 58 ± 8 43 ± 5 1 ± 0.4
3-Step look back 36 ± 6 59 ± 9 44 ± 6 1 ± 0.4

Monoisotopic match
Classifier 43 ± 4 72 ± 10 54 ± 5 0.7 ± 0.4
3-Step look back 45 ± 6 74 ± 10 55 ± 6 0.7 ± 0.4

Monoisotopic fine match
Classifier 43 ± 5 77 ± 8 55 ± 5 6 ± 2
3-Step look back 44 ± 6 78 ± 8 56 ± 6 6 ± 2

Table 5. Statistical results of isotope annotation algorithm using expert and
machine selected peaks [see (McIlwain et al., 2007) and Section 3.1 for the
distinction between the scores]

Recall Precision F1 FPR

Absolute isotope
Expert selected peaks 91 ± 3 98 ± 2 94 ± 2 0.4 ± 0.4
Machine selected peaks 59 ± 5 87 ± 3 70 ± 6 2 ± 0.4

Monoisotopic isotope
Expert selected peaks 99 ± 1 95 ± 3 97 ± 1 2 ± 1
Machine selected peaks 76 ± 6 72 ± 8 73 ± 6 3 ± 0.4

Monoisotopic fine isotope
Expert selected peaks 97 ± 2 100 ± 0 98 ± 1 0 ± 0
Machine selected peaks 78 ± 4 75 ± 7 76 ± 5 18 ± 3

Table 6. Statistical results of regressor and dynamic programming
algorithms using machine-selected peaks

Recall Precision F1 FPR

Absolute match
Unweighted recall 43 ± 5 49 ± 6 45 ± 4 2 ± 1
Weighted recall 50 ± 5 48 ± 7 48 ± 4 2 ± 1

Mono-isotopic Match
Unweighted recall 59 ± 6 67 ± 8 62 ± 5 1 ± 0.4
Weighted Recall 65 ± 6 63 ± 9 63 ± 5 2 ± 1

Monoisotopic fine match
Unweighted recall 73 ± 5 80 ± 7 76 ± 4 8 ± 2
Weighted recall 79 ± 5 75 ± 8 76 ± 4 12 ± 3

programming algorithm with a look back of three. We now explain
our changes to the algorithm in further detail.

In the previous paper, we generated the negative ‘near-miss’
isotopes by perturbing the isotopic distribution, and marking them
as entirely incorrect. However, these perturbed isotopic distributions
are mostly correct. To capture this information, we now use a
continuous output label (0–1), where 0 is a true negative, 1 is a
true positive and the values between are a measure of how close
the isotopic distribution is to the expert’s annotation. This score
between the actual and predicted isotopic groups is calculated using

Fig. 3. F1-scores using expert-annotated isotopes. DP-LB-X stands for the
dynamic programming algorithm with look back of X.

Fig. 4. F1-scores using expert-selected peaks.

Fig. 5. F1-scores using machine-selected peaks.

the following equation:

SI (P,T )=
{

0 if P is missing the monoisotopic peak,
2Nm(P,T )
(NP+NT ) otherwise.

(31)
Where P is the predicted isotopic distribution, T is the true isotopic
distribution, Nm is the number of matching peaks between T and P
and NP and NT are the number of peaks in P and T , respectively.
We predict this score from the features with a regression function
and replace the S(i,j) with the log score. We then use the search
algorithm for finding the all possible isotopic distributions to train
the regression function.

We utilize the same idea for the matched isotope pairs. We now
calculate a measure of how close the isotopic pair is to the expert
given annotation with the equation:

SM ((PL,PR),(TL,TR))=min(SI (PL,TL),SI (PR,TR)) (32)

So SM gives a score between the true and predicted isotopic pair
based upon the lowest SI score of the left and right isotopic
distributions. Again, we train a regression function that will predict
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this score from the features. To generate the examples for the
matched pairs, we score all valid isotopic pairs (i.e. the charge states
are equal, and the number of nitrogens are within the tolerances
as described in Section 2.1), using the possible isotopes generated
previously. The G(i,j) in the dynamic programming algorithm is
now the log of SM .

The results in Table 6 are obtained using the M5Prime regression
tree model from the Weka library (Wang and Witten, 1997; Witten
and Frank, 2000). To improve recall at the cost of precision we tune
the algorithm with a weighted F1-score:

F1w = (w2 +1)PR

P+w2R
(33)

Where w=0.125 for the weighted and w=1.0 for the unweighted
results. We also tune using the same grid of parameters without the
simplex method.

5 RELATED WORK
The Prosight PTM system is slightly related to our method
(Zamdborg et al., 2007), which makes protein and protein
modification identifications from mass spectra. We would like to
state however, that our problem is unique in that it has ‘unnatural’
isotopic distribution due to the metabolic label.

6 FUTURE WORK
As seen in Figures 3 and 4, the algorithms perform well in the
absence of noise peaks (Fig. 5). Trying a different isotopic annotation
method or improving the current one should improve our results.
Also, efforts to improve the matching algorithm’s tolerance of
isotopic annotation errors would be beneficial. Trying other types
of classifiers or regressors for estimating the score of a matched
isotopic distribution might also improve performance.

Once we have an algorithm that annotates the matched isotopic
distribution pairs accurately, we will then be able to apply it
in a number of contexts to aid in peptide identification and
quantification. Most obviously, once we can match heavy and
light isotopic distributions for unknown peptides, we will be
able to quantify changes in abundance prior to identification.
When using instruments such as TOF–TOF mass spectrometers for
which MS and MS/MS data acquisition is decoupled, we will be
able to identify differentially expressed proteins within complex
mixtures and specifically target them for subsequent identification.
This should ultimately allow much more rapid identification of
biologically interesting proteins without extensive characterization
of unchanging proteins.

When mature, our novel approach for identifying pairs of labeled
and unlabeled isotopic distributions will aid in peptide identification
as well. Once labeled and unlabeled distributions are identified, the
number of labeled atoms (nitrogens in our case) may be inferred. We
can then use this additional piece of information as another constraint
when we try to identify each peptide via conventional algorithms
such as Mascot (Perkins et al., 1999), MS-Fit (Clauser et al.,
1999), and SEQUEST (Eng et al., 1994). By allowing us to exclude
many wrong identifications on the basis of molecular formula, this
should allow us to improve the sensitivity and specificity of our
identifications. Though the advantages of sequence constraints such
as these have been demonstrated several times in the literature

(Hegeman et al., 2007; Nelson et al., 2007; Pratt et al., 2002; Snijders
et al., 2005; Zhong et al., 2004), our present work represents the first
step toward an automated algorithm that would enable application
of these constraints on a truly proteomic scale.

7 CONCLUSION
This article has presented classification and regression models for
assigning scores to potential, matched isotopic distribution pairs in
mass spectra. We showed how performance of this model can be
further improved by dynamic programming to map a spectrum into
its matched isotopes. Improving the isotope annotation method and
the tolerance of the match finding algorithm should improve our
results for finding matched pairs. Most importantly, we presented a
new problem in mass spectrometry and provide a baseline method
for analysis.
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