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Abstract

By applying a technique previously developed to study ecosystem assembly [Capitán et al., Phys. Rev. Lett. 103, 168101
(2009)] we study the evolutionary stable strategies of iterated 2|2 games. We focus on memory-one strategies, whose
probability to play a given action depends on the actions of both players in the previous time step. We find the
asymptotically stable populations resulting from all possible invasions of any known stable population. The results of this
invasion process are interpreted as transitions between different populations that occur with a certain probability. Thus the
whole process can be described as a Markov chain whose states are the different stable populations. With this approach we
are able to study the whole space of symmetric 2|2 games, characterizing the most probable results of evolution for the
different classes of games. Our analysis includes quasi-stationary mixed equilibria that are relevant as very long-lived
metastable states and is compared to the predictions of a fixation probability analysis. We confirm earlier results on the
success of the Pavlov strategy in a wide range of parameters for the iterated Prisoner’s Dilemma, but find that as the
temptation to defect grows there are many other possible successful strategies. Other regions of the diagram reflect the
equilibria structure of the underlying one-shot game, albeit often some non-expected strategies arise as well. We thus
provide a thorough analysis of iterated 2|2 games from which we are able to extract some general conclusions. Our most
relevant finding is that a great deal of the payoff parameter range can still be understood by focusing on win-stay, lose-shift
strategies, and that very ambitious ones, aspiring to obtaining always a high payoff, are never evolutionary stable.
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Introduction

Cooperation has been reported at practically every level of

biological organization [1] and, in fact, it has been argued to play

a key role in the major steps of evolution [2]. In spite of its

widespread presence, cooperation faces a central problem, namely

the vulnerability of cooperators to being exploited by selfish

partners, as realized already by Darwin [3]. The need for a

sophisticated, subtle explanation of cooperation was recognized

early on by Hamilton [4,5] and Trivers [6], who based their

theories of cooperation on genetic relatedness (kin selection) and

on the logic of repeated interactions (reciprocal altruism or direct

reciprocity), respectively. Subsequently, other theories have been

put forward as possible explanations for the appearance and

emergence of cooperation [7] with different degrees of success and

applicability.

Among the theories of cooperation, direct reciprocity has

received a lot of attention, in particular from the theoretical

viewpoint. The reason for this is twofold: on the one hand, as

Dugatkin [8] puts it, reciprocity is a type of cooperation that is far

from trivial to explain and, being such a hard challenge, it requires

more work. On the other hand, albeit rare in most other social

animals [9] including primates [10,11], reciprocity is one of the

most important forms of human cooperation [1,12], probably

since almost two million years ago [13,14], as reciprocity appears

to be an unavoidable consequence of small group size, given the

cognitive abilities of humans [15]. Thus, direct reciprocity has

been studied by many authors, starting from the original proposal

by Trivers [6], relevant contributions including Refs. [16–25].

Practically all these works deal with the Prisoner’s Dilemma [26]

as the paradigm through which the discussion takes place (for a

recent summary, see chapter 3 in [27]).

The large amount of research done on the iterated Prisoner’s

Dilemma has allowed to reach some important conclusions. Thus,

the famous computer tournaments organized by Axelrod [12]

showed that a simple strategy, tit-for-tat (TFT), in which players

started cooperating and then repeated the opponent’s previous

action, was the most successful among those submitted to play the

iterated Prisoner’s Dilemma. Subsequent works pointed out the

relevance of a less vengeful version, generous TFT [28] and,

furthermore, that TFT could be outperformed by Pavlov, a win-

stay, lose-shift type of strategy [20]. In order to systematize these

findings, it was proposed [29,30] to consider finite automata as

players. This approach was later improved upon by including

noise (errors in performing an action or in perceiving the

opponent’s action) [31,32]. The basic idea behind those studies
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is to consider all possible sets of strategies defined in terms of their

action following all possibilities of actions by the focus player and

her opponent (memory-one strategies). Noise is included by

allowing errors in the implementation of the action with a small

probability. Then, starting from a given initial population,

strategies face each other and reproduce according to their

performance, possibly with mutation. With this dynamics,

complicated (chaotic) trajectories as well as cycles involving a

number of strategies–such as AllD (always defect), GRIM (always

defect after the first defection by the opponent), TFT, Pavlov, and

others–can be observed. However, as Sigmund [27] puts it, it is

hard to sort out, among the many possible strategies, which one

would be selected by evolution; indeed, individual based

simulations display particular contingencies and few robust

predictions. On the other hand, other games can be used as

paradigms for the emergence of cooperation and, in fact, Nowak

et al. [32] considered the Hawk-Dove or Snowdrift game [33],

showing that Pavlov played an important role in it as well.

In this paper, we elaborate on the above discussed issues by

benefiting from a completely different approach, recently

developed in the context of the emergence and robustness of

ecosystems [34–36]. Roughly speaking, the idea is to look at the

stability of populations of strategies by attempting to invade them

with all the other available ones, and then repeat the procedure

with the resulting stable populations, and so on and so forth until

one has identified all the stable ‘‘ecosystems’’, i.e., all the stable

composition of populations. With this procedure, one can compute

the probabilities of transition between those stable populations and

treat the system as a Markov chain whose states are the stable

populations. Subsequently, the theory of Markov chains allows one

to identify what are the absorbing and/or recurrent sets and hence

the relevant population compositions. The advantage of this

method is that it systematically explores all possible compositions

instead of relying on random mutations to drive the evolution of

the system toward the evolutionary relevant ones. In addition, by

means of this technique, we have been able to explore not only the

Prisoner’s Dilemma game but all the possible symmetric 2|2
games, thus widening enormously our knowledge of the effects of

direct reciprocity on the different forms of possible human

interactions and social dilemmas [37].

Our results and conclusions will be presented according to the

following scheme. In ‘Methods’ we introduce our model and detail

our approach to the problem, describing in depth the procedure

we are adapting from studies of ecosystem assembly and also an

alternative analysis using fixation probabilities. We also explain

how to implement the approach in practical terms by using an

acceleration procedure, and the manner in which the relevant

results are obtained in terms of the parameters characterizing

them, the most important one being the structure of the invasion

graph in terms of absorbing and recurrent sets. Our results are

collected and explained in the ‘Results’ section, where we analyze

all the parameter space of symmetric 2|2 games, identify the

strategies appearing in the relevant equilibria and discuss the

evolutionary reasons for the composition of those equilibria.

Finally, section ‘Discussion’ concludes the paper by summarizing

our main results and their implications.

Methods

Model
We will consider well-mixed populations in which individuals

interact in pairs with a randomly chosen opponent. Whenever two

players engage in one such interaction they play an iterated two-

strategy game. Each round of this game players can choose among

two possible actions, that we generically term C (for cooperate)

and D (for defect). If a player plays C she receives R if the

opponent also plays C and S if the opponent plays D; if she plays

D instead, she receives T if the opponent plays C and P if the

opponent also plays D. The payoff obtained by each player is

added to her accumulated payoff so far, and a new round of the

game takes place with probability r.

The game thus described will last exactly n~1,2, . . . rounds

with probability rn{1(1{r), so the expected number of rounds is

E(n)~(1{r){1. On the other hand, if W (n) is the payoff

collected by a given player in round n, the expected payoff will be

W (r)~
X?
n~1

(1{r)rn{1
Xn

k~1

W (k)

~
X?
k~1

W (k)(1{r)
X?
n~k

rn{1~
X?
k~1

W (k)rk{1:

ð1Þ

Payoffs are to be compared with each other, so that rescaling them

all by the same factor is immaterial. Thus it is convenient to

introduce the expected averaged payoff dividing by E(n), i.e.,

w(r)~(1{r)W (r)~(1{r)
X?
k~1

W (k)rk{1: ð2Þ

With this definition we can even study the limit r?1{, for then,

applying a theorem of Frobenius [27],

w~ lim
r?1{

w(r)~ lim
n??

1

n

Xn

k~1

W (k) ð3Þ

coincides with the average payoff of an infinitively long run of

iterations. For simplicity we will henceforth only consider this

limit.

Without loss of generality we can set one of the entries of the

2|2 payoff matrix to 0 (setting the origin of payoffs) and another

one to 1 (scaling payoffs by one of them). A common

normalization is R~1 and P~0 [28,38]. With this choice Tw1
becomes a temptation to defect and Sv0 involves a risk in

cooperating. With the combination of this two tensions we can

parametrize different social dilemmas represented by the Harmo-

ny game (no tensions), the Stag Hunt game (risk in cooperating),

the Snowdrift or Hawk-Dove game (temptation to defect), or the

Prisoner’s Dilemma (both tensions).

Strategies
The available set of strategies for a player involved in an iterated

game is virtually infinite, so for practical purposes we must impose

strong constraints to the players’ behavior that select a finite–

hopefully small–number of strategies out of this set. In modeling

direct reciprocity memory is an important ingredient, so we will

focus on strategies that take into account the past history of the

iterated game against the same opponent. It is reasonable to

assume that players have a limited ability to remember past

actions, so we will focus on strategies that depend only on a fixed

number of past rounds. Among them, the simplest and most

studied are memory-one strategies [27]. These are the only ones

we will be dealing with in this article.

Memory-one strategies are characterized by four parameters,

namely the four probabilities of cooperating in the current round,

given that the focal player played X and the opponent played Y in

the previous round (X,Y[fC,Dg). We will denote this probabilities

Generosity Pays in Direct Reciprocity
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pR, pS , pT , and pP, where the subscripts denote the payoffs when

the pair XY is CC (R), CD (S), DC (T ), and DD (P). Each of these

probabilities is in the interval (0,1), excluding both zero and one

because some strategies having these extreme probabilities (e.g.,

TFT) are unstable against errors [20,27,32].

Memory-one strategies with error still form an infinite set of

strategies–namely the hypercube (0,1)4. Simulations, though,

indicate that interactions are dominated by extreme strategies

[20], i.e., those for which probabilities are either E or 1{E, with E
denoting the probability of making a mistake in choosing the

action (with notable exceptions like generous TFT). Accordingly

we will limit our study to only this kind of strategies, taking

E~0:01. The results did not show qualitative differences when

higher values of E were taken. Thus we are left with a set of 16
strategies, each characterized by a binary vector (bR,bS,bT ,bP) in

which bi~0 if pi~E and bi~1 if pi~1{E.

Payoff matrix
In order to obtain the 16|16 payoff matrix of this game we

need to determine the stationary probability with which the four

states (CC, CD, DC, and DD) occur. The interaction between two

players forms a four-state Markov chain whose transition

probability matrix–denoted M(s,s’)–is given by [27]

pRp’R pR(1{p’R) (1{pR)p’R (1{pR)(1{p’R)

pSp’T pS(1{p’T ) (1{pS)p’T (1{pS)(1{p’T )

pT p’S pT (1{p’S) (1{pT )p’S (1{pT )(1{p’S)

pPp’P pP(1{p’P) (1{pP)p’P (1{pP)(1{p’P)

0
BBB@

1
CCCA, ð4Þ

where s and s’ are shorthands for the four-number codes of the

strategies of the focal player and her opponent, respectively–whose

probabilities are distinguished with a prime. The steady state is

described by the left eigenvector p(s,s’)~p(s,s’)M(s,s’), in

terms of whose components the average payoff of the focal player

when confronted against her opponent will be

W (s,s’)~pR(s,s’)RzpS(s,s’)SzpT (s,s’)TzpP(s,s’)P: ð5Þ

This defines the element (s,s’) of the payoff matrix.

Invasion dynamics
We will consider that players may spontaneously change their

strategies and adopt any other one. These ‘‘mutations’’–especially

if they occur often–are a source of heterogeneity in populations. In

the limit when this mutation rate is very small any change of

strategy can be regarded as an attempt of a new strategy to invade

a resident population. Given that there are only 16 different

strategies such invasion attempts can be systematically studied

using a method recently introduced in the context of ecological

community assembly [34–36].

The idea is to construct an invasion graph as follows. We start

off from 16 homogeneous populations, each with a different

strategy. Every one of these initial states is represented with a node

of the invasion graph. Now we invade each of these homogeneous

populations with everyone of the 15 remaining strategies (invasions

are assumed to occur at a very small fraction of the total

population). The dynamics leads the system to one of the following

states: (a) back to the original homogeneous population, (b) to a

homogeneous population of the mutant strategy, or (c) to a mixed

equilibrium of both strategies. In case (a) nothing is added to the

invasion graph; in case (b) a directed link is established from the

node corresponding to the original population to the node

corresponding to the final population (the link is labeled with

the invading strategy); in case (c) a new node is added to the graph

representing the new mixed equilibrium and a labeled, directed

link goes from the original population to this new node. When

every one of the original 16 nodes has been invaded with every

one of the other 15 strategies, we focus in the added nodes (mixed

equilibria) and try to invade them with each of the remaining 14
other strategies. Again links are created from these nodes to the

nodes the invasion leads to, and new nodes are added to the graph

for every new equilibrium found after the invasion. We proceed in

this way until no new nodes can be added through invasions.

We have not specified the population dynamics yet. In principle,

given the payoff matrix (5), an imitation dynamics can be

implemented through the replicator equation [39] under the

assumption that populations are infinitely large. Nowak et al. [32]

analyzed the replicator dynamics for this kind of strategies. The

results show that, as the number of strategies in the population

increase, the probability that the population gets engaged in a

cycle or a strange attractor increases as well. Our own calculations

confirm this fact. The problem with cyclic dynamics is that orbits

are structurally unstable, and their very existence is a direct

consequence of the infinite population limit under which the

replicator dynamics makes sense. Sampling noise introduced by

small populations destroys the orbits.

For the above reason, we have chosen a discrete imitation

dynamic in a large (albeit finite) population, which we have set to

N~1000 individuals. According to this dynamics two individuals

are selected at random from the population; if DW denotes the

excess payoff obtained by the opponent compared to that of the

focal players, then the latter replaces her strategy by that of the

former with probability

p~
1

2
1z

DW

w

� �
, ð6Þ

w being the largest possible payoff difference. This probability is

1=2 if there is no payoff difference (DW~0, corresponding to

random drift) and larger (smaller) than 1=2 if DWw0 (DWv0).

There are other alternative stochastic dynamics that can be

implemented [38] and the results may depend on this specific

choice. The main reason to choose this one is that it becomes

equivalent to the replicator dynamics in the limit N??.

However, even a proportional update like this one could have

been implemented in a different way, for instance setting

p~DW=w if DWw0 and p~0 otherwise. The reason to prefer

(6) to the latter is that for DW~0 it correctly captures random

drift, and thus complies better with the behavior one observes in

real systems.

Fixation processes
A discrete dynamics like the one we are considering here always

leads to an asymptotically homogeneous population. Since only

mutations (invasions) can introduce new strategies, a homogeneous

population is always an absorbing state. Nevertheless, we are going

to consider mixed equilibria as well. The rationale for this is that

these (unarguably) metastable states have an absorption time into a

homogeneous population that grows exponentially with N, so that

the absorbing states becomes virtually unreachable. The existence

of these states can be rigorously formalized using the quasi-

stationarity concept of Markov chains [40]–although we will not

follow such a rigorous approach here, but content ourselves with a

practical implementation of it focusing on non-absorbed realiza-

tions of the process.

Generosity Pays in Direct Reciprocity
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To support our argument, let us calculate the probabilities of

the different invasions as fixation probabilities, i.e. the probability

that a single invader will eventually be imitated by all the rest of

individuals, who play the resident strategy. This probability is

given by [27,41]

Pf ix~
1

1z
PN{1

j~1 P
j
k~1 pk,k{1=pk,kz1

, ð7Þ

where pk,kz1 is the probability that an individual of the resident

strategy imitates a mutant one (birth) and pk,k{1 is the probability

that an individual of the mutant strategy imitates a resident one

(death). These probabilities are obtained from the imitation

probability (6).

An easy to obtain lower bound to the mean time to fixation is

[41]

XN{1

j~2

pj,jz1 P
j{1

k~1

pk,kz1

pk,k{1

: ð8Þ

The signature of the formation of a metastable mixed equilibrium

is that the expected time to fixation becomes extremely large, so

much that actually observing fixation in a normal realization of the

process is very unlikely. We have checked that is what happens

(with fixation times of the mutant strategy higher than 1015) in

those invasion processes for which realizations lead to a mixed

equilibrium. Therefore the invasion processes cannot be realisti-

cally studied by fixation probabilities because mixed equilibria

would be completely missed. In any event, and for the sake of

completeness, we will compare the results that come from the

study of the fixation probabilities with those which come from

simulations. This will clearly show the actual importance of

allowing mixed states in the different games.

Acceleration of simulations
The invasion process with the above described discrete

dynamics has been studied by simulations. Every invasion process

amounted to replace 1% of the resident population by individuals

with the invading strategy. For every resident population and any

invading strategy we have carried out 100 realizations of the

process. If part of these realizations ended up in a certain

equilibrium, a link was added to the graph going from the node

corresponding to the resident population to the node correspond-

ing to the new equilibrium. This link is weighted with the fraction

of the 100 realizations that led to it.

If implemented like that, the process becomes very slow when

the probability of selecting from the population two different

individuals is very small. In order to solve this problem, we have

introduced an accelerated process which avoids all steps in which

two identical individual are selected and thus the process remains

frozen. To that end, let us note that the probability that in a given

step of the Markov process an individual using strategy i is

replaced by another with strategy j=i if there are nk individuals

using strategy k in the population (k~1, . . . ,s, with s the number

of different strategies) is, according to (6),

Pr (i?j)~
1

2
1z

Wj{Wi

w

� �
ninj

N(N{1)
: ð9Þ

Therefore there will be a change in the composition of the

population with probability

Pr (Dn=0)~
Ps

i,j~1
j=i

Pr (i?j)~ 1
2N(N{1)

Ps
i,j~1
j=i

ninjz
1
w

Ps
i,j~1
j=i

(Wj{Wi)ninj

8><
>:

9>=
>;: ð10Þ

Here n~(n1, . . . ,ns) denotes the population vector and Dn its

change after one time step. But

Xs

i,j~1
j=i

(Wj{Wi)ninj~
Xs

i,j~1

(Wj{Wi)ninj~0,

and since
P

j=i nj~N{ni,

Xs

i,j~1
j=i

ninj~
Xs

i~1

ni(N{ni)~N2{
Xs

i~1

n2
i :

Therefore

Pr (Dn=0)~

N2{
P

i

n2
i

2N(N{1)
: ð11Þ

This, together with Eq. (9), yield the probability that i is replaced

by j=i in one time step conditioned on there being a change in the

composition of the population, namely

Pr (i?jDDn=0)~ 1z
Wj{Wi

w

� �
ninj

N2{
P
k

n2
k

: ð12Þ

Using this new process directly is not practical, but we can

replace it by a simpler one if we decompose

Pr (i?jDDn=0)~P(jDi)P(i), ð13Þ

where

P(i)~
ni N{nizw{1N(W{Wi)
h i

N2{
P
k

n2
k

, ð14Þ

P(jDi)~
nj 1zw{1(Wj{Wi)
h i

N{nizw{1N(W{Wi)
, if i=j,

0 if i~j,

0
B@ ð15Þ

denoting W:N{1
P

k Wknk. It is straightforward to check that

Xs

i~1

P(i)~1,
Xs

j~1

P(jDi)~1, i~1, . . . ,s,

so that P(i) and P(jDi) are genuine probabilities. The advantage of

this trick is that the accelerated process can be implemented by

selecting individuals with strategy i according to the probability

distribution P(i) and replacing their strategy with j=i according to

P(jDi).

(10)

Generosity Pays in Direct Reciprocity
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The original process can be recovered from the accelerated one

if between every two contiguous steps of the latter we insert an

exponential process with probability Pr (Dn~0) (complementary

to (11)). The life expectancy of this process is

t(n)~
Pr (Dn~0)

Pr (Dn=0)
z1~

1

Pr (Dn=0)
, ð16Þ

which is finite as long as the population is heterogeneous.

Thus, given a realization of the accelerated process in which the

sequence of compositions is fnagt
a~1, we can estimate the average

of a given observable A(n) as

SAT~t{1
Xt

a~1

A(na)t(na), t~
Xt

a~1

t(na): ð17Þ

Simulations are run until the average composition SniT remains

constant (plus or minus 10 individuals) for an average time t&106.

Markov chain for the invasion graph
The resulting invasion graph for a given pair of values (S,T) has

an associated Markov chain. If qij denotes the fraction of invasions

that lead the resident community of node i to the new community

j=i and j(%1) denotes the invasion (or mutation) rate, then

matrix P~IzjQ, where the diagonal of Q~(qij) is defined so

that
P

j qij~0, is the transition probability matrix of the Markov

chain associated to the invasion graph.

From the theory of Markov chains we know that a permutation

of indexes yields the form [41]

~QQ~
U 0

W V

� �
, U~

U1 0 � � � 0

0 U2 � � � 0

..

. ..
.

P
..
.

0 0 � � � Ur

0
BBBB@

1
CCCCA, ð18Þ

for matrix Q. The set of nodes (denoted T ) corresponding to sub-

matrix V are transient nodes; the remaining ones are recurrent

nodes. The latter are subsequently divided into independent

disjoint sets, each of which is formed by the nodes involved in each

one of the matrices Um, m~1, . . . ,r (denote with Rm the

corresponding set).

The probability aim that the Markov chain ultimately enters the

set Rm if it started off from node i[T is determined as

aim~
X
j[T

Vijajmz
X
j[Rm

Wij : ð19Þ

Defining matrices A:(aim) and Z:(
P

j[m Wij), this equation can

be written as

A~(I{V ){1Z: ð20Þ

The value

Figure 1. Composition of the recurrent sets for each studied game. The centers of the squares correspond to the pairs (S,T) that define
those games. Each strategy is assigned a different color (color code in the separate column on the right). Within each square there may be one or
more pie charts. Each of them represents a different recurrent set. The sizes of the pies are proportional to the average probabilities of reaching them
from the transient states (�aam). Pie sectors separated with thick lines correspond to different nodes of the recurrent set. Their sizes are proportional to
their probabilities in the stationary state (given by the components of the vectors sm). If a sector is of one color it means that the node corresponds a
pure strategy; if it is subdivided in smaller sectors with different colors it means that the node corresponds to a mixed strategy, the different colors
representing the coexisting strategies. The sizes of these sub-sectors are proportional to their fraction within the mixed strategy.
doi:10.1371/journal.pone.0035135.g001

Generosity Pays in Direct Reciprocity

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e35135



�aam~
1

DT D

X
i[T

aim ð21Þ

is the average of these probabilities over all transient nodes.

On the other hand, if the Markov chain ends up in set Rm, the

asymptotic probability distribution it reaches on the nodes ofRm is

given by the vector sm, determined as smUm~0.

Results

Quasi-stationary invasion process
Following the construction of our model and the corresponding

approach to find all its quasi-stationary configurations (as discussed

in ‘Methods’) we have studied by simulation the whole parameter

space of symmetric 2|2 games as given by representative points

for different regions. For each pair of values for the payoffs S and

T , we will describe the asymptotic behavior of the population by

giving the probabilities with which the different nodes of the

recurrent set m are visited, sm, as well as the probabilities (if there is

more than one recurrent set) �aam to reach each of them. These data

are summarized in a pictorial way in Fig. 1. For those readers

interested in the quantitative composition of the equilibria and

detailed listing of all the strategies present, we have collected all the

information as tables, one for each one of the four quadrants of the

(S,T) plane, available in Tables 1–4.

Figure 1 represents the asymptotic states of the invasion process

with pie charts. There is one such diagram for every recurrent set

of the Markov chain of the invasion process, and their respective

sizes are proportional to the probabilities of ending up in each of

them. If a recurrent set is made of different states, each one is

assigned a sector of the pie, with an angle proportional to the

stationary probability of the Markov chain. Colors code for

strategies. If a state corresponds to a homogeneous population

(hence a true stationary state of an invasion process) then its sector

will have the color that corresponds to its strategy. If the state is a

mixed equilibrium (hence a quasi-stationary, or metastable, state

of an invasion process) then the sector is subdivided in colored sub-

sectors, each of a size proportional to the population share that the

corresponding strategy has.

At first glance, Fig. 1 seems very complicated, but after a more

careful study patterns begin to appear, corresponding to the

different types of games and a few additional, well defined

parameter regions that we will introduce below. To interpret it

and understand the origin of the results, it is important to identify

the four main classes of games: beginning with the upper left

corner and proceeding in clockwise order, the four quadrants (we

will call them quadrants even if the T axis is centered around

T~1 and not T~0) correspond to Harmony, Snowdrift,

Prisoner’s Dilemma and Stag Hunt. On the other hand, previous

works pointed out the importance of the WSLS strategies [31,32].

These strategies are defined in the following way: an individual

Table 1. Recurrent sets found in the Snowdrift game quadrant.

S T strategies in recurrent set sm �aam

0:25 1:25 1001 1 1

0:5 1:5 1001 1 0.70

1001 1 0.30

0:5 2:0 (0:13)0010 (0:22)0011 (0:65)1011 1 1

0:5 2:5 (0:19)0010 (0:27)0011 (0:54)1011 1 1

0:75 1:75 (0:88)0100 (0:12)0101 1 0.57

(0:13)0010 (0:21)0011 (0:63)1011 1 0.43

1:0 2:0 (0:80)0100 (0:20)0101 1 0.69

(0:18)0010 (0:27)0011 (0:55)1011 1 0.31

1:0 1:5 (0:62)0100 (0:38)0101 0.58 0.73

(0:55)0100 (0:33)0101 (0:12)1101 0.40

(0:58)0100 (0:35)0101 (0:07)1111 0.02

(0:13)0010 (0:21)0011 (0:67)1011 1 0.27

1:25 1:75 (0:49)0100 (0:33)0101 (0:18)1101 1 0.80

(0:18)0010 (0:27)0011 (0:55)1011 1 0.20

1:5 2:5 (0:71)0100 (0:29)0101 0.99 0.74

(0:67)0100 (0:27)0101 (0:66)1101 0.01

(0:23)0010 (0:30)0011 (0:47)1011 1 0.26

1:5 1:5 (0:18)0100 (0:26)0101 (0:56)1101 1 0.72

(0:18)0010 (0:26)0011 (0:56)1011 1 0.22

(0:21)0111 (0:46)1011 (0:33)1110 1 0.06

1:75 1:25 1101 1 0.73

(0:17)0010 (0:26)0011 (0:57)1011 1 0.27

Recurrent sets found for every pair (S,T) in the Snowdrift game quadrant (Sw0, Tw1). Different boxes for the same pair of S,T values denote different recurrent sets.
The four digits denote the strategies present in the corresponding set. The notation (x)a (y)b . . . denotes mixed equilibria in which strategies a,b, . . . enter with fractions
x,y, . . . respectively. For each strategy the probability to find it in the recurrent set is given in column sm . Also listed is the average probability with which the different
recurrent sets are reached (column �aam).
doi:10.1371/journal.pone.0035135.t001
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who follows a WSLS strategy opts by the same action that carried

out in the previous round if and only if she obtained a payoff

higher than her aspiration level. Since there are four possible

payoffs, there are three possible aspiration levels (disregarding

aspirations levels higher than the highest or lower than the lowest

possible payoffs). A consequence of the changes in the ordering of

payoffs in different regions of the diagram is that the strategies

belonging to the WSLS category change along the diagram. In

order to make it easier for the reader to follow our discussion, we

have included an additional plot, Fig. 2, where we summarize the

payoffs and WSLS strategies sorted by aspiration level for every

parameter region we are studying. Following [32], we will call

ambitious the WSLS strategy that is only happy with the highest

possible payoff, balanced the one that is content with the two highest

ones, and modest the strategy that only intends to avoid the lowest

possible payoff. As an example, for the typical region of the

Prisoner’s Dilemma (1ƒTƒ2, {1ƒSƒ0) 0001 is ambitious,

1001 is balanced (this is the original Pavlov strategy as identified in

[31]) and 1000 is modest.

A striking feature of Fig. 1 worth mentioning is the existence of

games with more than one recurrent set. The meaning of this is

that the end state for these games is contingent on the initial state

of the population and the particular history of invasions that has

occurred. The relative probabilities of reaching one or another of

these recurrent sets reflect the number of histories that end up in

each of them. But no matter how small this probability is, once the

population reaches one of these end states, it is uninvadable.

Let us begin the presentation of our results by the region

SzTv2 of the (S,T) plane, i.e., the part of the diagram below

the dot-dashed line in Fig. 1. Generally speaking, except for very

high temptation values in the Prisoner’s Dilemma quadrant, in this

region we only find recurrent sets consisting of a single type of

strategy (except for the game with S~0:5, T~1, at the border

between Harmony and Snowdrift, for which there is a second

small recurrent set where 0100 and 0101 coexist in a mixed

strategy). In agreement with previous research, for the strict

Prisoner’s Dilemma game with not so large temptation values, the

unique absorbing node turns out to be the balanced WSLS

strategy (Pavlov, 1001). An example of this result can be seen for

the parameters (S,T)~({0:5,1:5), where a blue large dot

represents the absorbing set formed only by Pavlov. The same

happens for the (S,T)~(0,1) point, but starting from there and as

one enters further in the Harmony game quadrant, there is a

smooth transition in which an additional absorbing set appears,

corresponding to the strategy AllC (1111), the balanced WSLS in

this region above the S~T line (dashed in Fig. 1; see also Fig. 2).

In fact, above that line the equilibrium configuration is practically

always AllC, with a residual presence of Pavlov in a few points.

Therefore, our first result can be phrased by saying that balanced

WSLS strategies represent the equilibrium configurations of the

Prisoner’s Dilemma (for not so large temptations, specifically

Tv2) and the Harmony games.

The above conclusion applies in general to the region

comprised between SzT~0 (dotted line in Fig. 1) and

SzT~2, but things are not so simple when one looks at the

part of this region that belongs to the Stag Hunt. The Stag Hunt

quadrant is abundant in games with history-contingent end states.

This is not surprising because in Stag Hunt coordinating pays, and

coordination can be achieved by several different strategies–

among them AllC (1111) and Pavlov (1001), the two strategies that

are exchanging the role of balanced WSLS. However we also see

Table 2. Recurrent sets found in the Harmony game
quadrant.

S T strategies in recurrent set sm �aam

1:5 {0:5 1111 1 1

1:5 0:5 1111 1 1

1:25 0:25 1111 1 1

1:0 0 1111 1 1

1:0 1:0 1111 1 1

0:75 {0:25 1111 1 0.91

1001 1 0.09

0:75 0:25 1111 1 0.88

1001 1 0.12

0:5 {0:5 1111 1 0.86

1001 1 0.09

0:5 0:5 1111 1 0.78

1001 1 0.22

1111 1 0.85

0:25 {0:75 1001 1 0.12

0001 1 0.03

1111 1 0.54

0:25 0:75 1001 1 0.37

0001 1 0.09

0:5 1:0 1001 1 0.73

(0:75)0100 (0:25)0101 1 0.27

0:5 1:0 (0:11)0010 (0:20)0011 (0:69)1011 1 1

Same as Table 1 for the Harmony game quadrant (Sw0, Tƒ1).
doi:10.1371/journal.pone.0035135.t002

Table 3. Recurrent sets found in the Prisoner’s Dilemma
game quadrant.

S T strategies in recurrent set sm �aam

0 1:0 1001 1 1

0 1:5 1001 1 1

{0:5 1:0 1001 1 1

{0:5 1:5 1001 1 1

{1:5 1:5 1001 1 1

0 2:5 (0:14)0010 (0:22)0011 (0:64)1011 1 1

0 2:0 0000 0.34 1

1001 0.10

1011 0.10

all others except 06 0.46

{0:5 2:5 0000 0.19 1

1000 0.43

all others except 06 0.43

{0:5 2:0 0000 0.20 1

1000 0.49

all others except 06 0.31

{1:5 2:5 0000 0.24 1

1000 0.62

all 0.14

Same as Table 1 for the Prisoner’s Dilemma game quadrant (Sƒ0, T§1).
doi:10.1371/journal.pone.0035135.t003
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evidence for 0001 becoming a new absorbing state, albeit in a

smaller –but noticeable–proportion than AllC and Pavlov. The

reason why the strategy 0001 appears in the Stag Hunt quadrant is

because it does coordinate with itself (like the other two), although

in this case it oscillates every step between CC and DD. The

presence of this strategy supports the conclusions of [42], where it

was pointed out that WSLS strategies are not efficient in some of

these games (we will see below that this is also the case in the

remaining region of the Snowdrift game).

Let us now move to other regions of the (S,T) plane; in

particular, let us consider the parameter set limited by SzTƒ2

and T§2, which belongs to the Prisoner’s Dilemma. Here we find

that the successful strategy is not Pavlov anymore but, instead,

equilibria are almost ergodic on the whole set of strategies. In fact,

Pavlov becomes a secondary strategy in so far as trajectories within

the recurrent set do not spend much time in it. The two most

important strategies in the recurrent set are 1000, the modest

WSLS one, and AllD; interestingly, 1000 becomes dominant–in

the sense that the population spends more time using it–as T

increases and S decreases. It is worth noting that this modest

WSLS strategy can be identified with GRIM, the strategy that

cooperates until the partner defects, and then turns to defection

forever. On the other hand, the fact that nearly all strategies

appear in the equilibria has important implications: it means that

almost every strategy can invade and be invaded by some of the

others. This is clearly seen in Fig. 3, where we represent the

invasion subgraphs of the recurrent sets of the four games in this

region. Focusing as an example in the ({0:5,2:0) game, that

corresponds to Axelrod’s tournaments [12], we confirm that there

is not a unique dominant strategy and, in addition, we see that the

evolution of the system is quite complicated. Note in particular

that transitions between AllD and GRIM are almost never direct,

but rather they proceed through intermediate populations; thus,

0000 becomes destabilized and evolves towards 0010 or 1010 (the

famous TFT), to proceed from there to GRIM through Pavlov.

Similar cycles are repeated in the other three games, as can be

seen in Fig. 3. An interesting observation that also arises from

these plots is that as T increases and S decreases, not only GRIM

becomes more important, but in addition the structure of the

invasion graph simplifies largely, and direct transitions from AllD

to GRIM become possible, the cycle being completed through

TFT and subsequently to others to go back to GRIM. Therefore,

we see that in the large temptation region Pavlov is not the

dominant strategy anymore, and this role is now played, to

different extents, by GRIM and AllD.

The reader may be puzzled by the fact that the scenario we are

depicting for the ({0:5,2:0) game is so different from the outcome

of Axelrod’s tournaments [12]. One should bear in mind though

that our dynamics and Axelrod’s is very different. Axelrod

confronted every pair of strategies, which interacted along 200

rounds and accumulated the payoffs obtained through the

tournament. TFT was the best scoring strategy. But this is very

different from the dynamics we are exploring here, where every

new strategy attempts to invade a resident, stable population. This

difference was already noted by Nowak and Sigmund [19] in their

simulations confronting random mixtures of different strategies.

There are still two parameter regions left: the Stag Hunt

quadrant below the SzT~0 line and the portion of the

Snowdrift quadrant with SzTw2. As already noted above, these

two sets cannot be explained in terms of WSLS strategies, at least

not entirely; in addition, the structure of the equilibria is different

in the two games. For the Stag Hunt game, we always find several

absorbing states. This multi-stability is the signature of this game,

even when played one shot. The ultimate reason is the existence of

two Nash equilibria in the one-shot game, which gives players

some freedom in devising different coordinating strategies. The

relative importance of the different absorbing states–measured in

terms of the probability of reaching them–depends on the

parameter values, but in general the most relevant strategy, i.e.,

the one appearing more often as a result of the evolution, is AllC.

As we go down the quadrant, Pavlov, initially significant, loses

much of its importance and its probability as a possible

evolutionary stable population decreases with respect to GRIM–

which also plays here the role of a modest WSLS strategy. As a

Table 4. Recurrent sets found in the Stag Hunt game
quadrant.

S T
strategies in
recurrent set sm �aam

0 0:5 1111 1 0.60

1001 1 0.22

0001 1 0.18

{0:25 0:75 1111 1 0.40

1001 1 0.46

0001 1 0.14

{0:5 0:5 1111 1 0.55

1001 1 0.32

0001 1 0.13

{0:75 0:25 1111 1 0.64

1001 1 0.16

0001 1 0.12

0111 1 0.08

{0:25 {0:75 1111 1 0.66

1001 1 0.14

0001 1 0.06

0111 1 0.14

{0:5 {0:5 1111 1 0.66

1001 1 0.14

0001 1 0.07

0111 1 0.13

{0:75 {0:25 1111 1 0.54

1001 1 0.11

0001 1 0.07

0111 1 0.13

1000 1 0.15

{1:5 {0:5 1111 1 0.41

1001 1 0.10

0001 1 0.10

0111 1 0.08

1000 1 0.24

0110 1 0.07

{1:5 0:5 1111 1 0.17

1001 1 0.21

0001 1 0.09

1000 1 0.53

Same as Table 1 for the Stag Hunt game quadrant (Sƒ0, Tv1).
doi:10.1371/journal.pone.0035135.t004
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matter of fact, for very negative S and T close to (but below) 1,

GRIM substitutes even AllC as the most relevant strategy.

As for the part of the diagram with SzTw2, practically in all

cases we find mixed equilibria, and more often than not two

different mixed equilibria form disjoint recurrent sets. The key to

understand these results is to note that in this region, any payoff

which is a combination of S and T is higher than the highest fixed

payoff (R~1). Since an individual and her co-player have to opt

for a different action (cooperate or defect) to get S or T payoffs,

they need to anti-coordinate their actions, so they can benefit

alternatively in even or odd rounds. Hence, the best strategies are

two mixed states: 0010+0011+1011 and 0100+0101(+1101).

Indeed, an individual that plays one of the strategy from the last

group continues cooperating after obtaining S and defecting after

T . In this manner, one of the player is always obtaining S and the

other T . If one of them mistakes her action (which will eventually

occur), the combination of two strategies forces them back to the

S-T dynamics in one or two rounds. The same process takes place

for the first mixed state, but in this case both players switch actions

all the time, i.e., when one obtains S she changes to defection and

when she gets T she goes back to cooperation. It is interesting to

note that as S becomes the largest payoff, the strategy 1101

becomes more important (see upper left corner of the Snowdrift

quadrant in Fig. 1). This strategy is the modest WSLS one in the

region, and is highly cooperative as well, defecting only if needed

to anti-coordinate with the opponent. Therefore, even if the

description of the successful strategies in this region is in general

not compatible with WSLS strategies, they still play a role in their

modest version.

Fixation probabilities
As discussed in ‘Methods’, in a finite population the dynamics

eventually leads to fixation of one of the strategies–either the

resident or the invader. If the population is large, the presence of

quasi-stationary mixed states may increase the fixation time

exponentially with the size of the population. If the population is

large, fixation will never be observed in practice; however, in small

populations and with very small mutation (invasion) rates the

fixation process becomes meaningful. In order to make a complete

discussion of this problem we will address here the description of

the invasion process in terms of fixation probabilities [43]. A plus

of this analysis is that it will reveal the relevance of the mixed states

in the final outcome of the process.

We represent in Fig. 4 the results of the Markov chain

constructed out of fixations and fixation probabilities, using the

same conventions as in Fig. 1. Given two strategies, a resident one

and an invader, fixation of either one has always a nonzero

probability to occur, even though most often one of them is very

small. For the sake of simplicity fixation probabilities smaller than

10{14 has been neglected in this plot.

The first obvious difference between Figs. 1 and 4 is that all

mixed equilibria have disappeared in the latter. This is very

important for the region SzTw2 (in the Snowdrift quadrant). In

general, Fig. 4 is simpler than Fig. 1, but remarkably the main

general features remain. Thus, the stripe delimited by SzT~0
and SzT~2 shows again the smooth transition from Pavlov in

the Prisoner’s Dilemma with not so large temptations to AllC in

the Harmony game, both being the balanced WSLS strategies in

their corresponding parameter sets. In the region where we found

Figure 2. Distribution of the payoffs and the different win-stay, lose-shift strategies. Strategies are ordered according to decreasing
aspiration level [32] in the different regions of the (S,T) plane.
doi:10.1371/journal.pone.0035135.g002
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the mixed equilibria before, the Snowdrift game with SzTw2,

we now have only three strategies: 0100, 1011 and 1101. The last

one, the modest WSLS option, is only relevant for larger S,

whereas the other two are strategies that tend to anti-coordinate

with the opponent, changing action with a probability of 50%.

Another noticeable difference is that sometimes the simulations

show a few more absorbing states than the fixation analysis (e.g.,

for S~{0:75,T~{0:25). We have checked that this is a result

of insufficient statistics in simulations. Indeed, some states appear

as absorbing because the probability that they are invaded by

other strategy is always smaller than the inverse of the number of

realizations (0:01 in our case). We have checked that by increasing

precision in simulations these absorbing states disappear and the

two scenarios approach each other. Anyway the average

probabilities of being absorbed in these fake absorbing states are

always small (v0:1) so they hardly arise as the final result of the

evolution.

Another difference between the two schemes is that the

probabilities of the absorbing nodes and recurrent sets are slightly

different in the SzTv2 region. This is not just due to insufficient

statistic but a deeper effect. As it turns out, mixed states do

influence the asymptotic probability distribution of the recurrent

sets even when they do not belong to them, because the probability

that a mixed state arises or is invaded by one or another strategy

affects in turn the probabilities of the invaded or invading

strategies. This fact is even clearer for the games with

2ƒTƒ2{S, where the mixed states are part of the recurrent sets.

All in all, we can conclude that the analysis using fixation

probabilities does not change qualitatively our main conclusions,

and only affects the existence of the mixed states, which are

Figure 3. Graphs of the recurrent set in the 2ƒTƒ2{S games. Vertices show the most representative (smw0:02) pure (red) and mixed (blue)
states. The rest of states are grouped in a single vertex (black). The size of a vertex is proportional to its corresponding value of sm. Arrows show the
transition probabilities, with widths and colors proportional to their values normalized to the minimum probability (in ascending order: green, light
blue, dark blue and grey).
doi:10.1371/journal.pone.0035135.g003
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replaced by a few of the participants in the mixed states found in

the simulations.

Discussion

In this paper, we have carried out a thorough study of the

evolutionary successful strategies in iterated symmetric 2|2
games, focusing on quasi-deterministic memory-one strategies.

To this end, we introduced an approach that has proven very

fruitful in ecosystem assembly studies [34–36], whose basic idea is

to study the process as isolated invasions which lead from a

population composition to another one with some probability, and

to build a Markov chain out of these invasion transitions. We have

implemented two versions of the procedure, one involving an

individual based model, that allows to identify mixed equilibria

with extremely long absorbing times–hence relevant to actual

observations–and another more standard one based on fixation

probabilities, that leads to the truly asymptotic results. The

agreement between both approaches is very good and provides a

test of our findings as well as a check on the validity range of the

simulation approach. We have also introduced an accelerated

version of the dynamics so that the simulations can be performed

in an affordable computing time. This acceleration is quite general

and valid for many other birth-death processes.

The main picture that arises from our study highlights the

importance of WSLS strategies, as first found in [31]. Our results

confirm that, generally speaking, balanced WSLS (those aspiring

to intermediate payoffs) strategies are the successful ones in the

Prisoner’s Dilemma and in the Harmony game. On a larger scale,

some type of WSLS strategy, be it balanced or modest (aspiring to

the second lowest payoff) is always relevant to understand the

equilibrium structure of the games. Thus, GRIM, a modest WSLS

strategy, is important in the Prisoner’s Dilemma for large

temptations, whereas 1101 appears with large probability in the

Snowdrift game. As for the structure of the selected populations,

we have found that when SzTv2, absorbing states consisting of

only one strategy appear, whereas above that line and to the right

of T~2 both, complex recurrent states or mixed states, result from

the evolution of the population. The latter is the region where the

risk in cooperating (S) and the temptation to defect (T ) are very

large, and their influence on the evolution of the population is

considerably larger than that of the other two payoffs. Therefore, it

pays to have a strategy focusing in obtaining these two payoffs,

which leads to anti-coordination in the Snowdrift game and to

invadability of almost any strategy in the Prisoner’s Dilemma for

large temptations, when anti-coordinating is very detrimental for

the player choosing the lower payoff action. For this last case, we

have been able to build the detailed invasion graphs and to

completely characterize how strategies replace each other, the

complexity of the recurrent state decreasing with increasing

absolute values of S and T .

A final remark is in order concerning the lessons from our study.

We have found that ambitious WSLS strategies are never

successful for any of the games we have studied. This is likely to

occur because such strategies need a population to exploit, as the

players using them need to benefit from their opponent’s good will

in order to obtain the largest payoff. In so doing, they lead the

exploited strategies to extinction, and subsequently cause their

own disappearance as they become invadable by more modest

WSLS strategists, that fare well against each other. On the other

hand, our results point out to the importance of identifying the

kind of social dilemma one is involved in and, in particular, to

realize that one is in a Snowdrift type of situation, because in this

case and unless SzTv2, a WSLS approach will not succeed.

The challenge for the players is then to try to take turns in

choosing the most beneficial actions and be so generous as to avoid

insisting on being always the player with the largest payoff. Such

an ambitious version of anti-coordination is indeed possible for

Figure 4. Composition of the recurrent sets for each studied game. The plot is the same as Figure 1, but measuring the transition
probabilities as probabilities of absorption.
doi:10.1371/journal.pone.0035135.g004
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some time when there is coexistence in the population of exploiter

and exploited individuals, but in the end only alternating anti-

coordination can prevail. Once again, extreme ambition does not

pay, a conclusion that is confirmed in the large temptation regime

of the Prisoner’s Dilemma by noticing the very important role

played by GRIM in keeping AllD at bay, preventing it from

becoming fixed in the population. Therefore, we see that modest

ambitions regarding the payoffs are the rule of thumb to deal

successfully with these 2|2 social dilemmas.
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